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Abstract. We prove that a sum of two odd irreducible two-dimensional Ga-

lois representations with squarefree relatively prime Serre conductors is at-
tached to a Hecke eigenclass in the homology of a subgroup of GL(4,Z), with

the level, nebentype, and coefficient module of the homology predicted by a

generalization of Serre’s conjecture to higher dimensions. To do this we prove
along the way that any Hecke eigenclass in the homology of a congruence sub-

group of a maximal parabolic subgroup of GL(n,Q) has a reducible Galois

representation attached, where the dimensions of the components correspond
to the type of the parabolic subgroup. Our main new tool is a resolution of Z
by GL(n,Q)-modules consisting of sums of Steinberg modules for all subspaces

of Qn.

1. Introduction

Serre’s conjecture [23] (now a theorem of Khare, Wintenberger, and Kisin [18,
19, 20]) gives a connection between odd irreducible Galois representations ρ : GQ →
GL(2, F̄p) and modular forms that are simultaneous eigenvectors of all the Hecke
operators. Via the Eichler-Shimura isomorphism [24], it can be interpreted as giv-
ing a connection between such Galois representations and elements of a cohomology
group H1(Γ0(N), V ) for an appropriate coefficient module V . This interpretation
of Serre’s conjecture was generalized by [10] to a conjecture relating odd Galois
representations ρ : GQ → GL(n, F̄p) to eigenclasses of the Hecke operators in co-
homology groups H∗(Γ0(n,N), V ), where Γ0(n,N) is the congruence subgroup of
SL(n,Z) that generalizes Γ0(N) ⊂ SL(2,Z). Refinements of the conjecture [8, 16]
make more precise predictions concerning the proper coefficient modules.

Some proven cases of the conjectured connection between Galois representations
and cohomology eigenclasses are known. In particular, the conjecture is known for
two-dimensional Galois representations. In [12], the conjecture is proven for certain
irreducible symmetric square representations of odd irreducible two-dimensional
representations.

Our long-term goal is to prove the conjecture for any odd reducible Galois repre-
sentation under the assumption that the conjecture holds for each constituent. In
[3], odd Galois representations that are sums of characters are shown to correspond
to cohomology eigenclasses. This work was extended in [5] to show that any sum
of characters with a Galois representation satisfying the conjecture such that the
resulting representation is odd will satisfy the conjecture. In [6], it is shown that if
ρ1 and ρ2 are two Galois representations, each attached to a cohomology eigenclass
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with trivial coefficient module, then a twisted sum of the two representations will
also be attached to a cohomology Hecke eigenclass with trivial coefficients (although
not in the cohomology of a group of the form Γ0(n,N)).

In this paper, we prove that Galois representations of the form ρ1⊕ρ2 of square-
free level N with ρ1 and ρ2 two-dimensional irreducible and odd are attached to
Hecke eigenclasses in the cohomology of Γ0(4, N). Together with our previous re-
sults cited above, we have now proven the conjecture of [8] for all odd reducible
four-dimensional Galois representations, as long as the constituents have squarefree
pairwise relatively prime conductors, and satisfy the conjecture themselves.

The two main new tools that we use in the proof are an exact sequence of
GL(n,K)-modules for any field K that involves the Steinberg modules for GL(W )
for all subspaces W of Kn (Section 4), and Theorem 11.5 on the reducibility of
Galois representations attached to the cohomology of arithmetic subgroups of par-
abolic subgroups of GL(n,Q).

The exact sequence of Section 4 generalizes the exact sequence used in [5, 7],
which only works for n = 3, to arbitrary n. It is a resolution of Z by non-free
modules which are induced from various parabolic subgroups. Using a certain
Hecke equivariant spectral sequence arising from this exact sequence, we are able
to construct a system of Hecke eigenvalues that have ρ1 ⊕ ρ2 attached.

Our other main tool, Theorem 11.5 proves that any Hecke eigenclass attached to
the cohomology of a maximal parabolic subgroup of type (n1, n2) has an attached
Galois representation that is a sum of (possibly reducible) Galois representations
ρ1 ⊕ ρ2, with ρi : GQ → GL(ni, F̄p) for i = 1, 2.

On the more technical side, this paper includes extensions from n = 3 to general n
of the study we made in [5, 7] of orbits of subspaces of Qn under certain congruence
subgroups of GL(n,Z). We also study the action of a Levi component on the groups
H∗(Γ ∩ U,M) appearing in the Hochschild-Serre spectral sequence for

1→ Γ ∩ U → Γ ∩ P → Γ ∩ L→ 1,

where U is the unipotent radical of a maximal parabolic subgroup P = LU of
GL(n,Q). We show in Theorem 7.11 that under certain hypotheses, the Hecke
algebra for ΓP acts in an equivariant fashion on the spectral sequence. This is
surprisingly hard to do and we don’t even know if this continues to be the case if
P is not maximal. A third generalization of our earlier work concerns the detailed
action of the matrices defining the Hecke operators on the homology. The last
new technical point regards the interplay of the Hecke operators and the Künneth
formula in section 10.

We expect to be able to apply these methods to higher dimensional Galois repre-
sentations; at present, we are not able to because we have not yet been able to prove
that a certain Hochschild-Serre spectral sequence, used to construct the systems of
Hecke eigenvalues that we need, degenerates when n > 4.

We know that a system of Hecke eigenvalues appears in Hk(Γ0(n,N), V ) if and
only if it appears in Hk(Γ0(n,N), V ). We have discussed mostly cohomology in the
introduction to conform with common usage. Our theorems and proofs below will
all be stated for homology.
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2. Galois representations, Hecke Operators, cohomology and
homology

Let p > 2 be a prime number, and let F = Fp. Throughout the paper, we use
Borel-Serre duality for subgroups of GL(n,Z) [13, Section 11.4], and the fact that
the Borel-Serre duality isomorphism is Hecke equivariant [9, Corollary 3]; when we
do this we will require p > n+ 1, so that no torsion element of GL(n,Z) has order
divisible by p. By a Galois representation we mean a continuous homomorphism
ρ : GQ → GL(n,F) for some positive integer n. For each prime `, we fix a choice of
Frobenius element Fr` ∈ GQ; we use the arithmetic Frobenius, so that if ω : GQ → F
is the cyclotomic character, ω(Fr`) = `. If ρ is unramified at `, then ρ(Fr`) is
defined up to similarity. Hence, for ρ unramified at `, the characteristic polynomial
det(I − ρ(Fr`)X) of ρ(Fr`) is well defined.

Definition 2.1. Let n > 1 and N ∈ N, and let p be a prime in Z.

(1) S±0 (n,N) consists of the set of all n × n matrices with integer entries
and nonzero determinant prime to pN whose first row is congruent to
(∗, 0, . . . , 0) modulo N .

(2) S0(n,N) consists of elements of S±0 (n,N) with positive determinant.
(3) Γ±0 (n,N) = S±0 (n,N) ∩GL(n,Z).
(4) Γ0(n,N) = S0(n,N) ∩ SL(n,Z).

For a given prime p and positive integer N prime to p, (Γ0(n,N), S0(n,N)) is a
Hecke pair (see [1]), and we denote the F-algebra of its double cosets by Hn,N . We
note that Hn,N is commutative, and is generated by the double cosets

Γ0(n,N)s(`, n, k)Γ0(n,N),

where s(`, n, k) = diag(1, . . . , 1, `, . . . , `) is a diagonal matrix with k copies of ` on
the diagonal, ` runs over all primes not dividing pN , and 0 ≤ k ≤ n. The algebra
Hn,N acts on the homology or cohomology of Γ0(n,N) with coefficients in any
F[S0(n,N)]-module M . When the double coset of s(`, n, k) acts on homology or
cohomology, we will denote it by Tn(`, k).

Definition 2.2. Let V be any Hn,N -module, and suppose that v ∈ V is a simul-
taneous eigenvector of all the Tn(`, k) for ` - pN , with eigenvalues a(`, k) ∈ F.
Suppose that ρ : GQ → GL(n,F) is a Galois representation unramified outside pN .
We say that ρ is attached to v if, for all ` - pN ,

det(I − ρ(Fr`)X) =

n∑
k=0

(−1)k`k(k−1)/2a(`, k)Xk.

If ρ is attached to v ∈ V , we will also say that ρ fits V .

3. Conjectures relating Galois representations and arithmetic
homology/cohomology

Definition 3.1. [7] Let S be a subsemigroup of the matrices in GL(n,Q) with
integer entries whose determinants are prime to pN . A (p,N)-admissible S-module
M is an F[S]-module of the form M ′ ⊗ Fε, where M ′ is an F[S]-module on which
S ∩ GL(n,Q)+ acts via its reduction modulo p, and ε is a character ε : S → F×
which factors through the reduction of S modulo N . Here Fε is the vector space
F, with S acting as multiplication via ε. An admissible module is one which is
(p,N)-admissible for some choice of p and N .
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We can construct (p,N)-admissible modules by starting with GL(n,Fp)-modules,
and letting S act via reduction modulo p. We have the following parametrization
of irreducible GL(n,Fp)-modules.

Theorem 3.2. [15] Call an n-tuple of (a1, . . . , an) of integers p-restricted if 0 ≤
an < p − 1 and, for each i < n, 0 ≤ ai − ai+1 ≤ p − 1. Then there is a bijection
between p-restricted n-tuples of integers and irreducible F[GL(n,Fp)]-modules, with
the n-tuple (a1, . . . , an) corresponding to the unique simple submodule of the dual
Weyl module with highest weight (a1, . . . , an).

Definition 3.3. Denote by F (a1, . . . , an) the irreducible F[GL(n,Fp)]-module cor-
responding to the p-restricted n-tuple (a1, . . . , an).

As described above, F (a1, . . . , an) becomes an S-module on which S acts via
reduction modulo p. We will relax the condition on the value of an, allowing it to be
an arbitrary integer; this has the effect that a given module corresponds to infinitely
many n-tuples, all congruent to some p-restricted n-tuple modulo p−1, and it allows
flexibility in specifying modules. Given a character ε : S → F× that factors through
the reduction of S modulo N , we see that F (a1, . . . , an)ε = F (a1, . . . , an)⊗ Fε is a
(p,N)-admissible module.

If S = S0(n,N) and ε : (Z/NZ)× → F× is a character, we will also denote
by ε : S → F× the character sending s ∈ S to the image under ε of the mod N
reduction of the (1, 1) entry of s. In this case, we call ε a nebentype character.

In order to state the main conjecture of [8], we recall the following definition.

Definition 3.4. For n > 1, a Galois representation ρ : GQ → GL(n,F) is odd if
the image of complex conjugation is similar to a matrix with alternating 1’s and
−1’s on the diagonal. A Galois representation ρ : GQ → GL(1,F) = F× is odd if
the image of complex conjugation is −1, and is called even otherwise.

Conjecture 3.5. [8, Conjecture 3.1] For any odd Galois representation ρ : GQ →
GL(n,F), we may find an integer N (called the level), an irreducible GL(n,Fp)-
module M (called the weight), and a Dirichlet character ε (called the nebentype),
such that ρ fits Hk(Γ0(N),Mε).

In fact, [8, Conjecture 3.1] predicts the level, weight and nebentype from the
structure of ρ. We do not give these definitions in detail in this paper; see [8] for
detailed descriptions.

In this paper, we will generalize techniques developed in [3, 5, 7] to prove the
following theorem.

Theorem 3.6. Let p > 5. For i = 1, 2, let ρi : GQ → GL(2,F) be odd, irreducible
Galois representations with squarefree relatively prime levels. Then ρ1 ⊕ ρ2 fits at
least one of H6(Γ0(n,N),Mε) or H2(Γ0(n,N),Mε), with N , M , and ε as predicted
by [8].

4. A Steinberg module exact sequence

Throughout this section, fix a field K. In this section, we derive a resolution
of Z by GL(n,K)-modules that generalizes the resolution used in [5], which only
works for GL(3,K).

For a vector space W over K, denote by P(W ) the projective space (W −
{0})/K× of nonzero vectors in W modulo scalar multiplication. For any collec-
tion w1, . . . , wk ∈ P(W ), we will denote by span(w1, . . . , wk) the subspace of W
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spanned by lifts of the wi to W (we see easily that the span is independent of the
choice of lifts).

