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Abstract. In this paper we describe calculations which distinguish between two

possibilities for Galois representations in examples given by Ash, Doud, and Pollack
of a generalization of a conjecture of Serre. Our calculations allow us to strengthen

the evidence for this conjecture.

1. Introduction

In [2, Sections 5.1.2 and 5.1.3], several examples of Galois representations are given,
and conjectural connections between these Galois representations and Hecke eigenclasses
are tested. The examples all consist of a twist of an even two-dimensional representation
added to a character. In each example, there are two choices for the even two-dimensional
representation, and the representation chosen is selected to give a convenient prediction
for the weight associated to the resulting three-dimensional representation. However,
the authors did not make explicit what the traces of Frobenius were for the chosen
representation. This ambiguity means that for certain Frobenius elements, there are two
possibilities for the trace under the three-dimensional representation. The aim of this
paper is to describe how we resolve the ambiguity, computing the traces of Frobenius
under the two-dimensional representation, and showing that these traces correspond
to the computed Hecke eigenvalues in the three-dimensional case, as predicted by [2,
Conjecture 3.1]. Thus, we strengthen the evidence given in [2] for the conjecture.

2. Statement of the conjecture

We begin by giving a statement of the conjecture that we wish to test. The statement
given here will be simplified to the level 1 case and will be specific to three-dimensional
Galois representations–for a complete statement see [2].

Fix a prime p. Let M+
3 (Z) be the semigroup of matrices in GL3(Q) having integral

coefficients and positive determinant. We define the Hecke algebra H to be the Fp-
algebra of double cosets SL3(Z)\M+

3 (Z)/SL3(Z). For a prime ` and an integer k with
0 ≤ k ≤ 3, we define T (`, k) to be the double coset corresponding to the diagonal matrix
with 3− k 1’s followed by k `’s on the diagonal.

Definition 1. Let ρ : GQ → GL3(F̄p) be a Galois representation (i.e. a continuous
homomorphism), ramified only at p. Let V be an H-module, and let v ∈ V be a
simultaneous eigenvector of all the T (`, k) with ` 6= p. Let a(`, k) be the eigenvalue of
T (`, k) acting on v. We say that ρ is attached to v if for all ` 6= p,

3∑
k=0

(−1)ka(`, k)`k(k−1)/2Xk = det(I − ρ(Frob`)X).
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Note that the coefficient of X in the right-hand side is minus the trace of ρ(Frob`),
and the coefficient of X2 will be called the cotrace of ρ(Frob`), and denoted T2(ρ(Frob`)).

The H-module that we use in this paper will be a cohomology group H3(SL3(Z), V ),
where V is an irreducible GL3(F̄p)-module. We call the coefficient module V the weight.

The possible weights are described as follows:

Definition 2. An n-tuple of integers (a1, . . . , an) is p-restricted if

0 ≤ ai − ai+1 ≤ p− 1

for 1 ≤ i < n, and an ≤ p− 2.

Proposition 3. [6] Isomorphism classes of irreducible GLn(Fp)-modules are in one-to-
one correspondence with p-restricted n-tuples.

Definition 4. For a p-restricted triple (a, b, c), we denote the corresponding irreducible
module by F (a, b, c).

In [3, 2], the authors make predictions about which weights yield eigenclasses cor-
responding to given Galois representations. We will test these predictions by studying
certain Galois representations, determining the eigenvalues that are required to corre-
spond to them, and then computing the cohomology in the predicted weight in order to
give evidence for the conjecture. The conjecture that we will test is a special case of the
main conjecture of [2].

Conjecture 5. Let p be an odd prime, and let ρ : GQ → GL3(F̄p) be an odd Galois
representation (so that complex conjugation goes to a non-scalar matrix) ramified only at
p. Then for certain weights V determined by ρ, ρ is attached to a cohomology eigenclass
in H∗(SL3(Z), V ).

Note that by [3, pg. 6], if ρ is either irreducible or the sum of an even two-dimensional
representation plus a character, then we may take ∗ to be 3 in the conjecture. We do
not give the complete formula for determining the weights V here, but refer the reader
to [3] and [2] for more complete information.

