MATH 473 WINTER 2019 HOMEWORK 9

- 1. Let G be a cyclic group of order 4. Write the regular $\mathbb{C}G$ -module as a direct sum of irreducible $\mathbb{C}G$ -modules.
- 2. Let $G=C_2=\langle a:a^2=e\rangle,$ and let $\rho:G\to \mathrm{GL}(3,\mathbb{C})$ be the representation defined by

$$a\rho = \begin{bmatrix} 3 & 0 & -2 \\ 0 & 1 & 0 \\ 4 & 0 & -3 \end{bmatrix}.$$

Let V be \mathbb{C}^3 , and make V into a $\mathbb{C}G$ -module by defining $vg = v \cdot (g\rho)$ for $g \in G$. Set $U = \mathrm{span}([0,1,0],[-1,0,1])$. U is then a $\mathbb{C}G$ -submodule of V. Determine two distinct $\mathbb{C}G$ -submodules W_1 and W_2 such that

$$V = U \oplus W_1 = U \oplus W_2.$$

This shows that the submodule W determined by Maschke's theorem need not be uniquely defined.

3. Let G be the infinite group

$$G = \left\{ \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} : n \in \mathbb{Z} \right\}.$$

Let $V=\mathbb{C}^2$ be a $\mathbb{C}G$ -module with the multiplication vg given by matrix multiplication of the row vector $v\in V$ by the matrix $g\in G$. Show that V is **not** completely reducible.

4. Prove that if G is a finite simple group, then every nontrivial irreducible $\mathbb{C}G$ -module is faithful.