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1 Introduction

In [4], Ash and Sinnott conjecture that any Galois representation having
niveau 1 which satisfies a certain parity condition is attached in a specific
way to a Hecke eigenclass in cohomology, and they make a prediction about
exactly where the relevant cohomology class should lie. They give examples
of reducible three-dimensional representations which appear to be attached
to cohomology eigenclasses, in the sense that the characteristic polynomi-
als of Frobenius elements for small primes correspond exactly to the Hecke
eigenvalues of certain eigenclasses. The question of proving this connection
for all primes seems to be difficult; however, in [6] Ash and Tiep develop
techniques for proving that certain irreducible three-dimensional symmet-
ric square representations are in fact attached to cohomology classes. Until
recently there were no known examples of three-dimensional irreducible
non-symmetric square characteristic p Galois representations which seem
to be attached to cohomology eigenclasses. In this paper we extend the
original conjecture of Ash and Sinnott to include irreducible niveau 2 rep-
resentations and give an example of a niveau 2 Galois representation which
is neither reducible nor obtained as the symmetric square of a two di-
mensional representation, but for which the conjectured connection with
arithmetic cohomology appears to hold, at least for prime ` ≤ 47. We
also briefly discuss the computational techniques needed to demonstrate
the apparent connection.

We note that the forthcoming paper [3] of the author, Avner Ash
and David Pollack extends the conjecture given here to include reducible
(but semisimple) representations, deals with higher dimensional and higher
niveau representations, and includes many more computational verifica-
tions of the conjecture.

1The author was supported by an NSF Postdoctoral Research Fellowship while doing
this research
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2 Conjectural Connections Between Galois Represen-
tations and Cohomology

Following the discussion in [4], let Γ = SL3(Z), and let Γ0(N) be the
subgroup of Γ consisting of all matrices having first row congruent to
(∗, 0, . . . , 0) modulo N . Let SN be the subsemigroup of GL3(Q) having
integral entries, positive determinant prime to N , and first row congruent
to (∗, 0, . . . , 0) modulo N . Then (Γ0(N), SN ) is a congruence Hecke pair
of level N in the sense of [2]. We define the Hecke algebra H(N) to be
the F̄p-algebra of double cosets Γ0(N)SNΓ0(N), and note that it acts on
cohomology or homology with coefficients in any FSN -module, as described
in [5] or [1]. We call an element of H(N) a Hecke operator when it acts
on homology or cohomology. For ` - N , H(N) contains the double cosets
Γ0(N)D(`, k)Γ0(N) where D(`, k) is the diagonal matrix

1
. . .

1
`

. . .
`


with ` on the diagonal in the last k positions, and we denote the corre-
sponding Hecke operator by T (`, k).

Definition 2.1. If V is an H(pN)-module, and v ∈ V is an eigenvector of
all the T (`, k) with ` - pN , such that T (`, k)v = a(`, k)v, with a(`, k) ∈ F̄p,
and ρ : GQ → GL3(F̄p) is a Galois representation unramified outside pN ,
then we say that ρ is attached to v if

3∑
k=0

(−1)k`k(k−1)/2a(`, k)Xk = det(I − ρ(Fr`)X)

for all l - pN .

Given ρ satisfying certain conditions, our conjecture will predict the ex-
istence of an eigenclass v with ρ attached. The main difficulty is specifying
exactly which module will contain the eigenclass.

2.1 Defining the Level and Nebentype

We define the level N and nebentype ε of a Galois representation ρ : GQ →
GLn(F̄p) exactly as in [4], in a straightforward generalization of Serre’s
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definitions of the level and nebentype of a two dimensional representation
in [8]. Let Gq be a chosen decomposition group above the prime q in GQ,
and let Gq,0 ⊇ Gq,1 ⊇ . . . be the filtration of ramification subgroups. In
particular, Gq,0 = Iq is an inertia group at q. Let M = F̄

n
p be acted on by

GQ via ρ.

Definition 2.2. Let

nq =
∞∑
i=0

1
[ρ(Gq,0) : ρ(Gq,i)]

dimM/MGq,i .

Then we define
N(ρ) =

∏
q 6=p

qnq .

We note that both the sum defining nq and the product defining N are
in fact finite, just as is the case in [8].