3. Defining the representations

We recall the construction of odd three-dimensional Galois representations from even
two-dimensional Galois representations described in [3].

Proposition 6. Let θ : GQ → GL2(F̄p) be an irreducible representation, such that θ
is unramified outside p, the image of θ has order relatively prime to p, θ maps complex
conjugation to a scalar matrix, and the image of the inertia group Ip at p has order
dividing p− 1. Then θ|Ip

is reducible as a sum of powers of cyclotomic characters,

θ|Ip
∼

(
ωa 0
0 ωb

)
.

Let j and k be integers, such that j 6≡ k (mod 2) if θ maps complex conjugation to the
identity, and j ≡ k (mod 2) otherwise. Then ρ = θ⊗ωj⊕ωk is an odd three-dimensional
Galois representation, and if the triple (a+ j − 2, k − 1, b+ j) is p-restricted, one of the
weights predicted for ρ is F (a+ j − 2, k − 1, b+ j).

We will use this proposition by finding even two-dimensional Galois representations θ,
and constructing ρ as above. By choosing j and k carefully, we may find representations
with relatively small predicted weight. We then compute the cohomology in this weight,
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Class 1 2 3 4 5 6 7 8
Order 1 2 2 3 4 6 8 8
χ1 2 2 0 −1 2 −1 0 0
χ2 2 −2 0 −1 0 1 ζ8 + ζ3

8 ζ5
8 + ζ7

8

χ3 2 −2 0 −1 0 1 ζ5
8 + ζ7

8 ζ8 + ζ3
8

Table 1. Irreducible degree two characters of S̃4

and find systems of Hecke eigenvalues. According to the conjecture, the eigenvalues that
we find should be related to the images of Frobenius elements under ρ—we compare
these values, and if they match for several primes, we claim to have evidence that the
conjecture is true.

3.1. Octahedral representations.

Definition 7. A Galois representation ρ : GQ → GL2(Fp) will be called octahedral if
its composition with the canonical projection GL2(Fp) → PGL2(Fp) is isomorphic to S4

(the group of symmetries of the octahedron).

Note that the polynomial

g(x) = x8 − 3137(13204809x6 − 17449903959258x4 + 19634266857241x2 − 2521744)

has Galois group S̃4
∼= GL2(F3). We will let K̃ be its splitting field over Q. Note that

K̃ contains an extension K/Q with Galois group isomorphic to S4.
We note that g(x) has all its roots real, so that K̃ is contained in the reals. Hence

complex conjugation acts trivially on K̃. We also note that p = 3137 has ramification
index 8 in K̃, and that no other primes ramify.

Examining the irreducible degree two characters of S̃4 (Table 1), we see that there are
two faithful representations defined over F̄p. There are thus two possible representations
θ : GQ → GL2(F̄p), both of which cut out K̃. The two possibilities are contragredient to
each other—in other words, one can be obtained from the other by composing with the
transpose-inverse automorphism of GL2(F̄p). Since inertia at p has image of order 8, we
see that θ|Ip must decompose into linear characters of order dividing 8. In fact, one sees
easily that θ|Ip must decompose as either(

ω3(p−1)/8 0
0 ω(p−1)/8

)
or

(
ω5(p−1)/8 0

0 ω7(p−1)/8

)
.

We will choose θ so that its restriction to inertia is the first of these two possibilities.
Now, taking j = −(p − 1)/8 = −392 and k = 1, we define ρ = (θ ⊗ ωj) ⊕ ωk. Then

Proposition 6 yields a predicted weight of F (782, 0, 0).
Note from the character table of S̃4 that the order of an element determines the trace

of its image under θ except when the order is 2 or 8. The two conjugacy classes of order
2 are easy to distinguish, since one is central and one is not. The classes of order 8 are
significantly more difficult, however, and will require more work to determine.