We recall the definition of the sharbly complex.

Definition 4.1. [2] Let W be a k-dimensional vector space over a field K. For
i ≥ 0, define the i-sharblies Shi(W ) to be the free Z-module generated by the
(k + i)-tuples (w1, . . . , wk+i) for wi ∈ P(W ), modulo the Z-span of the following
elements:

(1) (wσ(1), . . . , wσ(k+i))− (−1)σ(w1, . . . , wk+i) for all permutations σ ∈ Sk+i,
(2) (w1, . . . , wk+i) if {w1, . . . , wk+i} does not span W .

We denote a basis element of the i-sharblies by the symbol [w1, . . . wk+i] where each
wj ∈ P(W ), with (1) implying that this symbol is antisymmetric in the entries, and
(2) implying that it is 0 if the entries do not span W . By considering GL(W ) to act
on W by right multiplication, there is a natural right action of GL(W ) on Shi(W ).
The boundary map di : Shi(W )→ Shi−1(W ) is given by

di([w1, . . . , wk+i]) =

k+i∑
j=1

(−1)j [w1, . . . , ŵj , . . . , wk+i].

The sharbly complex is the complex of right GL(W )-modules

· · · → Shi(W )
di−→ Shi−1(W )→ . . .→ Sh1(W )

d1−→ Sh0(W ).

By [2] the Steinberg module St(W ) is isomorphic to the cokernel of the map
d1 : Sh1(W )→ Sh0(W ), and therefore we get a resolution of the Steinberg module:

· · · → Shj(W )→ Shj−1(W )→ · · · → Sh1(W )→ Sh0(W )→ St(W )→ 0.

We will denote the image of a 0-sharbly [w1, . . . , wk] in St(W ) by Jw1, . . . , wkK.
We note that if W is 0-dimensional, the Steinberg module and the 0-sharblies are
isomorphic to Z (with trivial GL(W )-action), generated by the empty symbols
J K and [ ]. If W is 1-dimensional, we also have that the Steinberg module and
the 1-sharblies are isomorphic to Z (with trivial GL(W )-action), generated by the
symbols JwK and [w], where w is the unique element of P(W ).

Theorem 4.2. Let V be an n-dimensional vector space over K with n > 0. Then
there is an exact sequence of GL(V )-modules

0→
⊕
Wn

St(Wn)
δn−→

⊕
Wn−1

St(Wn−1)
δn−1−→ · · · δ2−→

⊕
W 1

St(W 1)
δ1−→
⊕
W 0

St(W 0)→ 0,

where each W i runs through all subspaces of V of dimension i, and the map

δk :
⊕
Wk

St(W k)→
⊕
Wk−1

St(W k−1)

is defined by

δk(Jw1, . . . , wkK) =

k∑
j=1

(−1)jJw1, . . . , ŵj , . . . , wkK,

for Jw1, . . . , wkK ∈ St(W k), with W k = span(w1, . . . , wk) and

Jw1, . . . , ŵj , . . . , wkK ∈ St(W k−1
j ),

where W k−1
j = span(w1, . . . , ŵj , . . . , wk).
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Proof. For γ ∈ GL(V ), and a generator Jw1, . . . , wkK ∈ St(W k), we define

Jw1, . . . , wkKγ = Jw1γ, . . . , wkγK ∈ St(W kγ).

With this action, we see easily that⊕
Wk

St(W k)

is a GL(V )-module and that δk is an equivariant map of GL(V )-modules.
We now check that each δk is a well defined map.
To begin, let W be a k-dimensional subspace of V . We may write the Steinberg

module ofW as A(W )/(B(W )+C(W )), where A(W ) is the free Z-module generated
by antisymmetric symbols (w1, . . . , wk) with wi ∈ P(W ), B(W ) is generated by all
such symbols where w1, . . . , wk are contained in a proper subspace of W k, and
C(W ) is generated by elements of the form

k∑
j=1

(−1)j(w1, . . . , ŵj , . . . , wk).

Define φ : A(W )→ ⊕St(W k−1) by

(w1, . . . , wk) 7→
k∑
j=1

(−1)jJw1, . . . , ŵj , . . . , wkK.

Note that in any case where the symbol Jw1, . . . , ŵj , . . . , wkK is not in a unique
Steinberg module because the dimension of the span of w1, ..., ŵj , ...wk is less than
k−1 = dimW k−1, the symbol vanishes, regardless of which module it is considered
to lie in. Hence, since A(W ) is free over Z, φ is well-defined, and if φ maps both
B(W ) and C(W ) to 0, then the map δk that it induces on A(W )/(B(W ) +C(W ))
will be well defined.

Now φ maps C(W ) to 0 by the standard argument that the boundary of the
boundary is 0. Further, if (w1, . . . , wk) ∈ B(W ), then letting W k−1 be a (k − 1)-
dimensional subspace of W containing w1, . . . , wk, we find that

k∑
j=1

(−1)j(w1, . . . , ŵj . . . , wk) ∈ C(W k−1).

Now C(W k−1) maps to 0 in St(W k−1), so φ(w1, . . . , wk) = 0 and φ(B(W )) = 0.
Thus, we see that δk is well defined.

It is clear that the composition δk−1 ◦ δk is equal to 0 for k > 0. In addition,
δ1 is clearly surjective, since there is only one zero-dimensional subspace of V and
δ1(w) = −J K for any w ∈ V .

Now we wish to prove that any element of ker δk is contained in the image of
δk+1.

Suppose that for some index set A, and some integers ca for a ∈ A, we have

s =
∑
a∈A

caJwa1 , . . . , w
a
kK

is in the kernel of δk for 0 < k < n. We will show that it is in the image of δk+1.
Choose an arbitrary x ∈ P(V ). Then∑

a

caJx,wa1 , . . . , w
a
kK ∈

⊕
Wk+1

St(W k+1)
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(note that some of the terms may be 0, if x ∈ span(wa1 , . . . , w
a
k)). In any case, we

have

δk+1

(∑
a

caJx,wa1 , . . . , w
a
kK

)
= −

∑
a

caJwa1 , . . . , w
a
kK

−
∑
a

k∑
j=1

(−1)jcaJx,wa1 , . . . , ŵ
a
j , . . . , w

a
kK.

Adding this to s, we obtain a new element s′ ∈ ker δk that differs from s by an
element of the image of δk+1. It thus suffices to prove that s′ is in the image of
δk+1. We note that each symbol comprising s′ has as its first component the chosen
x. Hence, (changing the wai , the ca, and indeed the index set A), we may write

s′ =
∑
a∈A

caJx,wa2 , . . . , w
a
kK.

By eliminating terms where {x,wa2 , . . . , wak} does not span a k-dimensional space,
we may also assume that for each a, we have x /∈ span(wa2 , . . . , w

a
k).

Now,

0 = δk(s′) = −
∑
a

caJwa2 , . . . , w
a
kK−

k∑
j=1

∑
a

(−1)jcaJx,wa2 , . . . , ŵ
a
j , . . . , w

a
kK.

Since, for each a, we have x /∈ span(wa2 , . . . , w
a
k), we see that no terms of the double

sum are in the same component of⊕
Wk−1

St(W k−1)

as any term in the first sum. Hence, we must have∑
a

caJwa2 , . . . , w
a
kK = 0.

For each (k − 1)-dimensional subspace W of V , set AW = {a : span(wa2 , . . . , w
a
k) =

W}. Then each a is in precisely one AW . We see that for each W∑
a∈AW

caJwa2 , . . . , w
a
kK = 0.

For any W with AW nonempty, since the Steinberg module of W is the cokernel

of Sh1(W )
d1−→ Sh0(W ), we see that there is an index set B, integers cb and elements

[yb1, . . . , y
b
k] ∈ Sh1(W ) for each b ∈ B such that

∑
a∈AW

ca[wa2 , . . . , w
a
k ] = d1

(∑
b∈B

cb[y
b
1, . . . , y

b
k]

)
=
∑
b∈B

k∑
j=1

(−1)jcb[y
b
1, . . . , ŷ

b
j , . . . , y

b
k].

Let Wx be the span of W and a lift of x. Then in Sh0(Wx) we have

∑
a∈AW

ca[x,wa2 , . . . , w
a
k ] =

∑
b∈B

k∑
j=1

(−1)jcb[x, y
b
1, . . . , ŷ

b
j , . . . , y

b
k].
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Hence, in St(Wx),∑
a∈AW

caJx,wa2 , . . . , w
a
kK =

∑
b∈B

k∑
j=1

(−1)jcbJx, yb1, . . . , ŷ
b
j , . . . , y

b
kK.

Because yb1, . . . , y
b
k span a (k − 1)-dimensional subspace, this equals

−
∑
b

cbJyb1, . . . , ybkK− k∑
j=1

(−1)jcbJx, yb1, . . . , ŷ
b
j , . . . , y

b
kK

 ,

which is equal to

−δk+1

(∑
b

cbJx, y1, . . . , ykK

)
,

so that ∑
a∈AW

caJx,wa2 , . . . , w
a
kK = δk+1

(
−
∑
b

cbJx, y1, . . . , ykK

)
.

Since this is true for all W , we have that s′ =
∑
a caJx,w

a
2 , . . . , w

a
kK is in the image

of δk+1.
The proof that δn is injective is similar, but uses d1 : Sh1(V )→ Sh0(V ) in place

of the nonexistent δn+1, and is left to the reader (see [4, Theorem 2.1] for more
details). �

5. Γ0(n,N)-orbits of subspaces of Qn

By considering the elements of Qn as row vectors, right multiplication by ele-
ments of GL(n,Q) yields a right action of GL(n,Q) on Qn. This action restricts
to an action of Γ0(n,N) on Qn. In a natural way, we may also consider GL(n,Q)
(and hence also Γ0(n,N)) as acting on the set of k-dimensional subspaces of Qn,
for 0 ≤ k ≤ n. We wish to find explicit representatives of the Γ0(n,N)-orbits
of k-dimensional subspaces. Note that for k = 0 and k = n, there is only one k-
dimensional subspace, and hence only one orbit, with a unique orbit representative.

Theorem 5.1. Let 0 < k < n and assume that N is squarefree. Then the Γ0(n,N)-
orbits of k-dimensional subspaces of Qn are in one-to-one correspondence with the
set of positive divisors of N , where the orbit corresponding to the divisor d contains
the k-dimensional subspace spanned by

e1 + dek+1, e2, e3, e4, . . . , ek,

where ei denotes the standard basis element of Qn with a 1 in the ith column, and
0’s elsewhere.

Multiplication by elements of S±0 (n,N) preserves the Γ0(n,N)-orbits.

Proof. Let W be a k-dimensional subspace, and let M be a k × n matrix with
integer entries whose rows span W . For γ ∈ Γ0(n,N), Mγ has row space Wγ.
Left multiplication by an element of GL(k,Q) does not change the row space of a
matrix, so we wish to find a canonical element of the double coset

GL(k,Q)MΓ0(n,N).

Integer column operations on the rightmost n − 1 columns of M can be repre-
sented by right multiplication by an element of Γ0(n,N); similarly, arbitrary row
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operations correspond to left multiplication by an element of GL(k,Q). Using these
operations we find that the row space of M is Γ0(n,N)-equivalent to the row space
of

M ′ =

(
a 0tk−1 b 0 · · · 0

0k−1 Ik−1 0k−1 0k−1 · · · 0k−1

)
,

where a, b ∈ Z and gcd(a, b) = 1. Here, 0k−1 denotes the column vector of all zeros
and length k − 1, and 0tk−1 denotes its transpose.

Since gcd(a, b) = 1, we may find r and s so that ar+ bs = 1. Then for all ` ∈ Z,
a(r + b`) + b(s− a`) = 1 and for all d ∈ Z,

(a+ d(s− a`))(r + b`) + (b− d(r + b`))(s− a`) = 1.

