MATH 473 FALL 2019 HOMEWORK 20

1. Let G be a group with k conjugacy classes represented by g_1, \ldots, g_k , and irreducible characters χ_1, \ldots, χ_k . Consider the character table of a group G as a square matrix A, with the row i column j entry given by $\chi_i(g_j)$. Let A^* denote the conjugate transpose of A, i.e. $A^* = \overline{A^T}$ this is often called the *adjoint* of A). Determine the matrix

A^*A .

- 2. (a) Let G be the group S_3 . Determine $|\det(A)|$ for the matrix A described in problem 1.
 - (b) Let G be an abelian group of order n. Determine $|\det(A)|$ for the matrix A described in problem 1.
- 3. For characters χ and ψ of G, Define the function $\chi \psi : G \to \mathbb{C}$ by $\chi \psi(g) = \chi(g)\psi(g)$. Prove the following.
 - (a) If $\chi(e) = 1$, then $\chi \psi$ is a character of G.
 - (b) If $\chi(e) = 1$, then $\chi \psi$ is an irreducible character of G if and only if ψ is irreducible.
- 4. Suppose that $\psi = \overline{\chi}$, and $\chi(e) > 1$. Prove that $\chi \psi$ can not be an irreducible character of G. (Note: $\chi \psi$ is a class function, but we do **not** know that it is a character. We will prove later that $\chi \psi$ is always a character.)