3.2. Icosahedral representations.

Definition 8. A Galois representation ρ : GQ → GL2(F̄p) will be called icosahedral if its
composition with the canonical projection GL2(F̄p) → PGL2(F̄p) has image isomorphic
to A5 (the group of symmetries of the icosahedron).
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Class 1 2 3 4 5 6 7 8 9
Order 1 2 3 4 5 5 6 10 10
χ1 2 −2 −1 0 ζ5 + ζ4

5 ζ2
5 + ζ3

5 1 −ζ2
5 − ζ3

5 −ζ5 − ζ4
5

χ2 2 −2 −1 0 ζ2
5 + ζ3

5 ζ5 + ζ4
5 1 −ζ5 − ζ4

5 −ζ2
5 − ζ3

5

Table 2. Irreducible degree two characters of Â5

In order to work with icosahedral representations, we begin with A5-extensions of Q.
Let L1 and L2 be the splitting fields of the polynomials

h1(x) = x5 − 7402x3 − 3701x2 + 14804x+ 11103

and
h2(x) = x5 − 3821x3 − 3821x2 + 3821x+ 3821,

respectively. Then each Li is a totally real A5-extension of Q, and is ramified at only
one prime with ramification index e = 5 (L1 is ramified at p1 = 3701, and L2 is ramified
at p2 = 3821).

The existence of Li yields a representation θ̄i : GQ → PGL2(F̄pi) with image isomor-
phic to A5. By [3, Theorem 4.1], we see that each of these projective representations has
a lift to a representation θi : GQ → GL2(F̄p) with image isomorphic to Â5 (the unique
nonsplit central extension of A5 by Z/2Z), and with θi ramified only at pi. We will let
L̂i be the fixed field of the kernel of θi, so that L̂i/Q is an Â5-extension of Q ramified
only at pi. Note that we may choose θi so that L̂i/Li is unramified [10, Cor. 2.1.7].
Examining the irreducible degree two characters of Â5 (Table 2), we see that Â5 has
two two-dimensional faithful irreducible representations, so that there are two possible
choices for θi having fixed field L̂i. We see easily that the restrictions to inertia of the
two possibilities have the forms(

ω3(pi−1)/5 0
0 ω2(pi−1)/5

)
and

(
ω(pi−1)/5 0

0 ω4(pi−1)/5

)
.

We will choose θi so that its restriction to inertia is the first of these two possibilities.
As mentioned in [2, Section 5.1.3], both L̂1 and L̂2 are totally real, so that θi takes

complex conjugation to the identity. We then set ji = −2(pi − 1)/5 and k = 1, and find
that by Proposition 6, the representation

ρi = θi ⊗ ωji ⊕ ωk

has predicted weight F ((pi − 1)/5− 2, 0, 0).
Table 2 shows that the order of an element determines the trace of its image under

θi, except when that order is 5 or 10. We will describe techniques to distinguish these
cases in the next section.

4. Determining Frobenius elements

Computing the order of a Frobenius element at a rational prime is a simple task,
given a defining polynomial for an extension. When a Galois group has more than
one conjugacy class of a given order, however, it can be difficult to determine which
conjugacy class contains the Frobenius for a given prime. This problem was addressed
in [7], but the techniques there work only for certain groups, and do not apply to the
extensions that we study here. Instead we use more direct, but more computationally
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intensive, techniques. We begin with the following theorem, which is easily derived from
the definition of a Frobenius element.

Theorem 9. Let F be a Galois extension of Q, and let p be a prime of F lying over the
prime p in Q. Suppose that p/p is unramified, and let σ ∈ Gal(F/Q) be a generator of
the decomposition group of p/p. Let M be the fixed field of 〈σ〉 in F , and let q = p∩M .
If, for some α ∈ F , NF

M (σ(α)− αp) /∈ q, then σ is not a Frobenius for p/p.

Proof. By the definition of the Frobenius element, if σ is the Frobenius of p/p, then
σ(α) − αp ∈ p. Hence, the norm of σ(α) − αp, being a product of an element of p with
elements in OF , is in q = p ∩M . We can then conclude that if this norm is not in q,
then σ is not a Frobenius. �

Note that this theorem cannot be used to prove directly that a certain element of the
Galois group is in fact a Frobenius element. Instead, it can be used to exclude all other
possibilities until the only remaining possibility is that σ is a Frobenius.