Hence, the matrix

S =

(
r + `b −(b− d(r + `b))
s− a` a+ d(s− a`)

)
has determinant 1. In order for it to be in Γ0(2, N), we need b−d(r+`b) = mN for
some m ∈ Z. To guarantee this, we choose d = gcd(b,N). Since N is squarefree, we
see that gcd(b,N/d) = 1, so that there are integers `,m with b`+mN/d = b/d− r.
With this choice of `, we see that S ∈ Γ0(2, N).

Form the matrix T by replacing the (1, 1), (1, k+ 1), (k+ 1, 1) and (k+ 1, k+ 1)
entries of In by the (1, 1), (1, 2), (2, 1), and (2, 2) entries of S. Then T is clearly in
Γ0(n,N). Thus, the row space of M is Γ0(n,N)-equivalent to the row space of

M ′T =

(
1 0tk−1 d 0 · · · 0

0k−1 Ik−1 0k−1 0k−1 · · · 0k−1

)
.

Hence, every Γ0(n,N)-orbit of a k-dimensional subspace of Qn contains a subspace
of the proper form.

Suppose S ∈ S±0 (n,N) takes a subspace in the Γ0(n,N)-orbit corresponding to
d|N , to a subspace in the orbit corresponding to d′|N . Then , after multiplying S
by an appropriate element of Γ0(n,N) so that it takes the representative subspace
of the orbit corresponding to d to the representative corresponding to d′, for some
x ∈ Z, we must have

(1, 0tk−1, d, 0
t
n−k−1)S = (x, ∗, . . . , ∗, xd′, 0tn−k−1).

If we now denote the (1, 1), (1, k+ 1), (k+ 1, 1) and (k+ 1, k+ 1) entries of S by a,
bN , r, and s, respectively, and note that gcd(a,N) = 1, we see that we must have
a+ rd = x and bN + sd = d′x. Hence, bN + sd = d′a+ rdd′, and we see that d|d′a,
so that d|d′. Now using that det(S) · S−1 = S′ ∈ S±0 (n,N), replacing S by S′, and
reversing the roles of d and d′, we must similarly have d′|d. Hence, d = d′. �

Now, let W k
0 be the row space of the k × n matrix

M0 =

(
Ik

∣∣∣∣ 0

)
.

Let gd be equal to the n× n identity matrix In, with the (1, k + 1) entry replaced
by d. Let P k0 be the stabilizer (in GL(n,Q), acting on the right) of W k

0 . Define
P kd = g−1

d P0gd; it is the stabilizer of the row space W k
d of M0gd, or in other words

the stabilizer of the canonical representative of the Γ0(n,N)-orbit of k-dimensional
subspaces of Qn corresponding to the divisor d of N . Typically, when k is under-
stood, we will omit it, writing P0, Pd, or Wd rather than P k0 , P kd , or W k

d . We will call
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a subgroup Pd a representative maximal parabolic subgroup, and denote its unipo-
tent radical by Ud and its Levi quotient by Ld = Pd/Ud. Note that Ud = g−1

d U0gd,
where U0 is the unipotent radical of P0.

The subgroup P0 consists of block matrices(
A 0
B C

)
in which A is an invertible k×k matrix, C is an invertible (n−k)× (n−k) matrix,
B is an arbitrary (n− k)× k matrix, and the block of zeroes is k × (n− k). For a
block matrix g ∈ P0 as above, we define ψ1

0(g) = A and ψ2
0(g) = C. One sees easily

that ψ1
0 : P0 → GL(k,Q) and ψ2

0 : P0 → GL(n− k,Q) are group homomorphisms.
For s ∈ Pd, define ψid(s) = ψi0(gdsg

−1
d ).

We have the following straightforward generalization of [3, Theorem 7].

Theorem 5.2. Let d be a positive divisor of N and assume that (d,N/d) = 1.

(1) If s ∈ Pd ∩ S0(n,N)±, then ψ1
d(s)11 ≡ s11 (mod d) and ψ2

d(s)11 ≡ s11

(mod N/d).
(2) ψ1

d(Pd ∩ S0(n,N)±) ⊂ S0(k, d)±.
(3) ψ2

d(Pd ∩ S0(n,N)±) ⊂ S0(n− k,N/d)±.
(4) There is an exact sequence of groups

1→ Ud ∩ Γ±0 (n,N)→ Pd ∩ Γ±0 (n,N)
ψ1
d×ψ

2
d−→ Γ±0 (k, d)× Γ±0 (n− k,N/d)→ 1.

Proof. Statements (1), (2), and (3) are proven as in [3, Theorem 7].
The only question in the exactness of the sequence in (4) is whether ψ1

d × ψ2
d

is surjective. To show this surjectivity, suppose that A = (aij) ∈ Γ±0 (k, d) and
B = (bij) ∈ Γ±0 (n − k,N/d), choose q, r ∈ Z such that q(N/d) + r(d) = a11 − b11

(which can be done since gcd(d,N/d) = 1), and let Z be the block matrix

Z =

(
A 0
C B

)
,

where C = (cij) has

cij =


0 if i > 1,

a1j/d if i = 1 and j > 1,

r if i = j = 1.

We note that since A ∈ Γ±0 (k, d), each of these entries is an integer. One checks
easily that g−1

d Zgd ∈ Γ±0 (n,N) ∩ Pd, and that (ψ1
d × ψ2

d)(g−1
d Zgd) = (A,B). �

6. A spectral sequence

Definition 6.1. Let V be an n-dimensional vector space over a field K with n > 0.
For 0 ≤ i ≤ n, let Ci be the set of all subspaces of V of dimension i.

Definition 6.2. Let V be an n-dimensional vector space over a field K with n > 0.
For −1 ≤ i ≤ n− 1 define

Xi =
⊕

W∈Ci+1

St(W ).
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We note that Theorem 4.2 yields an exact sequence of GL(n,K)-modules,

(1) 0→ Xn−1 → Xn−2 → · · · → X0 → Z→ 0,

since X−1
∼= Z.

Let K = Q and let F be a field of characteristic p > n + 1. Let (Γ, S) =
(Γ0(n,N), S0(n,N)), and let M be an admissible right S-module over F. We apply
the spectral sequence of [5, Section 8], to the exact sequence (1) to obtain

E1
q,r = Hr(Γ, Xq ⊗M) =⇒ Hq+r(Γ,M).

As in [5] this spectral sequence is equivariant for the action of the Hecke operators.

For each q with 0 ≤ q ≤ n− 1, we choose a set Ĉq+1 of Γ-orbit representatives

of Cq+1. For a W ∈ Ĉq+1, let ΓW be the stabilizer of W in Γ. Then we may
decompose

Xq ⊗M =
⊕

W∈Ĉq+1

IndΓ
ΓW St(W )⊗M

into a finite direct sum of induced modules.
Now, by the Shapiro isomorphism, we obtain

E1
q,r
∼=

⊕
W∈Ĉq+1

Hr(ΓW ,St(W )⊗M).

For q < n − 1, we note that Ĉq+1 consists exactly of the subspaces W q
d , as d

runs through the divisors of N . In addition, ΓW = Γ∩Pd, which we will denote by
ΓPd . For q = n − 1, we have that Ĉkq+1 = V . Hence, the first page of the spectral
sequence has the following terms.

E1
q,r =


Hr(Γ,St(V )⊗M) if q = n− 1,⊕
d|N

Hr(ΓP q+1
d

,St(W q+1
d )⊗M) if q < n− 1.

The remainder of the paper is devoted to studying the terms of this spectral
sequence, in order to show that for reducible Galois representations ρ = ρ1 ⊕ ρ2

satisfying certain conditions, ρ fits E1
q,r, and that the eigenvector with ρ attached

either survives to the infinity page of the spectral sequence, showing that ρ fits
Hq+r(Γ,M), or is killed off in such a way as to show that ρ nevertheless fits
Hs(Γ,M) for some value of s.

In order to proceed with this argument, it is necessary to show that the terms
of the spectral sequence are finite-dimensional vector spaces over F. For the terms
with q = n − 1, this follows immediately from Borel-Serre duality. For q < n − 1,
we prove the following theorem.

Theorem 6.3. Let 0 < k < n. Let Γ = Γ0(n,N), and assume that p > n+ 1. Let
P = P kd for some d|N , let W = W k

d , and let M be a finite-dimensional ΓP -module.
Then for r ≥ 0, the homology

Hr(ΓP ,St(W )⊗M)

is a finite dimensional vector space over F.

Proof. For convenience, we will write kerψ1
d for kerψ1

d ∩ ΓP in this proof. We use
the Hochschild-Serre spectral sequence for the exact sequence

1→ kerψ1
d → ΓP → ΓP / kerψ1

d → 1.
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This gives us a spectral sequence

E2
ij = Hi(ΓP / kerψ1

d, Hj(kerψ1
d,St(W )⊗M)) =⇒ Hi+j(ΓP ,St(W )⊗M),

and if each term of the E2 page is finite dimensional, the abutment must be finite
dimensional. Now kerψ1

d acts trivially on St(W ), so a term E2
ij may be written as

Hi(ΓP / kerψ1
d,St(W )⊗Hj(kerψ1

d,M)).

We now note that Theorem 5.2(4) implies that ΓP / kerψ1
d
∼= ψ1

d(ΓP ) = Γ±0 (k, d),
so, noting that conjugation by gd takes the action of ΓP on W to an action of
ψ1
d(ΓP ) on W0, we have that (as a vector space), E2

ij is isomorphic to

Hi(Γ
±
0 (k, d),St(W0)⊗Hj(kerψ1

d,M)),

where the action of γ ∈ Γ±0 (k, d) on Hj(kerψ1
d,M) is obtained by choosing any

γ′ ∈ ΓP with ψ1
d(γ′) = γ and allowing γ′ to act on Hj(kerψ1

d,M). By Borel-Serre
duality, E2

ij is then isomorphic to

Hi(Γ±0 (k, d), Hj(kerψ1
d,M)),

which is finite dimensional since kerψ1
d is an arithmetic group and M is finite

dimensional. �

We also have the following related theorem.

Theorem 6.4. Let 0 < k < n. Let Γ = Γ0(n,N), and assume that p > n + 1.
Let P = P kd for some d|N , let W = W k

d , and let M be a finite-dimensional ΓL =
ΓP /ΓU -module. Then for r ≥ 0, the homology

Hr(ΓL,St(W )⊗M)

is a finite dimensional vector space over F.

Proof. Since ψ1
d is trivial on ΓU , it yields a well defined function on ΓL. The proof

is then basically the same as the proof of Theorem 6.3. �

Remark 6.5. If (Γ, S) = (Γ0(n,N), S0(n,N)), and if P is a representative maximal
parabolic subgroup stabilizing a subspace W, then the results of [5, Section 3] show
that as long as (*) given any s ∈ S we can choose left coset representatives sα for
ΓsΓ to be in SP , there is an isomorphism H(Γ, S) ∼= H(ΓP , SP ) and we can view
Hr(ΓP ,St(W ) ⊗ M) as an H(Γ, S)-module via this isomorphism. Hence, under
condition (*), in studying systems of H(Γ, S)-eigenvalues in Hr(ΓP ,St(W ) ⊗M)
we may study the homology as an H(ΓP , SP )-module. In Theorem 8.6, we show
that condition (*) holds.

7. Two cases of Hecke equivariance of the Hochschild-Serre
spectral sequence

From this section on, we require definitions of additional subsets of GL(n,Q).

Definition 7.1. Let P = P kd be a representative maximal parabolic subgroup of
GL(n,Q) for some d|N and let p be a prime in Z. We define the following subgroups
and subsemigroups of GL(n,Q).

(1) Γ(N) = {A ∈ GL(n,Z) : A ≡ I (mod N)}.
(2) Sk(N) is the set of matrices A ∈ GL(n,Q) with integer entries and pos-

itive determinant prime to pN such that A ≡ diag(1, . . . , 1, ∗, 1, . . . , 1, ∗)
(mod N), with the ∗’s in the k and n positions.
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(3) ΓP (N) = Γ(N) ∩ P .
(4) SP (N) = {s ∈ Sk(N) ∩ P : ψ1

d(s), ψ2
d(s) both have positive determinant}.

