MATH 473 FALL 2019 HOMEWORK 27

1. Let $G = S_3$, and set $a = (1 \ 2 \ 3)$ and $b = (1 \ 2)$. Define the following vectors in $\mathbb{C}G$ (where $\omega = e^{2\pi i/3}$):

$$\begin{split} u_1 &= e + \omega a + \omega^2 a^2, \\ u_2 &= b + \omega a b + \omega^2 a^2 b, \\ v_1 &= b + \omega^2 a b + \omega a^2 b, \\ v_2 &= e + \omega^2 a + \omega a^2. \end{split}$$

Define $U = \operatorname{span}(u_1, u_2) \subset \mathbb{C}G$. Prove that U is a $\mathbb{C}G$ -submodule of $\mathbb{C}G$.

2. With definitions from problem 1, define

$$\theta:U\to \mathbb{C}G$$

by $u_1\theta = v_1$ and $u_2\theta = v_2$ and extending linearly. Prove that θ is a $\mathbb{C}G$ -homomorphism, and find $r \in \mathbb{C}G$ such that $u\theta = ru$ for all $u \in U$.

- 3. Let $G = C_6 = \langle a | a^6 = e \rangle$. Let $H = \langle a^3 \rangle \subset G$. Let $U = \operatorname{span}(1 + a^3) \in \mathbb{C}G$. Determine $U \uparrow G$ and decompose $U \uparrow G$ as a direct sum of irreducible $\mathbb{C}G$ -modules.
- 4. Let $G = S_3$, and let $H = \langle (1 \ 2 \ 3) \rangle$. Let $U = \operatorname{span}(\sum_{h \in h} h)$ be a $\mathbb{C}H$ -submodule of $\mathbb{C}H$. Determine $U \uparrow G$, and decompose $U \uparrow G$ into a direct sum of irreducible $\mathbb{C}G$ -modules.