In order to define the nebentype of ρ, we factor the determinant

det ρ = ωkε,

where ω is the cyclotomic character modulo p, and ε is unramified at p.
We may then consider ε as a Dirichlet character modulo N = N(ρ)

ε : (Z/NZ)∗ → F̄
∗
p.

We use this character to define a character

ε = ε(ρ) : SN → (Z/NZ)∗ → F̄
∗
p,

where the first map is projection onto the (1, 1) element of a matrix in SN
and the second is the Dirichlet character defined above.

We now take
V (ε) = V ⊗ F̄p,

and note that V (ε) is both a Γ0(N)-module and an SpN -module, with the
action on V given by reduction modulo p, and the action on Fp given by ε.
Hence we may compute the cohomology of Γ0(N) with coefficients in V (ε),
and that cohomology is an H(pN)-module.

2.2 Irreducible GLn(Fp) Modules

Definition 2.3. An n-tuple (a1, . . . , an) of integers is said to be p-restricted
if for all i < n,

0 ≤ ai − ai+1 ≤ p− 1 and 0 ≤ an < p− 1.
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The following theorem is well known ([7]).

Theorem 2.4. The set of irreducible GLn(Fp)-modules is in one to one
correspondence with the set of p-restricted n-tuples.

In fact, we may describe the irreducible GLn(Fp)-module associated to
the n-tuple (a1, . . . , an) as the unique simple submodule of the dual Weyl
module with highest weight (a1, . . . , an), and we will denote this module
by F (a1, . . . , an).

Given any n-tuple (b1, . . . , bn) of integers, we will use the notation
(b1, . . . , bn)′ to denote an n-tuple (a1, . . . , an) which is p-restricted, and
such that each ai ≡ bi (mod p− 1). Such an n-tuple may not be uniquely
defined—if it is not, then we interpret statements about (b1, . . . , bn)′ to be
true if they are true for some choice of (a1, . . . , an) as above.

2.3 Main Conjecture

Let ω be the cyclotomic character modulo p, and let ψ,ψ′ : Gp,0 → Fp2 be
the fundamental characters of niveau 2 (so that in particular, ψ′ = ψp and
ψ has order p2 − 1).

Conjecture 2.5. Let ρ : GQ → GL3(F̄p) be a continuous irreducible Galois
representation, which takes complex conjugation to a nonscalar matrix. If
we have

ρ|Ip ∼

ϕ1 ∗ ∗
ϕ2 ∗

ϕ3

 ,

then,

1. if ϕi = ωαi , we set
ai = αi;

2. if ϕi = ψm, and ϕj = ψ′
m (with i < j), we write m = a + bp, with

0 ≤ a− b ≤ p− 1, and take

ai = a, aj = b;

Letting N = N(ρ), ε = ε(ρ), and

V = F (a1 − 2, a2 − 1, a3 − 0)′,

we have that ρ is attached to a cohomology eigenclass in

H3(Γ0(N), V (ε)).
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Remark 2.6. Note that as stated, the conjecture does not deal with re-
ducible Galois representations or with Galois representations which have
niveau 3. A generalization which does deal with these cases will appear in
[3]. In the niveau 1 case, Conjecture 2.5 reduces to the irreducible case of
Conjecture 2.2 in [4].

Remark 2.7. We note that in the case of a tamely ramified Galois represen-
tation there are six permutations of the diagonal characters. In the generic
case (where no two permutations give the same predicted weight) we thus
expect to find an eigenclass attached to the Galois representation in each
of at least six different weights. This is analogous to the existence of “com-
panion forms” in Serre’s conjecture. Note that in the wildly ramified case,
the wild ramification restricts the allowed permutations on the diagonal,
so that the existence of companion forms is not predicted, except as the
wild ramification may permit.

3 A Galois Representation with Niveau 2

Let K be the splitting field of the polynomial x3 − 10x − 15. Then the
Galois group of K over Q is isomorphic to S3, and the only primes which
ramify in K are 5 (with ramification index 3) and 83 (with ramification
index 2). Using GP/PARI, we may compute the ideal class group H of
K: it is isomorphic to Z/3Z × Z/3Z. Then if L is the Hilbert class field
of K, we know that L/Q is Galois, Gal(L/K) ∼= H, and that the action
of Gal(K/Q) on Gal(L/K) by conjugation is the same as the action of
Gal(K/Q) on H.

