MATH 473 FALL 2019 HOMEWORK 6

1. Let $G = C_3 = \langle a : a^3 = 1 \rangle$, and let $\rho : G \to \operatorname{GL}(2, F)$ be the representation defined by

$$a\rho = \begin{pmatrix} 0 & 1\\ -1 & -1 \end{pmatrix},$$

(see Example 5.5(1)). Prove that ρ is irreducible if $F = \mathbb{R}$, but that ρ is reducible if $F = \mathbb{C}$.

Hint: What are the dimensions of any possible subspaces of the FG-module arising from ρ , and how do such submodules relate to eigenvalues of $a\rho$?

- 2. Let ρ and σ be equivalent representations of the group G over F. Prove that ρ is reducible if and only if σ is reducible.
- 3. Let $G = S_3$, and write $\alpha = (1 \ 2)$ and $\beta = (1 \ 2 \ 3)$. Write $r = \frac{1}{2}\beta + \frac{1}{2}\beta^2$, and $s = \frac{1}{3}\alpha + \frac{1}{3}\alpha\beta + \frac{1}{3}\alpha\beta^2$. Compute the following products in the group algebra $\mathbb{C}G$. (a) rs.
 - (b) r^2 .
 - (c) s^2 .
- 4. Let $G = S_3$ and let $\rho : G \to GL(6, \mathbb{C})$ be the regular representation of G. Determine the matrix $(1\ 2\ 3)\rho$. (Note: your answer will depend on the ordering that you use for the standard basis of FG, so be sure to specify this ordering.)