We now prove two results involving the Hecke equivariance of the Hochschild-
Serre spectral sequence. The first of these results (Theorem 7.11) is closely related
to section 4 of [7]; however, the results here are more general. The second (Theo-
rem 7.15) is similar to [1, Theorem 3.1].

Definition 7.2. Let P be a maximal parabolic subgroup of GL(n,Q) and let U
be the unipotent radical of P . We note that U(Q) is an abelian group, and we set
r equal to the Q-dimension of U . Let (Γ, S) be a congruence Hecke pair of level
pN (see [1, Definition 1.2]. Then ΓU is a free abelian group of rank r. Let M be a
(p,N)-admissible S-module.

Let T be the set of matrices t ∈ GL(n,Q) with determinant prime to pN such
that all denominators of both t and t−1 are prime to pN and t normalizes U(Q).
Let C• be the standard resolution (also known as the bar resolution) of Z over
GL(n,Q). For t ∈ T , we define an action of t on C• ⊗ΓU M by setting

(c⊗m) · t =
1

dr

∑
b

cubt⊗mubt,

where d is any integer prime to p such that the right conjugation action of t on ΓdU
is contained in ΓU , and {ub : 1 ≤ b ≤ dr} is a set of coset representatives for ΓdU
inside ΓU .

We can take d = det(t), so there is a d that fits the conditions of the definition
(note that the condition that d be prime to p was inadvertently omitted in [7]).
In [7, Lemma 4.3], this action of t is shown to be well defined; in particular, it
does not depend on the choice of d or on the choice of coset representatives. It
also commutes with the boundary operator. This action of individual elements of
T does not normally extend to a group action of T on C• ⊗ΓU M . However, we
now show that the action does, in fact, define a semigroup action of SP ⊆ T on
H∗(ΓU ,M) under certain hypotheses, making H∗(ΓU ,M) an SP -module. We note
also that an element of T actually has entries in Z(p) (the localization of Z at the
prime ideal (p)), so there is a well defined notion of reduction modulo p for such an
element.

The proof of the following lemma is clear.

Lemma 7.3. Fix t and d as in Definition 7.2. Then the largest subgroup H of ΓU
such that t−1Ht ⊂ ΓU is

H = ΓU ∩ tΓU t−1,

and we have ΓdU ⊆ H ⊆ ΓU . Hence, [ΓU : H]|dr, and is thus prime to p (since we
may take d = det(t).

By [24, p. 51], we note that if we write ΓU tΓU =
∐et
j=1 αjΓU , then we have et =

[ΓU : H]. There is a natural action of double cosets on homology and cohomology;
when we consider the double coset ΓU tΓU as a Hecke operator, we will denote it by
[ΓU tΓU ]. Since C• ⊗ΓU M = H0(ΓU , C• ⊗Z M), the Hecke operator [ΓU tΓU ] acts
on C• ⊗ΓU M . This action is given by

c⊗m[ΓU tΓU ] =

et∑
j=1

cαj ⊗mαj .
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Lemma 7.4. Let t ∈ T . Then with the notation defined above, the action of t on
C• ⊗M given in definition 7.2 is equal to the action of 1

et
[ΓU tΓU ].

Proof. The action of the Hecke operator [ΓU tΓU ] is independent of the choice of
coset representatives {αj}. We choose the αj as follows: fix a collection of coset
representatives {wj : j = 1, . . . , et} of H inside ΓU , so that ΓU =

∐et
j=1 wjH. Set

αj = wjt. One checks easily that the αj thus defined give distinct cosets of ΓU inside
ΓU tΓU ; since there are et of them, they are a complete set of coset representatives.

Now choose a collection {vk : k = 1, . . . , [H : ΓdU ]} of coset representatives of ΓdU
inside H, so that H =

∐
k vkΓdU . Then the set {wjvk} is a complete collection of

coset representatives of ΓdU inside ΓU . Since the action of t is independent of the
choice of coset representatives, we may choose {ub} = {wjvk}. Since ΓU is abelian,
we have wjvk = vkwj . We then obtain

(c⊗m) · t =
1

dn

dn∑
b=1

cubt⊗mubt

=
1

dn

∑
j,k

cvkwjt⊗mvkwjt

=
1

dn

∑
j,k

cvkαj ⊗mvkαj

=
1

dn

(∑
k

cvk ⊗mvk

)
[ΓU tΓU ]

=
1

dn

(∑
k

c⊗m

)
[ΓU tΓU ]

=
[H : ΓdU ]

[ΓU : ΓdU ]
(c⊗m)[ΓU tΓU ]

=
1

et
(c⊗m)[ΓU tΓU ],

where the vk vanish in the sixth line because vk ∈ ΓU and the tensor product is
over ΓU . �

Let T ′ be any subgroup of T such that every element of T ′ ∩ U(Q) is congruent
modulo p to an element of ΓU . See Theorem 7.10 for examples where T ′ may be
taken to be the group generated by a semigroup SP . We will show that for any
such subgroup T ′, the individual actions of elements of T ′ on Hk(ΓU ,M) compile
together into a group action. To do this, we need to show that the composition of
the actions of s, t ∈ T ′ is equal to the action of st. We will see that this can be
done on the level of the homology groups Hk(ΓU ,M), but not on the level of chains
C• ⊗ΓU M . Our first step is the following lemma, from [24, p. 51] (since we are
working with right modules, we have changed right cosets to left cosets).

Lemma 7.5. Let s, t ∈ T , and suppose that ΓUsΓU =
∐
i siΓU and ΓU tΓU =∐

j tjΓU . We may choose a finite set Ξ ⊂ T such that

ΓUsΓU tΓU =
∐
ξ∈Ξ

ΓUξΓU .
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Then in the Hecke algebra we have the equality

[ΓUsΓU ][ΓU tΓU ] =
∑
ξ∈Ξ

m(ξ)[ΓUξΓU ],

where m(ξ) = |{(i, j)|sitjΓU = ξΓU}|.

Lemma 7.6. With notation as in Lemma 7.5, for each ξ ∈ Ξ, we have ξ = stu(ξ)
for some u(ξ) ∈ U(Q), and

ΓUξΓU = ΓUstΓUu(ξ).

In addition,

[ΓUstΓU ][ΓUu(ξ)ΓU ] = [ΓUξΓU ],

and est = eξ.

Proof. Since T normalizes U(Q), and U(Q) is abelian, this is immediate. �

Lemma 7.7. Let u ∈ T ∩ U(Q), and assume that there is some u′ ∈ ΓU that is
congruent to u modulo pN . Let M be a (p,N)-admissible T -module. Then [ΓUuΓU ]
acts trivially on the homology groups

H∗(ΓU ,M).

Proof. There is only one single coset in the double coset ΓUuΓU , so the Hecke
operator [ΓUuΓU ] acts on the homology as u does.

Since u centralizes ΓU , it acts on the homology via its action on M . Since M is
(p,N)-admissible the action of u′ and the action of u on M are the same. Hence,
the action of u and the action of u′ on the homology are the same. However, u′

acts trivially on the homology, by [14, Proposition III.8.1]. �

Remark 7.8. We note that this lemma fails if we apply it on the chain level. This
is because the chains, C⊗ΓUM = H0(ΓU , C⊗ZM), although acted on by the Hecke
operators, are the homology with coefficients in C ⊗M , which is not an admissible
coefficient module.

Corollary 7.9. Let T ′ be any subgroup of T such that every element of T ′ ∩U(Q)
is congruent modulo p to an element of ΓU . Let s, t ∈ T ′. Then, with notation as
in Lemma 7.5, we have, for z ∈ H∗(ΓU ,M),

z[ΓUsΓU ][ΓU tΓU ] = z

∑
ξ∈Ξ

m(ξ)

 [ΓUstΓU ].

Also,

z
1

eset
[ΓUsΓU ][ΓU tΓU ] = z

1

est
[ΓUstΓU ],

and we see that the action of individual elements of T ′ on H∗(ΓU ,M) in Defini-
tion 7.2 yields a group action of T ′ given by z · s = z 1

es
[ΓUsΓU ].

Proof. The first displayed equation follows immediately from Lemmas 7.6 and 7.7.
For the second, by [24, Proposition 3.3], Lemma 7.5, and Lemma 7.6, we have

est
∑
ξ∈Ξ

m(ξ) =
∑
ξ∈Ξ

eξm(ξ) = deg([ΓUsΓU ][ΓU tΓU ])

= deg([ΓUsΓU ]) deg([ΓU tΓU ]) = eset.
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Hence, by Lemma 7.4 and the above equation,

(z · s) · t = z
1

eset
[ΓUsΓU ][ΓU tΓU ] = z

∑
m(ξ)

eset
[ΓUstΓU ] = z

1

est
[ΓUstΓU ] = z · (st).

�

Theorem 7.10. Let P = P kd for some d|N and some k. Let (Γ, S) be either
(Γ(pN), Sk(pN)) or (Γ0(n,N), S0(n,N)). Let z ∈ H∗(ΓU ,M), and let s, t ∈ SP .
Then the action of individual elements of SP on H∗(ΓU ,M) in Definition 7.2 yields
a semigroup action of SP under which SU acts trivially.

Proof. By the previous lemmas, we are finished if we can show that SP lies in a
subgroup T ′ such that every element of T ′ ∩ U(Q) is congruent modulo p to an
element of ΓU . It suffices to show that every element of S−1

P SP ∩U(Q) is congruent
modulo p to an element of ΓU .

For (Γ, S) = (Γ0(n,N), S0(n,N)) one checks that the intersection S−1
P SP ∩U(Q)

is contained in the set of matrices

M =

{
g−1
d

(
Ik 0
A In−k

)
gd

}
,

where the entries of A are rational, with denominators prime to pN , and the entries
in the top row of A have numerators divisible by N/d. The set ΓU = Γ∩U consists
of exactly those matrices in M with integer entries. Since that any rational with
denominator prime to pN lies in Z(p), we see that it is congruent modulo p to some
integer. Thus, every element of M is congruent modulo p to an element of ΓU .

For (Γ, S) = (Γ(pN), Sk(pN)), suppose that u ∈ S−1
P SP ∩U(Q). Then gdug

−1
d ∈

S−1
P SP∩U0(Q) (where we use the fact that gd normalizes Sk(pN)). Hence, gdug

−1
d ≡

diag(1, . . . , 1, ∗, 1, . . . , 1, ∗) modulo pN , and has all diagonal elements equal to 1, so
gdug

−1
d ≡ In (mod pN). Hence, u ≡ In (mod pN), and we are finished. �

Theorem 7.11. Let P = P kd be a representative maximal parabolic subgroup of
GL(n,Q) stabilizing the subspace W = W k

d . Let M be a (p,N)-admissible S-module
with p > n + 1. Let (Γ, S) equal (Γ0(n,N), S0(n,N)) or (Γ(pN), Sk(pN)). Then
the Hecke algebra H(ΓP , SP ) acts equivariantly on the Hochschild-Serre spectral
sequence

E2
ij = Hi(ΓL, Hj(ΓU ,St(W )⊗M)) =⇒ Hi+j(ΓP ,St(W )⊗M),

and a given packet of Hecke eigenvalues occurs in Hk(ΓP ,St(W )⊗M) if and only
if it appears in ⊕

i+j=k

E∞ij .

Proof. For the given congruence subgroups, SU and ΓU have the same image modulo
pN , so the proof of [7, Theorem 4.6] applies with only minor changes to account
for the factor of St(W ), and with the appeal to [7, Theorem 4.4] (which requires
the irreducibility of H∗(ΓU ,M)) replaced by an appeal to our Theorem 7.10, which
requires that U(Q) be abelian, which it is, since P is a maximal parabolic subgroup.
Note that we need to use the finite dimensionality of each term in the E2 page of
the spectral sequence (from Theorem 6.4) for the final statement to be true. �

We will require one other instance of the Hecke invariance of the Hochschild-
Serre spectral sequence. We refer again to ([1, p. 238]) for the definition of a Hecke
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pair, and give the definition of compatible Hecke pairs from [11]. Note that since
we are working with left cosets rather than right cosets, we reverse the order of
multiplication in this definition.