This last action may be explicitly computed–since K is only degree 6
over Q, the computation takes only seconds using GP/PARI. We find that
(relative to a suitable basis) this action is given by

(1, 2, 3) 7→
(

2 2
1 0

)
and

(1, 2) 7→
(

2 0
1 1

)
.

We then have an exact sequence

0→ H → Gal(L/Q)→ S3 → 0,

where the action of S3 on H is given above. Such exact sequences are
parameterized by H2(S3,H). This cohomology group may be explicitly
calculated using Magma: we find that it is trivial, so that the sequence
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Class 1 2 3 4 5 6 7 8 9 10
Size 1 9 1 1 6 6 6 6 9 9

Order 1 2 3 3 3 3 3 3 6 6

χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 1 1 1 1 1 −1 −1
χ3 2 0 2 2 2 −1 −1 −1 0 0
χ4 2 0 2 2 −1 2 −1 −1 0 0
χ5 2 0 2 2 −1 −1 −1 2 0 0
χ6 2 0 2 2 −1 −1 2 −1 0 0
χ7 3 −1 3ζ 3ζ2 0 0 0 0 −ζ −ζ2

χ8 3 1 3ζ 3ζ2 0 0 0 0 ζ ζ2

χ9 3 −1 3ζ2 3ζ 0 0 0 0 −ζ2 −ζ
χ10 3 1 3ζ2 3ζ 0 0 0 0 ζ2 ζ

Table 1. Character Table of G

must split. Alternatively, we could appeal to the main theorem of [9],
which proves directly that the sequence splits.

We now know that G = Gal(L/Q) is the semidirect product of S3 and
H. The character table of G (as computed by Magma) is given in Table 1,
where ζ denotes a cube root of unity. Note that the character table over
F̄5 is the same as the character table over C, since G has order 54, which
is relatively prime to 5.

We now define ρi (for 1 ≤ i ≤ 4) to be a three-dimensional represen-
tation of G defined over F̄5 corresponding to the character χi+6. We will
also denote by ρi the Galois representation obtained as the composition

GQ → G−→
ρi

GL3(F̄5),

where the first map is the projection GQ → Gal(L/Q) = G. Thus, each
Galois representation ρi has image isomorphic to G, and kernel equal to
GL. Note that all of these representations map complex conjugation to a
nonscalar matrix, so they are within the purview of our conjecture.

Using GP/PARI, we may compute the traces of Frobenius elements
under the map ρ2 as follows. First, note that all the primes ` ≤ 47 with
inertial degree 3 in L (except for the prime 3) already have inertial degree
3 in K, so their Frobenius in L is noncentral of order 3. The primes above
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` 2 3 7 11 13 17 19 23 29 31 37 41 43 47

Order(Fr`) 6 3 3 3 6 3 6 3 3 3 3 3 6 6

Tr(ρ2(Fr`)) ζ 0 0 0 ζ 0 ζ 0 0 0 0 0 ζ2 ζ2

Table 2. Orders and Traces of Frobenius for ρ2

3 in K, on the other hand, have inertial degree 1. One checks that they
have order 3 in the ideal class group of K (using the GP/PARI command
bnfisprincipal), and that they are not fixed by the action of S3, so
the Frobenius at 3 is again a noncentral element of order 3. Finally, the
conjugacy classes of the Frobenius elements of order 6 may be determined
by applying bnfisprincipal to the primes with inertial degree 2 in K/Q.
In this fashion, we determine that the Frobenius elements above 2, 13, and
19 are in one conjugacy class, and that the Frobenius elements above 43
and 47 are in the other conjugacy class. We choose ζ to be the trace of the
Frobenius at 2, and obtain Table 2. Note that the traces of Frobenius for
ρ4 are the same as those for ρ2, with the values of ζ and ζ2 swapped.

Since 83 is unramified in L/K, it has ramification index 2 in L/Q. It is
then easy to see (using the formula for the level) that the level of ρ2 and
ρ4 is 83 (and the nebentype ε is the unique quadratic character modulo 5
ramified only at 83), and that the level of ρ1 and ρ3 is 832 (with trivial
nebentype). Since level 832 is too large for our programs to deal with, we
will concentrate on ρ2 and ρ4.

