MATH 473 FALL 2019 HOMEWORK 4

1. Let G be the cyclic group of order m, say $G=\langle a:a^m=1\rangle>$ and let $A\in \mathrm{GL}(n,\mathbb{C})$. Define $\rho:G\to\mathrm{GL}(n,\mathbb{C})$ by

$$(a^r)\rho = A^r$$
,

for $0 \le r < m$. Prove that ρ is a representation of G if and only if $A^m = 1$.

- 2. Prove that equivalence of representations is an equivalence relation.
- 3. Prove that if $\rho:G\to \mathrm{GL}(1,\mathbb{C})$ is a representation, then $G/\operatorname{Ker}\rho$ is an abelian group.
- 4. Find two nonequivalent faithful degree two representations of the cyclic group C_2 with two elements. Be sure to prove that the representations you find are nonequivalent.