Definition 7.12. [11, Definition 1.1.2] A Hecke pair (Γ, S) is said to be compatible
to the Hecke pair (Γ′, S′) if

(1) Γ ⊆ Γ′ and S ⊆ S′,
(2) Γ′ ∩ S−1S = Γ,
(3) SΓ′ = S′.

If (Γ, S) is compatible to (Γ′, S′), then the natural map H(Γ, S) → H(Γ′, S′) of
Hecke algebras is an isomorphism.

Lemma 7.13. Let P = P kd for some positive d|N and some k with 1 ≤ k < n
and let (Γ, S) be a Hecke pair such that Γ(pN) ⊂ Γ, Sk(pN) ⊂ S, the elements
of S have positive determinant, and S−1S ∩ SL(n,Z) = Γ. Then the Hecke pairs
(ΓP (pN), SP (pN)) and (ΓP , SP ) are compatible.

Proof. Note that Γ ⊆ S ∩ SL(n,Z) ⊆ S−1S ∩ SL(n,Z) = Γ, so Γ = S ∩ SL(n,Z).

(1) Since ΓP (pN) ⊂ ΓP and SP (pN) ⊂ SP , we have the necessary contain-
ments.

(2) We now wish to show that ΓP ∩SP (pN)−1SP (pN) = ΓP (pN). Let s1, s2 ∈
SP (pN) and suppose that s = s−1

1 s2 ∈ ΓP . Then s has integer entries
and determinant 1. We see that det(ψid(s)) = ±1 for i = 1, 2; in fact,
since each det(ψid(s)) > 0, each detψid(s) = 1. We also have that s ≡
diag(1, . . . , ∗, 1, . . . , ∗) (mod pN). Hence, gdsg

−1
d ≡ diag(1, . . . , ∗, 1, . . . , ∗)

(mod pN) and we see that each ∗ must be 1. Hence, s ∈ ΓP (N).
(3) Finally, let s ∈ SP . Then

gdsg
−1
d =

(
s1 0
A s2

)
∈ P0.

We easily find

γ =

(
γ1 0
B γ2

)
∈ SL(n,Z) ∩ P0

such that gdsg
−1
d γ ≡ diag(1, . . . , ∗, 1, . . . , ∗) (mod pN). This matrix has

positive determinant; if det(s1γ1) < 0, we multiply γ on the right by
the matrix diag(1, . . . ,−1, 1, . . . ,−1). With this adjustment, we see that
s(g−1

d γgd) ∈ SP (pN). Then we see that g−1
d γgd ∈ SL(n,Z)∩S−1Sk(pN) ⊂

SL(n,Z) ∩ S−1S = Γ and is contained in P , so gdγg
−1
d ∈ ΓP . Hence,

s ∈ SP (pN)ΓP , as desired. �

Remark 7.14. Note that (Γ0(n,N), S0(n,N)) is a Hecke pair that satisfies the
conditions of Lemma 7.13.

Theorem 7.15. Let (Γ, S) be a Hecke pair such that Γ(pN) ⊂ Γ, Sk(pN) ⊂ S, the
elements of S have positive determinant, and S−1S ∩ SL(n,Z) = Γ. Assume that
p > n + 1. Let P = Pd with d|N . Any system of Hecke eigenvalues occurring in
Hk(ΓP ,St(W )⊗M) also appears in Hj(ΓP (pN),St(W )⊗M) for some j ≤ k.

Proof. We have seen in Lemma 7.13 that the Hecke pairs (ΓP (pN), SP (pN)) and
(ΓP , SP ) are compatible. The Hochschild Serre spectral sequence for the exact
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sequence 0 → ΓP (pN) → ΓP → ΓP /ΓP (pN) → 0 computes Hi(ΓP ,M) in two
different ways (as in [14, VII.7.6] and [7, Theorem 4.6]) by using two spectral
sequences to compute the total homology of the double complex

F• ⊗ΓP /ΓP (pN) (C• ⊗ΓP (pN) (St(W )⊗M)),

where F• is the standard resolution of Z over the finite group ΓP /ΓP (pN), and
C• is the standard resolution of Z over GL(n,Q). We let the Hecke algebra
H(ΓP (pN), SP (pN)) (and hence, by compatibility, H(ΓP , SP )) act on the double
complex by its natural action on C•⊗ΓP (pN)(St(W )⊗M) (with the trivial action on
F•). This action commutes with the differentials of the double complex, and hence
the spectral sequence is Hecke equivariant. Therefore, any system of Hecke eigen-
values appearing in the abutment Hk(ΓP ,M) of the first spectral sequence must
occur in the E1 page of the other, i.e., in Fi ⊗ΓP /ΓP (pN) Hj(ΓP (pN),St(W )⊗M))
for some i+ j = k. This uses the fact that Fi has finite rank over Z for each i, and
the finite-dimensionality of each Hj(ΓP (pN),St(W )⊗M)) (by adapting the proof
of Theorem 6.3). Since we have chosen to have the Hecke algebra act trivially on
Fi, the desired system of eigenvalues must appear in Hj(ΓP (pN),St(W )⊗M) for
some j ≤ k. �

8. Hecke Matrices

Throughout this section, fix a positive squarefree integer N , a positive divisor
d|N , a positive integer n, let 0 < k < n, and let P0 and gd be defined as in Section 5.
Let Γ = Γ0(n,N) and let S = S0(n,N).

We have defined s(`, r, n) = diag(1, . . . , 1, `, . . . , `) to be a diagonal n×n matrix
with diagonal entries 1 and ` and determinant `r. The Hecke algebra H(Γ, S) is
generated by the double cosets of s(`, r, n) as ` varies over primes not dividing N
and 0 ≤ r ≤ n. The following description of left coset representatives of the double
coset ΓsΓ is easily confirmed.

Theorem 8.1. Set Γ = Γ0(n,N) and S = S0(n,N). Let s = s(`, r, n) for ` - pN .

(1) In the decomposition ΓsΓ =
∐
sαΓ, we may take the sα to be the set of

lower triangular matrices (aij) of determinant `r, where the entries aij
satisfy the following conditions:
(a) If i < j, then aij = 0.
(b) Each aii is either 1 or `.
(c) If i > j, then 0 ≤ aij < `.
(d) If aii = 1 or ajj = `, then aij = 0.

(2) For each i < j, let Rij ∈ Z be a complete residue system modulo ` such that
0 ∈ Rij, and assume that every element of Rij is divisible by N if i = 1. In
the decomposition ΓsΓ =

∐
sαΓ, we may take the sα to be the set of upper

triangular matrices (aij) of determinant `r, where the entries aij satisfy
the following conditions.
(a) If i > j then aij = 0.
(b) Each aii is either 1 or `.
(c) if i < j, then aij ∈ Rij.
(d) If aii = 1 or ajj = `, then aij = 0.

Remark 8.2. Typically we will take the Rij = {0, 1, . . . , ` − 1} for i > 1, and
Rij = {0, N, 2N, . . . , (`− 1)N} for i = 1.
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Definition 8.3. Let Tn(`, r) be the set of lower triangular sα defined above, and
let T n(`, r) be the set of upper triangular sα defined above. Note that we suppress
the dependence of the set T n(`, r) on N and the possible choices of Rij .

Theorem 8.4. Let 0 < k < n, and let 0 ≤ r ≤ n, and let s = s(`, r, n). The
following set of matrices (given in block form) is a complete set of left coset repre-
sentatives of ΓsΓ.

T (s, k) =

{(
t1 0
∗ t2

)
: max(0, r − (n− k)) ≤ m ≤ min(r, k),

t1 ∈ T k(`,m), t2 ∈ Tn−k(`, r −m)

}
where the entries aij in the lower left block (with i > k and j ≤ k) satisfy the
following conditions:

(1) 1 ≤ aij ≤ `
(2) aij = 0 if aii = 1 or ajj = `

Proof. One can count the number of matrices in the set, and it is equal to the
number of single coset representatives of s in the double coset ΓsΓ. It is a simple
matter to check that no two of the matrices in the set are in the same coset. �

Remark 8.5. Note that if we were to change the definition of T (s, k) so that
t1 ∈ Tk(`,m), then the resulting set would just be Tn(`, r).

We now prove that we can choose the coset representatives of ΓsΓ to be in Pd.

Theorem 8.6. Let 0 < k < n, d|N , and P = P kd , and let s = s(`, r, n) with ` - pN .
Then for each element t ∈ T (s, k), there is some γ ∈ Γ0(n,N) such that tγ ∈ Pd.

Proof. We distinguish five cases.

(1) Assume that the (1, 1) and the (k+1, k+1) entries of t are both equal to 1.
Then we may take γ = I, and we see that gdtγg

−1
d ∈ P0, so that tγ ∈ Pd.

(2) Assume that the (1, 1) and the (k+1, k+1) entries of t are both equal to `.
Then we may take γ = I, and we see that gdtγg

−1
d ∈ P0, so that tγ ∈ Pd.

(3) Assume that the (1, 1)-entry of t is ` and the (k + 1, k + 1) entry is 1. We
may choose a, b ∈ Z so that

a(d) + b(`N/d) = 1− `

(since d and `N/d are relatively prime). Let γ be the n × n matrix which
is the identity, except for the (1, 1), (1, k + 1), (k + 1, 1) and (k + 1, k + 1)
entries, which are (respectively) 1 + bN/d, bN , a, `+ ad. Then γ ∈ Γ, and
we check by direct computation that gdtγg

−1
d ∈ P0.

(4) Assume that the (1, 1)-entry of t is 1 and the (k + 1, k + 1) entry is `. Let
e be the (k + 1, 1) entry of t, and assume that ` - ed + 1. Then we may
choose a and b so that a(`d) + b ((ed+ 1)N/d) = 1 − (ed + 1)` (since `d
and (ed+ 1)N/d are relatively prime. Letting γ be the n×n matrix which
is the identity, except for the (1, 1), (1, k + 1), (k + 1, 1) and (k + 1, k + 1)
entries, which are (respectively) `+ bN/d, bN , a, (ed+ 1) + ad, we see that
γ ∈ Γ, and we check by direct computation that gdtγg

−1
d ∈ P0.
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(5) Assume that the (1, 1)-entry of t is 1 and the (k + 1, k + 1) entry is `. Let
e be the (k + 1, 1) entry of t, and assume that ` | ed + 1. Then we may
choose a and b so that

a(d) + b

(
(ed+ 1)

`
N/d

)
= 1− (ed+ 1)

`

(since d and (ed+1)N
`d are relatively prime). Letting γ be the n × n matrix

which is the identity, except for the (1, 1), (1, k+1), (k+1, 1) and (k+1, k+1)

entries, which are (respectively) 1 + bN/d, bN , a, (ed+1)
` + ad, we see that

γ ∈ Γ, and we check by direct computation that gdtγg
−1
d ∈ P0. �

Since any single coset representative of ΓsΓ may be taken to be s, this theorem
shows that for each s = s(`, i, n), we can find an s′ ∈ SP with ΓsΓ = Γs′Γ.

The next theorem is designed to enable us to compute the Hecke operators on
a tensor product of two Hecke modules. As such, it considers the Hecke operator
Tn(`, r) to be a sum in the free abelian group generated by single cosets. In order
to facilitate the statement of this theorem, we make the following definitions.

Definition 8.7. Let N and k be positive integers. Set Ck,N to be the set of left
cosets of Γ0(k,N) inside S0(k,N). Denote by Fk,N the free abelian group on the

elements of Ck,N . For a collection S of matrices in S0(k,N), we will write S for
the element ∑

s∈S
sΓ0(k,N).

Theorem 8.8. Let 0 < k < n, d|N , and P = Pd. Choose a prime ` with ` - pN ,
and let s = s(`, r, n). Then in the tensor product Fk,d ⊗Z Fn−k,N/d, we have∑
t∈T (s,k)

ψ1
d(t)Γ0(k, d)⊗ ψ2

d(t)Γ0(n− k,N/d)

=

min(r,k)∑
m=max(0,r−(n−k))

`(k−m)(r−m)T k(`,m)⊗ Tn−k(`, r −m).