The ramification index of 5 in L/Q is 3, and the inertia group is easily
seen to be noncentral. Since 3 does not divide 5 − 1 = 4, but does divide
52−1 = 24, all of the representations ρi are niveau 2. Restricting to inertia
at 5, we see that

ρi|I5 ∼

ψ8

ψ′
8

ω0

 ,

where 8 = 3+1∗5. Thus, a triple (a1, a2, a3) associated to this representa-
tion is (3, 1, 0), and a predicted weight is F (3− 2, 1− 1, 0)′. This weight is
not uniquely defined–the conjecture predicts that a cohomology eigenclass
with ρi attached should exist in at least one of the weights F (1, 0, 0) or
F (5, 4, 0).

Other weights are also predicted. For instance, if we permute the diag-
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onal characters (by conjugating ρ), we see that

ρ|I5 ∼

ψ8

ω0

ψ′
8

 ,

yielding a triple of (3, 0, 1) and a predicted weight of

F (3− 2, 0− 1, 1)′ = F (5, 3, 1) = F (4, 2, 0)⊗ det 1.

We may also permute the order of the two characters of niveau 2. Re-
calling that ψ′ = ψ5, we see that ψ′8 = ψ16, so we have that

ρi|I5 ∼

ψ16

ψ′
16

ω0

 ,

with 16 = 6+2∗5, and the predicted weight is F (6−2, 2−1, 0) = F (4, 1, 0).
Other permutations of the diagonal characters give predicted weights

of F (4, 3, 0)⊗det2, F (2, 1, 0)⊗det2, and at least one of F (1, 1, 0)⊗det1 or
F (5, 1, 0)⊗det1. (The last two come from the same triple, as in the weight
F (1, 0, 0) case.)

Using the techniques described in the next section, we have shown that
for V = F (1, 0, 0), F (1, 1, 0)⊗det, F (4, 2, 0)⊗det, F (4, 1, 0), F (4, 3, 0)⊗det2,
and F (2, 1, 0)⊗ det2, the cohomology H3(Γ0(83), V (ε)) contains cohomol-
ogy eigenclasses which have the correct eigenvalues (at least for primes up
to 47) to have ρ2 and ρ4 attached. In fact, each cohomology group con-
tains two one-dimensional eigenspaces, one with the correct eigenvalues to
have ρ2 attached, and one with the correct eigenvalues to have ρ4 attached.
These eigenspaces are defined over F25, and conjugate over F5, as we would
expect. Hence, our calculations give evidence that the weights predicted
by Conjecture 2.5 are correct.

4 Computational Techniques

In our computations to verify a specific case of the conjecture, we make
use of the natural duality between cohomology and homology—in fact we
always compute homology groups.

The basic idea behind the computations is the same as in [1]. A variant
of Theorem 2.1 of [1] allows us to find the homology of SL3(Z) with coeffi-
cients in any given GL3(Fp)-module. However, we are interested in finding
the homology of congruence subgroups Γ0(N). Following [3], we use the
Hecke equivariance (see [5]) of the Shapiro isomorphism

Hn(Γ0(N), V (ε)) ∼= Hn(SL3(Z), IndSL3(Z)
Γ0(N) V (ε))
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to compute these homology groups. Hence, all of our computations are re-
duced to calculating homology of SL3(Z) with coefficients in various mod-
ules.

Once we have the homology groups calculated, we use exactly the same
method as in [1] to calculate the Hecke eigenvalues. In fact, rather than
recompute the unimodular matrices described there, we have used the same
files generated in the course of [1].

Note that we have improved the efficiency of the algorithms described
in [1] by converting their programs from Mathematica into C, and by com-
puting the relevant matrices one row at a time.

One further innovation which we have implemented involves the use of
a filtration of standard GL3(Fp)-modules to isolate homology eigenclasses
coming from specific irreducible modules. This is an improvement over the
computations done in [4] and [1], where the computations were done only
over the modules Vg, and conclusions about irreducible subquotients of Vg
were difficult to make. We begin by defining Vg, together with a certain
filtration of submodules.

