MATH 473 FALL 2019 HOMEWORK 2

- 1. Let V be a vector space, and let U and W be subspaces of V. Prove that $V = U \oplus W$ if and only if V = U + W and $U \cap W = 0$.
- 2. Suppose that U_1, \ldots, U_r are subspaces of V with $V = U_1 \oplus \cdots \oplus U_r$, and that each U_i has a basis B_i . Prove that the set

$$B = \bigcup_{i=1}^{r} B_i$$

is a basis for V.

- 3. Give an example of a vector space V and an endomorphism ϑ of V such that $V = \operatorname{Im} \vartheta \oplus \operatorname{Ker} \vartheta$, but ϑ is not a projection.
- 4. Suppose that ϑ is an endomorphism of a vector space V over \mathbb{C} such that $\vartheta^3 = 1_V$. Show that $V = U_0 \oplus U_1 \oplus U_2$, where

$$U_0 = \{ v \in V : v\vartheta = v \},\$$

$$U_1 = \{ v \in V : v\vartheta = \zeta v \},\$$

$$U_2 = \{ v \in V : v\vartheta = \zeta^2 v \},\$$

where $\zeta = e^{2\pi i/3}$ is a cube root of 1.

Hints: Note that $\zeta^3 = 1$ and $1 + \zeta + \zeta^2 = 0$. If $v \in V$ and $w_1 = \frac{1}{3}(v + \zeta^2 v \vartheta + \zeta v \vartheta^2)$, what is $w_1 \vartheta$? Does w_1 live in one of U_0 , U_1 , or U_2 ? Can you find a w_0 and a w_2 so that $v = w_0 + w_1 + w_2$?