We will use this theorem for our representations by explicitly computing the action
of elements of the Galois group on complex approximations of elements in the fields in
which we are interested. We will compute minimal polynomials of these elements and,
since the elements are algebraic integers, we will know that the minimal polynomials
have integer coefficients. After computing them to high precision, we may thus round
off the coefficients to the nearest integer. We will then use GP/PARI [11] to study the
elements defined by the polynomials thus obtained.

4.1. Octahedral example. We begin by determining the Galois group of g(x) as a
permutation group on the eight roots of g(x) using Magma [4]. Magma shows that for
the ordering

α1 = 1.0607 . . . , α2 = .0003584 . . . , α3 = −203524.358 . . . , α4 = −1149.5747 . . . ,

α5 = −1.0607 . . . , α6 = −.0003584 . . . , α7 = 203524.358 . . . , α8 = 1149.5747 . . .
of the roots, the Galois group is generated by the two elements σ = (1 2 3 4 5 6 7 8) and
τ = (1 3 8)(4 5 7). We choose a prime q ∈ Q unramified in K̃ and having inertial degree
8 in K̃/Q. The decomposition group D of any prime q of K̃ lying over q is then cyclic
of order 8. Since all cyclic subgroups of order 8 in S̃4 are conjugate, we may choose a
specific prime q lying over q and having decomposition group generated by σ. In fact,
we may even go further, and use the fact that σ is conjugate to σ3 and σ5 is conjugate
to σ7 to choose q so that its Frobenius is either σ or σ7. We now need to determine
exactly which of σ and σ7 is the Frobenius of q/q. To do this we will use Theorem 9.

We set α to be the root α1 of g(x), and consider β1 = σ(α) − αq = α2 − αq
1 and

β7 = σ7(α) − αq = α8 − αq
1. If β1 /∈ q, then σ7 must be the Frobenius of q/q, and if

β7 /∈ q, then σ must be the Frobenius of q/q. If it happens that both β1 and β7 are in
q, then we obtain no information (this never happened in our computations).

Let D = 〈σ〉, let ψ1, . . . , ψ6 be coset representatives of D in S̃4, and let K6 be the
fixed field of D in K̃. Then γ1 = N

eK
K6

(β1) is a root of

h1(x) =
6∏

i=1

(x− ψi(γ1)).

Since β1 (and hence γ1) are written in terms of the roots of g(x), and we know how
elements of Gal(K̃/Q) act on roots of g(x), we can easily compute a complex approx-
imation to h1(x) to any desired precision. As mentioned above, we compute h1(x) to
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high precision, note that h1(x) has integer coefficients, and round off to compute h1(x)
exactly. Similarly, we may compute a polynomial h7(x) having γ7 = N

eK
K6

(β7) as a root.
Using GP/PARI, we can easily determine whether a root of hi(x) lies inside a degree 1
prime of Q(γi), and hence determine which of σ and σ7 is the Frobenius of q/q.

For our purposes, we note that 3 has inertial degree 8 in K̃, and that, using the
ordering of the roots listed above, σ = (1 2 3 4 5 6 7 8) is a Frobenius above 3.

4.2. Icosahedral examples. Computing the conjugacy class of Â5 containing the Frobe-
nius element at a prime is slightly more difficult. To begin, we only have a defining
polynomial for Li, not L̂i. We overcome this problem using class field theory.

Let Mi be a degree six subextension of Li. We may find a defining polynomial for
Mi by using a resolvent calculation on the polynomial hi, as described in [5, Algorithm
6.3.9]. Using Magma, we find that the subgroup of Â5 fixing this field has a unique
normal subgroup of index 4 with cyclic quotient. Hence, the Galois correspondence tells
us that Mi has a unique cyclic extension Ni of degree 4 contained in L̂i. Since the only
ramified prime in L̂i/Q is p, which has ramification index 5, we see that Ni/Mi must be
unramified and abelian. As such, it is contained in the Hilbert class field of Mi, its Galois
group is a quotient of the ideal class group of Mi, and we may use Artin reciprocity to
determine the inertial degrees of primes in Ni/Mi. Since the Galois closure of Ni is L̂i,
we may thus determine the inertial degrees of primes in L̂i/Q.