Definition 4.1. Vg is the GL3(Fp)-module of homogeneous polynomials of
degree 3 in three variables over Fp, with the standard action of GL3(Fp).
Taking the three variables to be x, y, and z, we set

Vg,i = Span{xaybzc ∈ Vg : ba/pc+ bb/pc+ bc/pc ≥ i}.

We note that by “freshman exponentiation”, Vg,i is a submodule of Vg.
Taking the quotients Wg,i = Vg,i/Vg,i+1 gives us modules which, although
not irreducible, contain many fewer irreducible subquotients than the Vg
themselves. In many cases, we can find all the composition factors of the
Wg,i and use this information to show that certain eigenvalues must come
from specific irreducible modules. The techniques to do this are somewhat
ad hoc, and we illustrate by means of specific examples.

To begin with, we note that Table 4 in [7] allows us to determine all
the composition factors of Vg, including multiplicity (although it does not
allow us to determine whether a given component is a submodule or a
subquotient). We are then interested in using this decomposition to de-
termine the composition factors of the Wg,i. Now the dimension of Vg is
(g+ 1)(g+ 2)/2, and the module F (a, b, 0) is a subquotient of V(a−b) ⊗ V ∗b
(where the ∗ denotes the dual). Hence, we know that the dimension of
F (a, b, 0) is at most (a− b+ 1)(a− b+ 2)(b+ 1)(b+ 2)/4. For example, we
find that we have the decompositions of V5, V6, and V7 (modulo 5) given
in Table 3.

Explicit computation with g = 5, 6, 7 and p = 5, show that V5,1 has
dimension 3, V6,1 has dimension 9, and V7,1 has dimension 18. The above
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Module Dimension

V5 21

F (1, 0, 0) 3

F (4, 1, 0) 18

Module Dimension

V6 28

F (2, 0, 0) 6

F (1, 1, 0) ≤ 3

F (4, 2, 0) ≤ 36

Module Dimension

V7 36

F (3, 0, 0) 10

F (2, 1, 0) ≤ 9

F (4, 3, 0) ≤ 30

Table 3. Decomposition of certain modules

decompositions of V5 and V6 then allow us to deduce that V5,1
∼= F (1, 0, 0)

and V6,1 has composition factors F (2, 0, 0) and F (1, 1, 0). We also find
that the dimension of F (1, 1, 0) is three, and the dimension of F (4, 2, 0)
is 19. Then we immediately deduce that W5,0

∼= F (4, 1, 0) and W6,0
∼=

F (4, 2, 0). We also find immediately that one of V7,1 and W7,0 is isomorphic
to F (4, 3, 0) and the other has composition factors F (2, 1, 0) and F (3, 0, 0)
(as well as the fact that F (2, 1, 0) has dimension 8 and F (4, 3, 0) has di-
mension 18), although determining which structure is associated with which
module is more difficult (it turns out that W7,0 is isomorphic to F (4, 3, 0),
although this fact is not needed for our purposes).

We may now easily compute directly with the modules F (1, 0, 0),
F (4, 2, 0), and F (4, 1, 0). In addition, if a certain system of Hecke eigenval-
ues occurs in homology with coefficients in V6,1, but not in homology with
weight F (2, 0, 0), then we know that this system of eigenvalues must arise
in weight F (1, 1, 0) (since by [5] every system of eigenvalues occurring for
some module must come from some irreducible subquotient).

Similarly, a system of eigenvalues occurring in both V7,1 and W7,0, but
not in F (3, 0, 0) ∼= V3 must occur in both F (2, 1, 0) and F (4, 3, 0).

For our example, we computed the homology of Γ0(83), with neben-
type ε, and coefficient modules F (1, 0, 0), W5,0

∼= F (4, 1, 0), W6,0 ⊗ det ∼=
F (4, 2, 0) ⊗ det, V6,1 ⊗ det, V7,1 ⊗ det 2, and W7,0 ⊗ det 2, and found that
the correct eigenvalues existed in all of these cohomology groups. We also
computed the cohomology in weights F (2, 0, 0)⊗det and F (3, 0, 0)⊗det 2,
and did not find the correct eigenvalues. Hence, we have confirmed that in
the weights predicted by Conjecture 2.5, eigenclasses exist with the correct
eigenvalues (up to ` = 47) to have ρ2 and ρ4 attached.
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