MATH 473 FALL 2019 HOMEWORK 31

- 1. Let p and q be primes with q > p, and let G be a nonabelian group of order pq.
 - (a) Determine the degrees of the irreducible characters of G.
 - (b) How many one dimensional characters does G have? (Prove your answer.)
 - (c) Prove that p|(q-1).
 - (d) Determine how many conjugacy classes G has.
- 2. Prove that every group of order 35 is abelian.
- 3. Let G be a group of odd order, and let 1_G be the trivial character of G.
 - (a) Prove that the only element $g \in G$ with $g = g^{-1}$ is the identity.
 - (b) Suppose that χ is an irreducible character of G with $\chi = \bar{\chi}$. Prove that

$$\langle \chi, 1_G \rangle = \frac{1}{|G|} (\chi(1) + 2a)$$

for some algebraic integer a.

- (c) Prove that every irreducible character χ of G with $\chi = \overline{\chi}$ must satisfy $\chi = 1_G$.
- (d) Prove that the number of conjugacy classes of G is odd.
- 4. Let G be a group, and let φ be a character of G such that $\varphi(g) = \varphi(h)$ for all nonidentity elements g and h of G. Let 1_G be the trivial character of G, and χ_{reg} the regular character of G.
 - (a) Show that $\varphi = a \mathbf{1}_G + b \chi_{\text{reg}}$ for some $a, b \in \mathbb{C}$.
 - (b) Show that a + b and a + b|G| are integers.
 - (c) Show that if χ is a nontrivial irreducible character of G, then $b\chi(e)$ is an integer.
 - (d) Show that a and b are integers.