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Abstract. Let K/Q be a non-Galois cubic extension with |dk| a power of

a prime p. We prove a conjecture of Wong, namely that the number of S4-
extensions of Q containing K and having discriminant a power of p is of the

form 2n − 1 for some nonnegative n ∈ Z, and that n is positive if K is totally
real.

1. Introduction

In [8] Siman Wong studies octahedral extensions of Q (i.e. extensions with Ga-
lois group S4, the symmetry group of the octahedron) and states the following
conjecture.

Theorem 1.1. [8, Conjecture 1] Let K/Q be a non-Galois cubic extension such
that the discriminant |dK | is a prime power. Then the number of S4-extensions
L/Q containing K and having |dL| a prime power is 2n − 1 for some integer n.
Furthermore, if K is totally real, then n > 0.

In this paper we will prove Wong’s conjecture.
We prove the conjecture in two parts. In section 2 we will show that a standard

application of Kummer theory yields the following theorem.

Theorem 1.2. Let F be a number field and let P be a finite set of primes of F .
Let K/F be a non-Galois cubic extension unramified outside P. Then the number
of S4-extensions containing K and unramified outside P is 2n − 1 for some non-
negative integer n.

With the exception of its last assertion, Theorem 1.1 is a special case of Theo-
rem 1.2, in which F = Q and P = {p,∞}. The main contribution of this paper
is the proof in section 3 of this last assertion. The proof proceeds by explicitly
constructing a quadratic extension of the cubic field K that is unramified outside
{p,∞} and has Galois group S4, so that the value of n in Theorem 1.2 is nonzero.

2. Counting S4-extensions

We thank an anonymous reviewer for suggestions that significantly shortened
the proof of Theorem 1.2.

Proof of Theorem 1.2: Let K/F be any non-Galois cubic extension of number fields,
P a finite set of primes of F containing all primes which ramify in K. By [5, Section
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3.1] (see also [3, Theorem 2.2]), there is a bijection between the set of S4-extensions
of F containing K and the nonidentity elements of the abelian group

S = ker(NK/F : K∗/(K∗)2 → F ∗/(F ∗)2)

of exponent 2. Under this correspondence, a nonidentity element of S represented
by α ∈ K∗ is associated with the Galois closure of K(

√
α)/F , which has Galois

group S4.
If we denote by Lα and Lβ the S4-extensions of F corresponding to elements

of S represented by α, β ∈ K∗, we see easily that the ramified primes of Lαβ
are contained inside the union of the sets of ramified primes of Lα and Lβ (since
Lαβ is contained in the compositum LαLβ). Hence, the set of S4-extensions of F
containing K and unramified outside P is in bijection with the nonidentity elements
of a subgroup of S. Since this set must be finite [7, p. 122], we see that its size
must be of the form 2n − 1 for some n. This proves Theorem 1.2. �

3. Cubic fields ramified only at p ≡ 1 (mod 4)

Throughout this section we will denote by K a totally real cubic extension of Q
with Galois group S3 ramified only at one prime p > 3. By [1, Lemma 2.4] this is
equivalent to saying that K is a cubic field with Galois group S3 that is ramified
only at one prime p ≡ 1 (mod 4). Since K/Q must be tamely ramified, we see that
the discriminant dK of K must equal p.

In the case that the narrow class number of K is even, Heilbronn [6] has shown
that K is contained in an S4-extension L/Q defined by a quartic polynomial whose
root field has the same discriminant as K. The absolute value of the discriminant
of L/Q will then be a power of p. We wish to prove a similar theorem in the case
that the narrow class number of K is odd; namely, that there is an S4-extension
L/Q containing K with |dL| equal to a power of p.

The key to our proof is the following theorem.

Theorem 3.1. [4, Lemma 5.32] Let L = K(
√
u) be a quadratic extension with

u ∈ OK , and let p be a prime in OK .

(1) If 2u 6∈ p, then p is unramified in L.
(2) If 2 ∈ p, u 6∈ p, and u = b2 − 4c for some b, c ∈ OK , then p is unramified

in L.

The fact that the unit group of K is of rank 2 (since K is a totally real cubic
field) will give us a large number of units modulo squares. This will enable us
to construct non-square elements u of K for which adjoining the square root of
u will give a quadratic extension of K unramified outside {p,∞}. We will then
show that the extension that we construct has the correct Galois group. In order
to use condition (2) of Theorem 3.1 we will first need to understand the structure
of (OK/4OK)×, since the u in which we are interested will be squares modulo 4
that are relatively prime to 2.

Proposition 3.2. Let K/Q be a cubic extension, and let q be a prime of K lying
over 2 and let f be the inertial degree of q over 2. Then

(OK/q
2)× ∼= (Z/2Z)f × Z/(2f − 1)Z.