Proof. We divide the elements of T k(`,m) into two subsets, Ak(`,m) and Bk(`,m),
where Ak(`,m) consists of elements of T k(`,m) with a 1 in the (1, 1)-position, and
Bk(`,m) consists of elements with an ` in the (1, 1)-position. Then T k(`,m) =
Ak(`,m) ∪Bk(`,m). We also note that

T k(`,m) =

{(
1 0
0 t

)
: t ∈ T k−1(`,m)

}⋃{(
` r
0 t

)
: t ∈ T k−1(`,m− 1)

}
,

where the r runs through row vectors (r2, . . . , rk) with rj = 0 if the (j − 1, j − 1)
entry of t is `, and rj ∈ R1j otherwise.

Similarly, we divide Tn−k(`,m) = An−k(`,m)
⋃
Bn−k(`,m), based on whether

the (1, 1)-entries are 1 or `. Then

An−k(`,m) =

{(
1 0
c t

)
: t ∈ Tn−k−1(`,m)

}
and

Bn−k(`,m) =

{(
` 0
0 t

)
: t ∈ Tn−k−1(`,m− 1)

}
,
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where c runs through appropriate column vectors.
We now evaluate ψ1

d(t)Γ0(k, d) × ψ2
d(t)Γ0(n − k,N/d) for t ∈ T (r, k) in each of

the five cases in the proof of Theorem 8.6. To illustrate the method, we give details
of case (1), and just give the results of the other cases.

(1) In this case, we have that

t =

(
t1 0
C t2

)
,

with t1 ∈ Ak(`,m) and t2 ∈ An−k(`, r − m), with max(0, r − (n − k)) ≤
m ≤ min(r, k) and the entries of C are between 0 and ` − 1 and an entry
must be equal to 0 unless it lies beneath a 1 on the diagonal and to the
left of a ` on the diagonal. For each choice of t1, t2, there are `(k−m)(r−m)

distinct C that can occur. Multiplying by γ = In and conjugating by gd
takes t to (

t1 0
C t′2

)
.

One checks that (for a given C), t′2 runs through a complete set of left coset
representatives of Γ0(n− k,N/d) as t2 does. Then slight change from

published version
ψ1
d(t)Γ0(k, d)⊗ ψ2

d(t)Γ0(n− k,N/d) = t1Γ0(k, d)⊗ t′2Γ0(n− k,N/d),

and each element of Ak(`,m)×An−k(`, r −m) appears `(k−m)(r−m) times.
In other words, as we allow m to vary, and go through all t ∈ T (r, k) that
fall into case (1), we obtain

min(r,k−1)∑
m=max(0,r−(n−k))

`(k−m)(r−m)Ak(`,m)⊗An−k(`, r −m).

(2) As t runs through all elements of T (r, k) that fall into case (2), we obtain

min(k,r)∑
m=max(0,r−(n−k))

`(k−m)(r−m)Bk(`,m)⊗Bn−k(`, r −m).

(3) As t runs through all elements of T (r, k) that fall into case (3), we obtain

min(k,r)∑
m=max(0,r−(n−k))

`(k−m)(r−m)−1Ak(`,m)⊗Bn−k(`, r −m).

(4) As t runs through all elements of T (r, k) that fall into case (4), we obtain

min(k,r)∑
m=max(0,r−(n−k))

(`(k−m)(r−m) − `(k−m)(r−m)−1)Ak(`,m)⊗Bn−k(`, r −m).

(5) As t runs through all elements of T (r, k) that fall into case (5), we obtain

min(k,r)∑
m=max(0,r−(n−k))

`(k−m)(r−m)Bk(`,m)⊗An−k(r −m).
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Then cases (1), (3), and (4) add to

min(r,k)∑
max(0,r−(n−k))

`(k−m)(r−m)Ak(`,m)⊗ Tn−k(`, r −m),

and cases (2) and (5) add to

min(r,k)∑
max(0,r−(n−k))

`(k−m)(r−m)Bk(`,m)⊗ Tn−k(`, r −m).

Adding these, we obtain

min(r,k)∑
max(0,r−(n−k))

`(k−m)(r−m)T k(`,m)⊗ Tn−k(`, r −m),

which is the desired result. �

9. Twisting the action on the coefficients

Let M be a right GL(n,Fp)-module, let N be a positive integer prime to p,
and let d be a positive divisor of N . Let ε : (Z/NZ)× → F× be a character.
Let S = S0(n,N) act on M via reduction modulo p. Then M is an admissible
Fp[S0(n,N)]-module. Let θ : S → (Z/NZ)× take s ∈ S to the mod N reduction
of its (1, 1) entry. As before, we define the nebentype character S → F× as the
composition ε ◦ θ. We will write ε(s) for this composition. Let Mε be the module
consisting of the elements of M , with the action of S adjusted to equal

m|εs = ε(s)ms.

Let P0 = P k0 be a standard maximal parabolic subgroup defined as in section 5.
As in that section, let P = Pd = g−1

d P0gd. Let SP = S ∩ P . We denote by Md
ε the

SP -module on which an element of SP acts as

m|dεs = ε(s)m · (gdsg−1
d ).

When using this notation, if d = 0 we omit it; similarly if ε = 1 we omit it. As
in [5, Section 5], we note that if M = F (a1, . . . , an), then Md is isomorphic to
F (a1, . . . , an), with gd acting as an intertwining operator.

Let Γ = Γ0(n,N), let U = Ud be the unipotent radical of Pd, L = P/U , and let
ΓU = Γ ∩ U , SU = S ∩ U , and SL = SP /SU . We note that U(Z) is free abelian of
rank k(n− k); ΓU is a subgroup of U(Z) of finite index prime to p.

We now prove a special case of a version of Kostant’s theorem in characteristic
p in the top dimension.

Theorem 9.1. Let N be squarefree and prime to p, let ε : (Z/NZ)× → F× be a
character, let d|N and let 1 ≤ k ≤ n − 1. Let P = P kd and let U = Ud be the
unipotent radical of P . Set (Γ, S) = (Γ0(n,N), S0(n,N)). Let r = k(n − k) be the
Q-dimension of U . Then

Hr(ΓU , F (a1, . . . , an)ε) ∼= (F (a1+(n−k), . . . , ak+(n−k))⊗F (ak+1−k, . . . , an−k))dε

as SL-modules.
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Proof. Set M = F (a1, . . . , an). Since ε is trivial on ΓU , we see that as an SP -
module, Hr(ΓU ,Mε) = Hr(ΓU ,M)ε. We note (as in [14, p. 79]) that Hr(ΓU ,M) ∼=
Hr(gdΓUg

−1
d ,M) as abelian groups, with the isomorphism defined on the chain level

by taking a resolution X of Z as a GL(n,Q)-module, and mapping X ⊗ΓU M →
X ⊗gdΓUg

−1
d
M by x ⊗m 7→ xg−1

d ⊗mg
−1
d . Under this isomorphism, the action of

s ∈ SP on the left hand side converts to an action of gdsg
−1
d on the right hand

side; hence, when we consider the homology groups as SP -modules, we see that
Hr(ΓU ,Mε) ∼= Hr(gdΓUg

−1
d ,M)dε .

Since gdΓUg
−1
d
∼= ΓU is free abelian of rank r, we may view Hr(gdΓUg

−1
d ,M)

as the homology of a real r-torus with fundamental group gdΓUg
−1
d with local

coefficient system determined by M . Taking f to be the fundamental class of the
n-torus, we can identify elements in Hr(gdΓUg

−1
d ,M) with elements of the form

f ⊗m, where m ∈MgdΓUg
−1
d . Now as L(Z/pZ)-modules, we have

MgdΓUg
−1
d ∼= (Md)ΓU ∼= MΓU = MU(Z/pZ) ∼= (F (a1, . . . , ak)⊗ F (ak+1, . . . , an)),

where we use the fact that M ∼= Md with gd as an intertwining operator, that
the mod p reduction of ΓU is U(Z/pZ), and [17, Corollary 5.10]. Using defini-
tion 7.2 to compute the action of SP , we note that that the highest weight vector
in Hr(ΓU , F (a1, . . . , an)) is the highest weight vector in F (a1, . . . , an)U(Z/pZ). The
weight of this vector is the weight (a1, . . . , an) twisted by a certain character on
the diagonal matrices in gdSP g

−1
d . The key point to determine this twist is the

following. The action on the fundamental class is determined by the conjugation

action of t = diag(t1, . . . , tn) ∈ gdSP g−1
d on η ∈

∧k(n−k)
U(Z) induced by the action

(t, η) 7→ t−1ηt and this is given by the character

diag(t1, . . . , tn) 7→
tn−k1 . . . tn−kk

tkk+1 . . . t
k
n

. �

Corollary 9.2. With notation as above, we may uniquely factor ε into a product
of a character ε1 modulo d and ε2 modulo N/d. Then an element s ∈ SP acts on a
simple tensor

m1 ⊗m2 ∈ (F (a1 + (n− k), . . . , ak + (n− k))⊗ F (ak+1 − k, . . . , an − k))dε

by

(m1 ⊗m2)|dεs = ε1(ψ1
d(s))m1ψ

1
d(s)⊗ ε2(ψ2

d(s))m2ψ
2
d(s).

Proof. By Theorem 5.2(1), ψ1
d(s)11 ≡ s11 (mod d) and ψ2

d(s)11 ≡ s11 (mod N/d),
so ε1(ψ1

d(s))ε2(ψ2
d(s)) = ε(s). In addition, we have

gdsg
−1
d =

(
ψ1
d(s) 0
∗ ψ2

d(s)

)
,

with the upper left block acting on the first component of m1 ⊗m2, and the lower
right block acting on the second component. The corollary follows. �

10. Hecke operators and the Künneth formula

For i = 1, 2, let Gi be a group, and let Mi be an F[Gi]-module. Let Fi be a reso-
lution of Z by projective ZGi-modules. Then [14, p. 109], we have an isomorphism
of complexes of F-vector spaces

(F1 ⊗G1
M1)⊗F (F2 ⊗G2

M2) ∼= (F1 ⊗ F2)⊗G×G′ (M1 ⊗M2),
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given by (f1 ⊗m1) ⊗ (f2 ⊗m2) 7→ (f1 ⊗ f2) ⊗ (m1 ⊗m2). Applying the Künneth
formula to this isomorphism of complexes, we obtain an isomorphism (since we are
working with modules over a field)⊕

r+s=n

Hr(G1,M1)⊗F Hs(G2,M2)→ Hn(G1 ×G2,M1 ⊗M2).

We will apply the Künneth isomorphism to the case of congruence subgroups,
and study how it interacts with the action of Hecke operators.

Set P = P kd = g−1
d P0gd, and denote by U = Ud the unipotent radical of P , and

by L = Ld the Levi quotient P/U . The exact sequence 1→ U0 → P0 → P0/U0 → 1
splits, giving us that P0/U0 is isomorphic to a subgroup L1

0×L2
0 of P . In this case,

L1
0 consists of block diagonal matrices A⊕ In−k, and L2

0 consists of block diagonal
matrices Ik ⊕ B. Then Ld = Pd/Ud is isomorphic to the subgroup L1

d × L2
d of Pd,

with Lid = g−1
d Li0gd.

Let Γ = Γ0(n,N), S = S0(n,N), Γ± = Γ±0 (n,N), and S± = S±0 (n,N). We note
that the Hecke algebras H(Γ, S) and H(Γ±, S±) are easily seen to be isomorphic,
as are H(ΓP , SP ) and H(Γ±P , S

±
P ).

By Theorem 5.2, we see that Γ±L = Γ±P /Γ
±
U = Γ±L1 × Γ±L2 , where

Γ±L1 = (ψ1
d × ψ2

d)−1(Γ±0 (k, d)× In−k)/Γ±U
∼= Γ±0 (k, d)

and

Γ±L2 = (ψ1
d × ψ2

d)−1(Ik × Γ±0 (n− k,N/d))/Γ±U
∼= Γ±0 (n− k,N/d).