As an example, we note that in L1/Q the prime 2 has inertial degree 5. We easily
determine that in M1/Q 2 splits into two primes, q1 of inertial degree 1 and q2 of inertial
degree 5. Using GP/PARI to compute their images in the class group, we find that both
are principal, so that they split completely in N1. Hence, the primes lying over 2 in N1

all have inertial degree 1 or 5. We then see that in L̂1, 2 must have inertial degree 5.
Similarly, we see that in L̂1, the prime 3 has inertial degree 4.

Working with L2/Q, we find by similar techniques that 2 has inertial degree 10 and 3
has inertial degree 5 in L̂2.

In order to distinguish the conjugacy classes of orders 5 and 10, we note that it
suffices to distinguish the conjugacy classes of order 5 in A5. This is clear, since the
two conjugacy classes of order 5 in Â5 each lie over distinct conjugacy classes of order
5 in A5. Similarly, the classes of order 10 in Â5 lie over distinct classes of order 5 in
A5. Hence, knowing the order of the Frobenius in L̂i/Q and the conjugacy class of the
Frobenius in Li/Q determines the conjugacy class of the Frobenius in L̂i/Q.

In order to determine the conjugacy class of the Frobenius at p in Li for a prime p
of inertial degree 5, we may proceed as in the octahedral case, using Theorem 9 and
complex approximations, or we may use the methods of [7] (since we are working in an
A5-extension, rather than an Â5-extension, the techniques in [7] are applicable).

In our examples, we ordered the roots of h1 and h2 in increasing order. In L̂1, the
prime 2 has inertial degree 5, and we find that its Frobenius in Gal(L1/Q) is the five-cycle
(1 2 3 4 5). In L̂2, 2 has inertial degree 10 and 3 has inertial degree 5. The Frobenius
elements for 2 and 3 in Gal(L2/Q) are Frob2 = Frob3 = (1 2 3 4 5). Note that they both
have order five, as there are no elements of order 10 in Gal(L2/Q).

5. Cyclotomic characters

5.1. Octahedral example. We have chosen the Galois representation θ so that its
restriction to inertia at Ip (where p = 2713) is diagonal, with diagonal characters ω(p−1)/8
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and ω3(p−1)/8. We have also described how to determine whether a given element σ of
order 8 is a Frobenius at a prime having inertial degree 8 in K̃/Q. We will now consider
σ as a generator of an inertia group at p, and compute its trace under θ.

We begin by choosing a prime p of K̃ lying over p, such that the inertia group of
p/p is 〈σ〉. We note that p/p has inertial degree 1. Hence the localization K̃p/Qp is
totally ramified of degree 8, with Galois group generated by σ. Note that since p ≡ 1
(mod 8), Qp contains the eighth roots of unity. We note that g(x) remains irreducible
over Qp, and that clearly α ∈ K̃ ⊂ K̃p is a uniformizer at p. If we let τ be an element
of the inertia group in Q̄p/Qp whose restriction to Kp is σ, then by [8] and [9, pg. 67,
Proposition 7] we see that

ω(p−1)/8(τ) ≡ τ(p1/8)
p1/8

≡ τ(α)
α

≡ σ(α)
α

(mod p).

Note that this value is a well-defined eighth root of unity in Fp. We use the fact that
this root of unity is the image modulo p of some rational integer in K̃. Our strategy is to
work in the global field K̃/Q, compute σ(α)/α ∈ K̃, and then for integers n, determine
the valuation of σ(α)/α−n at p. If this valuation is positive, then the images of σ(α)/α
and n are equal in Fp, otherwise they are unequal. Note that although σ(α)/α may not
be an algebraic integer, we know that it is a p-adic integer (in fact a p-adic unit).

