PROOF OF A CONJECTURE OF WONG CONCERNING
OCTAHEDRAL GALOIS REPRESENTATIONS OF PRIME
POWER CONDUCTOR

KEVIN CHILDERS AND DARRIN DOUD

ABSTRACT. We prove a conjecture of Siman Wong concerning octahedral Ga-
lois representations of prime power conductor.

1. INTRODUCTION

Let Q denote an algebraic closure of Q, and write Gg = Gal(Q/Q). In this paper
a Galois representation is defined as a continuous representation p : Gg — GL(2,C).
It is well known that such a representation must have finite image. In fact, if
7 : GL(2,C) — PGL(2,C) is the standard quotient map, p = 7 o p has an image
that is either cyclic or isomorphic to a dihedral group, A4, S4, or As. A Galois
representation is said to be odd if it maps complex conjugation to a nonscalar
matrix, and is said to be even otherwise. Given a projective representation p :
Ggo — PGL(2,C), a lift of p will be any Galois representation p : Gg — GL(2,C)
such that p = mop.

A Galois representation is ramified at p if the image of an inertia group at p
under p is nontrivial. The conductor of a Galois representation is a product of
powers of primes at which it is ramified. For tamely ramified primes, the exponent
of p in this product is easily described: if we let G act on C2 via p, the exponent
of p in the conductor is the codimension of the fixed space of inertia at p. [3, p.
527]

Given a projective representation g : Gg — PGL(2, C), Serre [4, §6.2] defines the
conductor of p as a product over all primes p of local conductors. For each prime
p, let pp, = p|p, be the restriction of p to a decomposition group at p. The local
conductor at p is the minimum conductor of all lifts to GL(2,C) of p,. Each of
these local conductors is a power of p; for unramified primes the exponent is 0, and
for tamely ramified p the exponent is 1 if the image of p, is cyclic and 2 otherwise
[4, §6.3].

Because our Galois representations have domain Gg, we may also describe the
conductor of a projective representation p as the minimum of the conductors of all
the lifts of 5 [4, §6.2].

Serre [4] classified all odd projective Galois representations of prime conductor,
and Vignéras [6] classified all even projective representations of prime conductor.
More recently, Siman Wong [7] studied octahedral representations (representations
with projective image isomorphic to Sy) of prime power conductor and made the
following conjecture about these representations:
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Theorem 1.1. [7, Conjecture 2] Let K4/Q be an Si-quartic field such that |dg,|
is a power of a prime p > 3. Let K3/Q be a cubic subfield of the Galois closure of
K,4/Q. Denote by p the projective 2-dimensional Artin representation associated to

K,./Q.

(1) Suppose K3/Q is totally real. If p has conductor p?, then v,(dk,) = 1.
(2) Suppose K3/Q is not totally real. If p has conductor p* then vy(dg,) = 3,
otherwise vp(di,) = 1.

In this paper, we apply techniques of Serre to prove Wong’s conjecture (see
Section 3).

2. BACKGROUND

For a number field K, we will denote the discriminant of K by dx. We note
that Stickelberger’s criterion [1, p. 67] implies that for any number field K, dg is
congruent to 0 or 1 modulo 4. All discriminants that we consider will be odd, so
we will always have dx =1 (mod 4).

Throughout this paper, K4/Q will denote a field extension of degree 4 with
Galois group Sy and discriminant a power of a prime p > 3. We will denote by
K3/Q a cubic subextension of the splitting field of K4/Q.

Given K4/Q, there will be an associated projective Galois representation p :
Go — PGL(2,C) with image isomorphic to Sy. Since K4 is ramified only at p, p
will be ramified only at p and (since it must be tamely ramified) will have conductor
por p2. In many cases, the following lemmas will help us to determine the conductor
of p. Note that we call a projective representation p odd if the image of complex
conjugation is nontrivial (i.e. if every lift p of p is odd).

Lemma 2.1 (Serre). [4, p. 248] Let p be any 2-dimensional projective representa-
tion of Gg, and p any prime number. Let i, = |p(I,)|, where I, denotes the inertia
group at p. Assume that i, is prime to p and i, > 3. Then the conductor of p is
exactly divisible by p if and only if i,|(p — 1).

Theorem 2.2 (Serre). [4, Theorem 8] Let K4/Q be an Sy-quartic field such that
ldk,| is a power of a single prime p = 3 (mod 4). Denote by p the projective 2-
dimensional Artin representation associated to K4/Q, and assume that p is odd.
Then p has conductor p if and only if dx, = —p.

Wong’s conjecture [7, Conjecture 2] relates the p-adic valuation of the conductor
of p to the p-adic valuation of di,. Lemma 2.3 demonstrates that the only possible
values v,(dk,) can take are 1 and 3.

Lemma 2.3. Let K4/Q be an Sy-quartic field such that |dg,| is a power of a prime
p > 3. Denote by e, the ramification index of any prime lying over p in the splitting
field of K4/Q. Then v,(dk,) is either 1 (and e, =2) or 3 (and e, = 4).

Proof. If there are g primes above p and each has ramification index e; and inertial
degree f;, we know that 4 = ey fi+---+e4f, [2, p. 65]. Since the extension is tamely
ramified, we have v,(dg,) = (e1 —1)f1 +--- + (eg — 1) f4 [5, p- 58]. The following
table shows all possible splitting of pO g, with ramification, and corresponding
discriminants. All f; = 1 unless otherwise noted.
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Factorization of pOk, | v,(dxk,)

61:2,62:63:1 1

e = 27 fl =2 2

e1=3,e0=1 2

€1 = €2 = 2 2

ey = 4 3
Since p? =1 (mod 4), vy(dk,) = 2 implies that dx, = p? by Stickelberger’s crite-
rion, and Gal(K4/Q) will be a subgroup of A4, which is not permitted. Hence, we
have that v,(dg,) is 1 or 3, and we obtain the values of e, from the table. (]

Wong’s conjecture involves determining whether the cubic subfield K3/Q con-
tained in the Galois closure of K4/Q is totally real or complex. The following
Lemma interprets this information only in terms of p mod 4.

Lemma 2.4. Let K3/Q be a cubic field extension with Galois group Ss, ramified
only at a prime p > 3. Then Ks is totally real if and only if p =1 (mod 4).

Proof. Let p* = (=1)»=1/2p. Then p* = 1 (mod 4). Denote by L the splitting
field of K3/Q, and by K, the unique quadratic subfield of L. Then Ky = Q(1/p*)
is real quadratic if p = 1 (mod 4) (i.e. p* > 0), and imaginary quadratic if p = 3
(mod 4) (i.e. p* < 0). Since L/K> has odd degree, L is totally real if and only if
KQ is. O

3. PROOF OF THE CONJECTURE

Proof of Theorem 1.1: Assume that K3/Q is totally real and that v,(dg,) # 1.
Then by Lemma 2.4, p = 1 (mod 4) and by Lemma 2.3 and Stickelberger’s criterion,
dr, =p* and e, = 4. Since e, > 3 and ¢, | (p — 1), Lemma 2.1 implies that the
conductor of p is p, proving (1).

Next, suppose that K3/Q is not totally real and v,(dk,) # 3. Then p = 3
(mod 4), vy(dk,) = 1, and dg, = —p with e, = 2. By Theorem 2.2, p has
conductor p, and (2) is proven. O
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