Hence, by the Künneth isomorphism, if M = M1⊗M2, where Mi is an Li-module,
we have

Hk(Γ±L ,St(Wd)⊗M) ∼=
⊕
i+j=k

Hi(Γ
±
L1 ,St(Wd)⊗M1)⊗Hj(Γ

±
L2 ,M2)

∼=
⊕
i+j=k

Hi(Γ
±
0 (k, d),St(W0)⊗M−d1 )⊗Hj(Γ

±
0 (n− k,N/d),M−d2 )

after conjugating by gd.
Let Fi be the standard resolution of Z by Li(Q)-modules. Then we may compute

Hk(Γ±L ,St(Wd)⊗M) as the homology of the complex

(F1 ⊗Γ±
L1

St(W )⊗M1)⊗ (F2 ⊗Γ±
L2
M2) ∼= (F1 ⊗ F2)⊗Γ±L

(St(W )⊗M),

Since U acts trivially on F1 ⊗ F2 and on St(W ) ⊗ M , we have that the Hecke
algebra H(ΓP , SP ) acts on the right hand complex, and therefore on the homol-
ogy Hk(Γ±L ,St(Wd) ⊗M). Translating this action to the left-hand complex, and
applying Theorem 8.8, we obtain the following theorem.

Theorem 10.1. Let (Γ, S) = (Γ0(n,N), S0(n,N)), and let P kd be a representative
maximal parabolic subgroup of GL(n,Q) for some d|N . Let M1 be a GL(k,Fp)-
module and let M2 be a GL(n− k,Fp)-module. Let SP act on M1 ⊗M2 via (m1 ⊗
m2)s = m1ψ

1
d(s)⊗m2ψ

2
d(s). Then the natural action of Tn(`, r) ∈ H(ΓP , SP ) on

Ht(Γ
±
L ,St(Wd)⊗M1 ⊗M2)

is given on the component

Hr(Γ
±
0 (k, d),St(W0)⊗M1)⊗Ht−r(Γ

±
0 (n− k,N/d),M2)



REDUCIBLE GALOIS REPRESENTATIONS AND ARITHMETIC HOMOLOGY 25

by

(f ⊗ g)|Tn(`, r) =

min(r,k)∑
m=max(0,r−(n−k))

`(k−m)(r−m)f |Tk(`,m)⊗ g|Tn−k(`, r −m).

The same holds true if St(Wd) and St(W ) are removed from the formulas.

In terms of Hecke eigenvectors, we obtain the following two corollaries.
This theorem is dif-
ferent than the pub-
lished version.

Corollary 10.2. Let P = P kd be a representative maximal parabolic subgroup of
GL(n,Q) of type (k1, k2) = (k, n−k) with unipotent radical U and Levi quotient L.
Let M1 be a Γ±0 (k, d)-module, M2 a Γ0(n − k,N/d)-module, and M = M1 ⊗M2.
Let fi ∈ Hpi(Γ

±
0 (k, d),Mi) be an eigenclass of all the Hecke operators Tki(`, j),

with eigenvalues a1(`, j) and f2 ∈ Hpi(Γ
±
0 (nk,N/d),Mi) be an eigenclass of all the

Hecke operators Tn−k(`, j), with eigenvalues a1(`, j). Then f1 ⊗ f2, considered as
an element of Hp1+p2(Γ±L ,M

d), is an eigenclass of the Hecke operators Tn(`, r),
with eigenvalues

c(`, r) =

min(k1,r)∑
m=max(0,r−(n−k1))

`(k1−m)(r−m)a1(`,m)a2(`, r −m).

If each fi is attached to a Galois representation ρi, then f1 ⊗ f2 is attached to
ρ1 ⊕ ωk1ρ2.

Proof. The values of the c(`, r) follow immediately from Theorem 10.1. To see the
statement about attachment, we let

Pi(X, `) =

ki∑
j=0

(−1)j`j(j+1)/2ai(`, j)X
j

be the Hecke polynomial associated with fi. We recall that attachment implies that

Pi(X, `) = det(I − ρi(Fr`)X).

We note that

P1(X, `)P2(`k1X, `) = det(I − (ρ1 ⊕ ωk1ρ2)(Fr`)X).

Hence, in order to complete the proof, we need only show that the Hecke polynomial

P (X, `) =

n∑
i=0

(−1)i`i(i+1)/2c(`, i)Xi

is equal to P1(X, `)P2(X, `). This is a routine algebraic computation. �

Corollary 10.3. Assume that p > n+ 1. Any system of simultaneous eigenvalues
of the Tn(`,m) acting on

Hr(Γ
±
0 (k, d),St(W0)⊗M1)⊗Hs(Γ

±
0 (n− k,N/d),M2)

arises as a tensor product of a simultaneous eigenvector of the Tk(`,m) and a
simultaneous eigenvector of the Tn−k(`,m).

Hence, any system of simultaneous eigenvalues of the Tn(`,m) acting on

Hr+s(Γ
±
L ,St(Wd)⊗ (M1 ⊗M2)d)

appears as such a tensor product.
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Proof. We can find a basis {vr} of Hi(Γ
±
0 (k, d),St(W )⊗M1) such that the actions of

the Tk(`,m) are all upper triangular, and a basis {ws} of Hj(Γ
±
0 (n− k,N/d),M2)

with respect to which the Tn−k(`,m) are all upper triangular. Then, by Theo-
rem 10.1 and the Kronecker product, there is a basis {vr ⊗ ws} with respect to
which all of the Tn(`,m) are upper triangular. We can then read off the systems of
simultaneous eigenvalues of the Tn(`,m) from the diagonal elements of the matrix,
and we see that they all arise from elements of the form v ⊗ w. �

The purpose of Theorem 10.1 is to construct eigenvectors of the Hecke algebra
with predetermined eigenvalues in the homology of ΓL. With this in mind, we now
relate the homology of Γ±L to the homology of ΓL.

Theorem 10.4. Let M be an S±-module on which S±U acts trivially, and as-
sume that p > n + 1. Then any system Φ of H(ΓP , SP )-eigenvalues appearing
in Hk(Γ±L ,St(Wd)⊗M) appears in Hk(ΓL,St(Wd)⊗M).

Proof. Because p > n+ 1, we may use Borel-Serre duality. An argument similar to
that in Theorem 6.3 shows that Hk(ΓL,St(Wd)⊗M) is finite dimensional.

As noted previously, the Hecke algebras H(ΓP , SP ) and H(Γ±P , S
±
P ) are isomor-

phic. Hence, H(ΓP , SP ) acts on both Hk(ΓL,St(Wd)⊗M) and on Hk(Γ±L ,St(Wd)⊗
M). The corestriction map cores : Hk(ΓL,St(Wd)⊗M)→ Hk(Γ±L ,St(Wd)⊗M) is
easily seen to be an H(ΓP , SP ) homomorphism. By the adaptation of [14, Propo-
sition III.10.4] to homology, the corestriction factors as a composite

Hk(ΓL,St(Wd)⊗M)→ Hk(ΓL,St(Wd)⊗M)Γ±L/ΓL
→ Hk(Γ±L ,St(Wd)⊗M),

where the first map is surjective, and the second is an isomorphism. Since the
corestriction map is Hecke equivariant and surjective, any system Φ of eigenvalues
in the codomain must appear in the domain. �

We now prove a similar theorem for principal congruence subgroups. Since con-
jugation by gd preserves Γ(N), we see easily that ΓL(N) = ΓL1(N)×ΓL2(N) (since
for instance, if γ ∈ GL(k,Z) is congruent to the identity, then g−1

d (γ ⊕ In−k)gd ∈
ΓP (N)). Hence, we may decompose

Hk(ΓL(N),St(W )⊗M1⊗M2) ∼=
⊕
i+j=k

Hi(ΓL1(N),St(W )⊗M1)⊗Hj(ΓL2(N),M2).

Since (ΓP (N), SP (N)) and (ΓP , SP ) are compatible Hecke pairs, H(ΓP , SP ) acts
on the above module, and we obtain the following theorem.

Theorem 10.5. Let Φ be a system of Hecke eigenvalues of all the Tn(`, r) act-
ing on Ht(ΓL(N),St(W ) ⊗ M1 ⊗ M2). Assume that p > n + 1. Then there is
an eigenvector f with eigenvalue system Φ that can be written as f = f1 ⊗ f2 with
f1 ∈ Hi(ΓL1(N),St(W )⊗M1) and f2 ∈ Hj(ΓL2(N),M2) each a simultaneous eigen-
vector of the appropriate Hecke algebra, with i+ j = t. If f1 and f2 have attached
Galois representations ρ1 and ρ2, then f1 ⊗ f2 has attached Galois representation
ρ1 ⊕ ωkρ2.

Proof. Since (ΓP (pN), SP (pN)) and (ΓP , SP ) are compatible, for s = s(`, r, n) ∈
SP , we may choose γ ∈ ΓP and γα ∈ ΓP such that

ΓP sΓP = ΓpsγΓP =
∐

sα∈T (s,k)

sαΓP =
∐

sα∈T (s,k)

sαγαΓP
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and sγ and each sαγα ∈ SP (pN). Then, by compatibility, we have

ΓP (pN)sγΓP (pN) =
∐

sαγαΓP (pN).

We note that ψ1
d(sαγα) = ψ1

d(sα)ψ1
d(γα) and that ψ1

d(γα) ∈ Γ±0 (k, d). If nec-
essary, we may multiply γα by diag(1, . . . ,−1, 1, . . . ,−1) ∈ ΓP so that ψ1

d(γα) ∈
Γ0(k, d). Hence, the Γ0(k, d)-coset ψ1

d(sα) is the same as the coset of ψ1
d(sαγα).

Using these facts, and the fact that (Γ0(k, d), S0(k, d)) is compatible with the prin-
cipal congruence Hecke pair of level pN for GL(k) (and analogous facts for ψ2

d), we
see that∑

sα∈T (s,k)

ψ1
d(sα)⊗ ψ2

d(sα) =
∑

sα∈T (s,k)

ψ1
d(sαγα)⊗ ψ2

d(sαγα)

=
∑

sα∈T (s,k)

˜ψ1
d(sαγα)⊗ ˜ψ2

d(sαγα)

=

min(r,k)∑
m=max(0,r−(n−k))

`k−m ˜T ′k(`,m)⊗ ˜T ′n−k(`, r −m),

where T ′k(`,m) is a collection of left coset representatives that compute Tk(`,m)
for the principal congruence Hecke pair, and the tildes represent cosets for the
appropriate principal congruence subgroup. The theorem then follows exactly as
in Theorem 10.1, Corollary 10.2, and Corollary 10.3. �

11. Reducibility of Galois representations attached to homology of
a parabolic subgroup

Throughout this section, we will let P be a maximal parabolic subgroup of
GL(n,Q), with unipotent radical U and Levi subgroup L. We will also assume that
(Γ, S) is a congruence Hecke pair such that ΓU and SU have the same reduction
modulo p.

Lemma 11.1. Let A be a free abelian group of finite rank r, Let P be a maximal
parabolic subgroup of GL(n,Q) with unipotent radical U , and suppose that L(Z) =
P (Z)/U(Z) acts on A. Assume that there is an isomorphism ϕ : A → Zr and a
representation M : P (Z)→ GL(r,Z) that factors through U(Z) such that

ϕ(aλ) = ϕ(a)M(λ)

for every a ∈ A and λ ∈ P (Z). Then P (Z) acts on

Hk(A,F) ∼=
∧k

(A⊗ F)

via
∧k

(M).

Proof. This follows immediately from the naturality of the isomorphism in [14,
V.6.4 and the preceding page]. �

Lemma 11.2. Let P be a maximal parabolic subgroup of GL(n,Q), and let s ∈
SP . The action of the Hecke operator [ΓUsΓU ] on H1(ΓU ,Z) ∼= ΓU described by
Definition 7.2 is given on an element u ∈ ΓU by

u[ΓUsΓU ] = s−1(ues)s.
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Proof. Let H = ΓU ∩sΓUs−1 be the largest subgroup of ΓU such that s−1Hs ⊆ ΓU .
We have previously denoted [ΓU : H] by es, and noted that it is prime to p. The
Hecke operator [ΓUsΓU ] is given by the composition

ΓU
transfer−→ H

α−→ s−1Hs
ι−→ΓU ,

where the first map is the group-theoretic transfer, the second is conjugation by s,
and the third is inclusion. By [21, Theorem 10.1.3], the transfer from ΓU to H is
just the es-power map. Hence,

u[ΓUsΓU ] = s−1(ues)s,

where ues ∈ H, since [ΓU : H] = es. �

For ease of notation, we will now consider ΓU as a free abelian group written
additively, and call it A. As above, we obtain an action of the Hecke algebra of
ΓU on H1(ΓU ,F) = H1(ΓU ,Z) ⊗ F ∼= A ⊗ F ; namely [ΓUsΓU ] acts on an element
a⊗ 1 ∈ A⊗ F by taking it to

(s−1(esa)s)⊗ 1.