We compensate for the fact that σ(α)/α is not necessarily an algebraic integer by
finding the primes in Q divisible by primes in K̃ not equal to p, but dividing the principal
ideal (α) in O

eK . It is clear that these primes are just the primes dividing the norm of
α. Then, although σ(α)/α − n may not be an algebraic integer, β = k(σ(α)/α − n)
will be an algebraic integer for some integer k divisible only by primes dividing the
norm of α. We compute the norm from K̃ to K6 of β just as above, and determine
the valuation of the norm at p ∩K6. If this valuation is positive, it is possible (but not
proven) that σ(α)/α ≡ n (mod p) (since the norm contains several other factors that
could be divisible by p). If the valuation is zero, it proves conclusively that σ(α)/α 6≡ n
(mod p). Since there are only eight values of n that are eighth roots of unity modulo
p, we can easily determine the reduction modulo p of σ(α)/α. In fact, the calculation
that we perform is somewhat simpler: we note that if ξ is an eighth root of unity, then
ξ+ ξ3 is a square root of −2. Hence, we set η to be an integer whose square is congruent
to −2 modulo p, and determine (using the above methods) which of ±η is congruent to
σ(α)/α+ σ(α)3/α3 modulo p.

In our example, taking σ = (1 2 3 4 5 6 7 8) with the ordering of the roots given in
Section 4.1, and taking k = 2123978, we find that ω(p−1)/8(τ) = ξ with ξ + ξ3 = 3040
in F3137. Note that this value of k is the smallest that works: using a smaller value of
k yields a β which is not an algebraic integer, so that its minimal polynomial does not
have integral coefficients. Note also that σ is the image in Gal(K̃/Q) of both Frob3 and
the element τ of the inertia group at p. Since θ factors through this Galois group, we
see that

Tr(θ(Frob3)) = Tr(θ(τ)) = ω(p−1)/8(τ) + ω3(p−1)/8(τ) = 3040.

5.2. Icosahedral examples. Let σ be an element of order five in Gal(Li/Q), and con-
sider σ as a generator of inertia for a prime P lying over pi. Let τ be a lift of σ to the ab-
solute inertia group above p. Then we wish to determine ω3(pi−1)/5(τ)+ω2(pi−1)/5(τ) =
Tr(θi(τ)). We proceed as above, letting Fi be a root field of hi, and letting p be the
unique prime of Fi lying over pi. We choose a uniformizer α of p (in both of our examples,
the uniformizer that we used was a root of hi), and compute a complex approximation to
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(σ(α)/α)2 +(σ(α)/α)3. We proceed as in the octahedral case to determine the reduction
of this element modulo P.

We simplified our calculations slightly, using the fact that we are interested in com-
puting ω2(p−1)/5(τ) + ω3(p−1)/5(τ). This value will be a sum ξ2 + ξ3 where ξ ∈ Fpi

is
a primitive fifth root of unity. For p1 = 3701, there are two possible values for this
sum: 940 and 2760. Our computations show that for σ = (1 2 3 4 5), the value of
ω2(p−1)/5(τ) + ω3(p−1)/5(τ) is 940.

Similarly, for p2 = 3821 there are two possibilities for ξ2 + ξ3, namely 1474 and 2346.
We found that for σ = (1 2 3 4 5), the value of ω2(p−1)/5(τ) + ω3(p−1)/5(τ) is 1474.

Finally, we note that there are two elements of Gal(K̂i/Q) lying over (1 2 3 4 5) in
Gal(K/Q): η of order five and η′ of order ten. One sees easily that θi(η′) = −θi(η), and
that

Tr(θi(η)) = ω2(p−1)/5(τ) + ω3(p−1)/5(τ).

Hence, we find that Tr(θ1(Frob2)) = 940 ∈ F3701, that Tr(θ2(Frob3)) = 1474 ∈ F3821

and that Tr(θ2(Frob2)) = −1474 = 2347 ∈ F3821.

6. Comparison with cohomology calculations

6.1. Octahedral example. For the octahedral example given here, we have that p =
3137. Hence, we see that

θ|Ip
∼

(
ω3(392) 0

0 ω392

)
.