Proof. By [4, p. 142], there is an exact sequence

0→ (OK/q)+ → (OK/q
2)× → (OK/q)× → 1.
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Since the group (OK/q)+ is isomorphic to (Z/2Z)f , the group (OK/q)× is cyclic
of order 2f − 1, and the orders of the two groups are relatively prime, the sequence
splits and the theorem follows. �

Corollary 3.3. Let K/Q be a non-Galois cubic extension in which 2 is unramified,
and let f be the inertial degree of any prime over 2 in the Galois closure of K/Q.
Then, setting q = 2f − 1, we have

(OK/4OK)× ∼= Z/2Z× Z/2Z× Z/(2q)Z.

Proof. This follows from Proposition 3.2, the Chinese Remainder Theorem, and the
factorization of 2OK into prime ideals. �

Corollary 3.3 shows that (OK/4OK)× must have a unique subgroup of order 8
consisting of elements of order dividing 2. In addition, we see that this subgroup
consists of precisely the qth powers in (OK/4OK)×.

We now investigate the units modulo 4.

Proposition 3.4. Let K/Q be a totally real non-Galois cubic extension with narrow
class group of odd order, and let q be defined as in Corollary 3.3. Let {u1, u2} be
a system of fundamental units for OK . Let S = {±1,±uq1,±u

q
2,±(u1u2)q}. Then

the elements of S have distinct images in (OK/4OK)×.

Proof. If two distinct elements in the set were congruent modulo 4, then their quo-
tient v would be a non-square unit congruent to 1 modulo 4. Then by Theorem 3.1,
K(
√
v) would be a quadratic extension of K that is unramified at all finite primes.

Such an extension cannot exist since the narrow class number of K is odd. �

Corollary 3.5. Let H be the set of images of the elements of S in (OK/4OK)×.
Then H is a subgroup of order 8 in (OK/4OK)×, and a complete set of coset
representatives for H consists of the set of squares of elements in (OK/4OK)×.

Proof. The set H consists of eight distinct qth powers in (OK/4OK)×, which form
a subgroup. The subgroup H contains only one of the squares in (OK/4OK)×, so
each of the q squares is in one of the q cosets of H. �

We are now prepared to construct a quadratic extension of K.

Theorem 3.6. Let K/Q be a totally real non-Galois cubic extension, ramified only
at one prime p > 3. Assume that the narrow class number h of K is odd. Let
pOK = p1p

2
2 be the factorization of pOK into prime ideals of OK . Then there is a

quadratic extension of K in which the only finite prime that ramifies is p2.

Proof. Let h be the narrow class number of K. Then ph2 is principal, say ph2 = πOK

for some π ∈ OK . Let S = {±1,±uq1,±u
q
2,±(u1u2)q}. Then πS contains an

element v which is a square modulo 4 (since the image of πS in (OK/4OK)× is
a coset of H, and contains a square by Corollary 3.5). Note that v itself cannot
be a square in OK , since it is a generator of an odd power of p2. Because the
only prime containing v is p2 and v is a square modulo 4OK , Theorem 3.1 shows
that K(

√
v)/K is unramified at all finite primes except possibly p2. Since K has

no quadratic extensions unramified at all finite primes (because its narrow class
number is odd), K(

√
v)/K must ramify at p2. �

Theorem 3.7. Let K(
√
v)/K be the extension constructed in Theorem 3.6. Then

the Galois group of the Galois closure of K(
√
v)/Q is isomorphic to S4.
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Proof. Let K6 = K(
√
v) be the degree six field constructed above. Since p2 ramifies

in K6/K, the Galois closure of K6/Q must have Galois group of order divisible by
4. In particular, K6 cannot be an S3-extension of Q. Now K6 has the cubic subfield
K; by [2, p. 325] we see that the Galois group of the Galois closure of K6 must be
one of

C6, S3, D6, A4, S4, A4 × C2, S4 × C2.

Since K has Galois group S3 and the splitting field of K6 properly contains the
splitting field of K, we can rule out C6, S3, A4, and A4×C2. Since only one prime
is ramified in K6 (and that prime is odd), its splitting field cannot contain two
quadratic subfields, ruling out D6 and S4 × C2. Hence, the Galois group must be
S4, as desired. �

Corollary 3.8. Let K/Q be a non-Galois cubic extension with discriminant a
power of p ≡ 1 (mod 4). Then K is contained in an S4-extension L/Q, and |dL|
is a power of p.

Proof. Since p is tamely ramified in K/Q, we see that dK = p. Since p ≡ 1 (mod 4),
K must be totally real [1, Lemma 2.4]. If the narrow class group of K has even
order, [6] shows that K is contained in an S4-extension L/Q with discriminant a
power of p. If the narrow class group of K has odd order, Theorems 3.6 and 3.7
combine to yield the same conclusion. �

Corollary 3.8 completes the proof of the final assertion of Theorem 1.1 by proving
the existence of an S4-extension of Q containing K and unramified outside {p,∞}.
This proves that, for totally real K ramified at only one prime, the value of 2n − 1
in Theorem 1.1 is at least one, so that n > 0.
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