Note that on the free abelian group esA ⊂ A, conjugation by s is given (in terms
of a basis of A) by a matrix M(S) ∈ GL(n,Q), all of whose denominators divide
es (and are hence in Z(p)). This is the same matrix that describes the action of s
(in terms of a Z-basis of A = ΓU ) on U(Q). Using the Pontryagin product (as in
Lemma 11.1) to extend this action from H1(ΓU ,F) to Hk(ΓU ,F) and invoking the
last statement in Corollary 7.9, we obtain the following theorem.

Theorem 11.3. Let M : SP → GL(n,Z(p)) be the matrix that describes the action
of SP on U(Q) in terms of a Z-basis of ΓU . Then the action of s ∈ SP on Hk(ΓU ,F)

is given by the mod p reduction of
∧k

M . In particular, Hk(ΓU ,F) is an admissible
SP -module.

We will apply this theorem in the following special case.

Corollary 11.4. For a maximal parabolic subgroup P of GL(n,Q), with Levi sub-
group L and unipotent radical U , the homology Hk(ΓU (pN),F) is an admissible
SP (pN)-module on which ΓP (pN) acts trivially.

If we denote reduction modulo pN by a bar, then the map D : SP (pN) →
(Z/pNZ)× × (Z/pNZ)× given by D(s) = (det(ψ1

d(s)),det(ψ2
d(s)) is a homomor-

phism with kernel equal to ΓP (pN). Hence, on any module M on which SP (pN)
acts via reduction modulo p, SP (pN) acts through the image of D, which is an
abelian group. Hence, it acts on any irreducible constituent of M via a character
that factors through D. It follows that any irreducible constituent of M is of the
form Fχ, where χ is a character that factors through D.

Theorem 11.5. Let P be a maximal Q-parabolic subgroup of GL(n,Q) with unipo-
tent radical U and Levi quotient L = P/U and let (Γ, S) = (Γ0(n,N), S0(n,N)).
Let W be the maximal proper P -stable subspace of Qn and let k = dim(W ). Set
n1 = k and n2 = n − k. Assume that p > n + 1. Let M be an irreducible (p,N)-
admissible F[S]-module, and let Φ be a system of H(Γ, S)-eigenvalues occurring in
Ht(ΓP ,St(W )⊗M). Then there is some reducible Galois representation ρ = σ1⊕σ2

with σi : GQ → GL(ni,F) that is attached to Φ.
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Proof. We note that there is some γ ∈ Γ0(n,N) such that γPγ−1 = Pd = P kd for
some d|N . Conjugation by γ then yields an isomorphism of H(Γ, S)-modules

Ht(ΓP ,St(W )⊗M) ∼= Ht(ΓPd ,St(W )⊗M),

so that we may, without loss of generality, assume that P = Pd and W = Wd for
some d|N .

Now, by Theorem 7.15, we may assume that Φ appears in

Ht(ΓP (pN),St(W )⊗M).

Given an exact sequence 0 → M1 → M2 → M3 → 0 of SP -modules, since
St(W )⊗Mi = (St(W )⊗ F)⊗F Mi and St(W )⊗ F is a free (hence flat) F-module,
we see that

0→ St(W )⊗M1 → St(W )⊗M2 → St(W )⊗M2 → 0

is again an exact sequence of SP -modules. Then (see [11, Lemma 2.1]) Φ must
appear in

Ht(ΓP (pN),St(W )⊗M ′),
whereM ′ is some irreducible constituent ofM as an SP (pN)-module. Now, SP (pN)
acts on M ′ via D composed with some character χ on (Z/NZ)×× (Z/NZ)×, so M ′

must be isomorphic to Fχ, and we see that Φ must actually appear in

Ht(ΓP (pN),St(W )⊗ Fχ).

Note that we may write χ as a product of two characters χ1, χ2 on (Z/NZ)×, where
χ ◦D = (χ1 ◦ det ◦ψ1

d) · (χ2 ◦ det ◦ψ2
d). We see easily that Fχ = Fχ1 ⊗ Fχ2 .

By Theorem 7.11, we see that the Hochschild-Serre spectral sequence for 1 →
ΓU (pN) → ΓP (pN) → ΓL(pN) → 1 is Hecke equivariant, so Φ appears in some
term

Hi(ΓL(pN), Hj(ΓU (pN),St(W )⊗ Fχ)) ∼= Hi(ΓL(pN),St(W )⊗Hj(ΓU (pN),Fχ)).

Now, by Corollary 11.4, we see that Hj(ΓU (pN),Fχ) ∼= Hj(ΓU (pN),F) ⊗ Fχ is
(p,N)-admissible, and hence is acted on trivially by ΓP (pN). Using the fact that
ΓL(pN) ∼= ΓL1(pN) × ΓL2(pN), where ΓL1(pN) is isomorphic to the principal
congruence subgroup of GL(k,Z), and ΓL2(pN) is isomorphic to the principal con-
gruence subgroup of GL(n − k,Z), and ΓL2(pN) acts trivially on St(W ), we see
that Φ must appear in

Hi(ΓL(pN),St(W )⊗ Fχ)) ∼= Hi(ΓL1(pN)× ΓL2(pN),St(W )⊗ Fχ))

∼=
⊕
r+s=i

Hr(ΓL1(pN),St(W )⊗ Fχ1)⊗Hs(ΓL2(pN),Fχ2)

∼=
⊕
r+s=i

Hr′(ΓL1(pN),Fχ1)⊗Hs(ΓL2(pN),Fχ2),

where r′ = k(k − 1)/2− r (using Borel-Serre duality).
By Theorem 10.5, we see that the system of eigenvalues Φ must have an eigen-

vector f1 ⊗ f2, where

f1 ∈ Hr′(ΓL1(pN),Fχ1)

and

f2 ∈ Hs(ΓL2(pN),Fχ2
)

are eigenvectors for the appropriate Hecke algebras.
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Now [22] shows (conditional on the stabilization of a twisted trace formula; see
[22, p. 949]) that each of fi has an attached Galois representation σi : GQ →
GL(ni,Fp). Then by Theorem 10.5, we see that Φ has attached Galois representa-
tion ρ = σ1 ⊗ ωkσ2, as desired. �

12. Application to GL(4) and reducible Galois representations

We now apply the theory that we have developed to the case of a Galois repre-
sentation ρ = ρ1 ⊕ ρ2, where ρ1 and ρ2 are odd irreducible two-dimensional Galois
representations, ρi : GQ → GL(2,F) such that the levels Ni of ρi are squarefree
and relatively prime and p > 5. Denote by εi the nebentype of ρi. Let ρ1 have
Serre weight F (a + 2, b + 2), and let ρ2 have Serre weight F (c, d). Note that we
may adjust b modulo p− 1 so that 0 ≤ b− c ≤ p− 1. One then easily checks that
a predicted weight for ρ1 ⊕ ρ2 is F (a, b, c, d).

Now, we know (since Serre’s conjecture is a theorem) that ρ1 is attached to some
Hecke eigenvector f ∈ H1(Γ±0 (2, N1), F (a+2, b+2)ε1) and (twisting by a character)
that ω−2 ⊗ ρ2 is attached to some Hecke eigenvector

g ∈ H1(Γ±0 (2, N2), F (c− 2, d− 2)ε2).

By Borel-Serre duality ρ1 is attached to some eigenvector

f ′ ∈ H0(Γ±0 (2, N1),St(W )⊗ F (a+ 2, b+ 2)ε1),

where W = Q2 is acted on in the natural way by Γ±0 (2, N1), S±0 (2, N1) ⊂ GL(2,Q).
Hence, by Corollary 10.2 and Theorem 10.4, we see that ρ1 ⊕ ρ2 is attached to a
Hecke eigenvector in

H1(ΓLN1
,St(WN1

)⊗ (F (a+ 2, b+ 2)⊗ F (c− 2, d− 2))N1
ε1ε2),

where WN1
is the space stabilized by P 2

N1
∈ GL(4,Q).

Let ε be the character modulo N1N2 defined by ε = ε1ε2.
Now, since UN1

acts trivially on St(WN1
), we know by Theorem 9.1 that

H4(ΓUN1
,St(WN1

)⊗F (a, b, c, d)ε) ∼= St(WN1
)⊗ (F (a+2, b+2)⊗F (c−2, d−2))N1

ε .

Hence, we see that ρ1 ⊕ ρ2 is attached to a Hecke eigenvector in

H1(ΓLN1
, H4(ΓUN1

,St(WN1
)⊗ F (a, b, c, d)ε)).

This is the E2
14 term in the Hochschild-Serre spectral sequence for the exact sequence

1 → ΓUN1
→ ΓPN1

→ ΓLN1
→ 1. Since the p-homological dimension of ΓLN1

is

two, this spectral sequence is only three columns wide; since E2
14 is in the center

column, everything in it survives to the infinity page. Hence, ρ1⊕ ρ2 is attached to
a Hecke eigenvector in H5(Γ0(n,N1N2) ∩ PN1 ,St(WN1)⊗ F (a, b, c, d)ε).

Hence, ρ1 ⊕ ρ2 is attached to a Hecke eigenclass in the term E1
15 of the spectral

sequence of section 6. This class cannot be killed off by elements in E1
25 or E1

05,
since any system of Hecke eigenvalues in those terms must be attached to a Galois
representation that has a character as a direct summand by Theorem 11.5 (the semi-
simplification of a Galois representation attached to a system of Hecke polynomials
is unique up to isomorphism by the Cebotarev Density Theorem, the fact that the
Frobenius elements generate the Galois group, and Brauer-Nesbitt Theorem). The
only other way that the class could be killed off would be by an eigenclass in E2

3,4,



REDUCIBLE GALOIS REPRESENTATIONS AND ARITHMETIC HOMOLOGY 31

in which case there must be a class in E1
34 with ρ1 ⊕ ρ2 attached. Hence, we see

that either ρ1 ⊕ ρ2 fits H6(Γ0(N1N2), F (a, b, c, d)) or it fits

E1
34 = H4(Γ0(V ),St(V )⊗ F (a, b, c, d)) ∼= H2(Γ0(N1N2), F (a, b, c, d)).

Since a Galois representation fits Ht(Γ,M) if and only if it fits Ht(Γ,M) [7, Lemma
2.4], we see that we have proved the following.

Theorem 12.1. Let p > 5. For i = 1, 2, let ρi : GQ → GL(2,F) be an odd
irreducible Galois representation with level Ni and nebentype εi, and let ε = ε1ε2.
Then ρ1 ⊕ ρ2 is attached to a Hecke eigenclass in either H6(Γ0(N1N2),Mε) or in
H2(Γ0(N1N2),Mε), where M is a weight for ρ1 ⊕ ρ2 predicted by the conjecture in
[8].

Remark 12.2. We think it very unlikely that ρ1 ⊕ ρ2 fits H2(Γ0(N1N2),Mε), but
we know of no theorems that would prove that it can not.

We hope in a future paper to be able to extend this theorem to representations
ρ = ρ1 ⊕ ρ2 where ρ is an odd Galois representation that is a sum of two odd
irreducible n-dimensional Galois representations for arbitrarily large n, assuming
that each constituent is attached to an appropriate homology Hecke eigenclass.
Such an extension will require a better understanding of the terms of the Hochschild-
Serre spectral sequence for the exact sequence 0 → ΓU → ΓP → ΓL → 0, which
degenerates in the case n = 2.
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