Taking j = −392 and k = 1 in Proposition 6, we have that ρ = θ⊗ωj⊕ωk has a predicted
weight of F (2(392) − 2, 0, 0) = F (782, 0, 0). Computing the “excess” cohomology (see
[1] for the definition of excess cohomology, and the techniques for computing it) in
H3(SL3(Z), F (782, 0, 0)) yields a one-dimensional space, on which the Hecke eigenvalues
T (2, k) and T (3, k) act as scalars. We have the eigenvalues given below.

k 1 2
a(2, k) 3 1570
a(3, k) 60 2167

Note that 2 has a Frobenius of order 3, and 3 has a Frobenius of order 8. Hence,
Tr(θ(Frob2)) = −1, and Section 5.1 shows that Tr(θ(Frob3)) = 3040. Using the def-
inition of ρ in terms of θ, we see that Tr(ρ(Frob2)) = 2−392Tr(θ(Frob2)) + 21 = 3 =
a(2, 1), and T2(ρ(Frob2)) = 3 = 2a(2, 2). In addition, we see that Tr(ρ(Frob3)) =
3−392Tr(θ(Frob3)) + 3 = 60 = a(3, 1), and T2(ρ(Frob3)) = 227 = 3a(3, 2). These are
exactly the values predicted by the conjecture.

6.2. Icosahedral examples. We have two icosahedral examples, namely θ1, with p =
3701, and θ2, with p = 3821. Hence, for i = 1, 2, we have that

θi|Ip ∼
(
ω3(p−1)/5 0

0 ω2(p−1)/5

)
.

Taking j = −2(p − 1)/5 and k = 1 in Proposition 6, we have that ρi = θi ⊗ ωj ⊕ ωk

has a predicted weight of F ((p− 1)/5− 2, 0, 0). This yields a predicted weight for ρ1 of
F (738, 0, 0) and for ρ2 of F (762, 0, 0).

We now deal with ρ1. Computing the excess cohomology H3(SL3(Z), F (738, 0, 0))
yields a one-dimensional space with the eigenvalues given by the table below.
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k 1 2
a(2, k) 1691 34
a(3, k) 3 380

In the field K̂1, we see easily that 2 has Frobenius of order 5 and 3 has Frobenius of order
4. For a prime ` with Frobenius of order 4 in Gal(K̂1/Q), we see that Tr(θ1(Frob`)) = 0,
and T2(θ1(Frob`)) = 0. Hence, Tr(ρ1(Frob3)) = 3 = a(3, 1) and T2(ρ1(Frob3)) = 1140 =
3a(3, 2). In addition, Section 5.2 shows that Tr(θ1(Frob2)) = 940. This yields values of
Tr(ρ1(Frob2)) = 1691 = a(2, 1) and T2(ρ1(Frob2)) = 68 = 2a(2, 2). All of these traces
and cotraces exactly match the computed Hecke eigenvalues.

Finally, we deal with ρ2. The excess cohomology H3(SL3(Z), F (782, 0, 0)) is once
again one-dimensional, with Hecke eigenvalues defined below.

k 1 2
a(2, k) 2349 437
a(3, k) 649 2504

The images of Frob2 and Frob3 under θ2 have orders 10 and 5, respectively. In Sec-
tion 5.2 we determined that Tr(θ2(Frob2)) = 2347 and Tr(θ2(Frob3)) = 1474. We then
find that Tr(ρ2(Frob2)) = 2349 = a(2, 1) and T2(ρ2(Frob2)) = 874 = 2a(2, 2), and that
Tr(ρ2(Frob3)) = 649 = a(3, 1) and T2(ρ2(Frob3)) = 3691 = 3a(3, 2). Hence the com-
puted traces and cotraces exactly match the computed Hecke eigenvalues, as predicted
by the conjecture.

7. Conclusion

In summary, for three examples of Galois representations from [2] for which the authors
of [2] were unable to distinguish between certain conjugacy classes of Frobenius elements,
we have distinguished between these classes. Our calculations allow us to determine
the traces and cotraces of Frobenius elements, and these computed traces and cotraces
precisely match the Hecke eigenvalues of certain cohomology classes, exactly as predicted
by [2, Conjecture 3.1]. Hence, we have strengthened the evidence for the conjecture.
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