
Handout 1
Population Sequences

This handout deals with sequences produced by a simple mathematical model from population biol-
ogy.

The Model

Let Pn be the population of a species in year n. A simple model for how Pn+1 might depend
on Pk for k ≤ n is given by the recurrence relation

Pn+1 = Pn + (b− d)Pn. (1)

Here b and d are constants that represent, respectively, the natural birth and death rates of the
species. We assume, here and below, that b > d. It is not hard to see that this assumption implies
that a population obeying the growth law (1) grows without bound (if the initial population P1 is
positive). Furthermore, for even modest values of b − d, the population becomes incredibly large
after a short number of years.

A more realistic model might take into account the fact that environmental conditions typi-
cally impose a limit on sustainable population size. If we let K be the carrying capacity of the
environment, one way to modify (1) to reflect these limitations is:

Pn+1 = Pn +
K − Pn
K

(b− d)Pn. (2)

Note that the new factor (K − Pn)/K in (2):

• converges to 1 as Pn goes to 0,

• is 0 when Pn = K, and

• is negative when Pn > K.

These properties reflect the fact that environmental limitations have negligible effect when the
population is small, that these limitations halt population growth completely when the carrying
capacity is reached, and that if the carrying capacity should ever be exceeded the population will
decrease in the next year. From now on, we assume that {Pn} satisfies (2).

Exercise 1
(a) There is a constant E larger than K that has the property that Pn+1 = 0 whenever Pn = E.
(E is called the extinction level, because if the population should ever reach E, the species will be
extinct the next year.) Determine E in terms of K, b, and d.
(b) For each natural number n, let xn = Pn/E. (We call xn the normalized population.) Show
that the sequence {xn} satisfies the recurrence relation

xn+1 = µxn(1− xn) (3)

for some constant µ, and determine the value of this constant in terms of K, b, and d.
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From now on, we focus on (3) and assume that {xn} satisfies that recurrence relation. If we
define

fµ(x) := µx(1− x),

then (3) becomes xn+1 = fµ(xn).

Convergent Populations

Theorem. If lim
n→∞

xn = L, then fµ(L) = L.

Proof. If lim
n→∞

xn = L, then (since fµ is continuous)

lim
n→∞

fµ(xn) = fµ(L). (4)

But fµ(xn) = xn+1, so
lim
n→∞

fµ(xn) = lim
n→∞

xn+1 = L (5)

(since the limit of a sequence depends only on the tail of the sequence). Combining (4) and (5)
gives fµ(L) = L. �

It is easy to check that the only solutions to fµ(L) = L are L = 0 and L = 1−1/µ. Thus, if the
unnormalized population Pn approaches a constant as n → ∞, then that constant must be either
0 or (1− 1/µ)E.

Definition. A sequence {xn} is eventually nondecreasing if there is a natural number k such that
xn+1 ≥ xn whenever n ≥ k.

It is a fact that a sequence that is bounded above and eventually nondecreasing converges (to
the least upper bound of {xk, xk+1, xk+2, . . .}).

Exercise 2 Suppose that 1 < µ ≤ 2.
(a) Show that if xn ∈ (0, 1 − 1/µ] for some n, then (for that same n) xn+1 ∈ (0, 1 − 1/µ] and
xn+1 ≥ xn.
(b) Show that if x1 ∈ (0, 1− 1/µ] then lim

n→∞
xn = 1− 1/µ. (Hint: Show that {xn} is bounded above

and nondecreasing.)
(c) Show that if x1 ∈ [1 − 1/µ, 1) then lim

n→∞
xn = 1 − 1/µ. (Hint: Show that {xn} is either

nonincreasing or is eventually nondecreasing.)

Periodic Populations

Combining parts (b) and (c) of Exercise 2, we see that for µ ∈ (1, 2] if the population Pn in the
first year is anywhere between 0 and E then the population approaches a constant as time passes
(and the limiting population doesn’t depend on the specific value of the starting population).

If µ > 2, on the other hand, it may be the case that the population doesn’t eventually approach
a constant.
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Exercise 3 Suppose that {xn} satisfies the recurrence relation (3). Show that if µ ∈ [1, 4) and
x1 ∈ (0, 1) then xn ∈ (0, 1) for every natural number n.

Exercise 3 shows that if µ ∈ [1, 4) and the starting population is below the extinction level E
then the population remains below the extinction level (and positive) in all subsequent years (even
if the population doesn’t approach a constant).

Definition. We say that a sequence {xn} is k-periodic if xn+k = xn for every natural number n.

It is a fact that a sequence generated by a recurrence relation like (3) is k-periodic if x1+k = x1.
If µ > 3, then {xn} may be k-periodic without being constant. For example, suppose µ = 7/2

and x1 = 3/7. Then

x2 = f7/2(3/7) =
7
2
· 3

7

(
1− 3

7

)
=

3
2
· 4

7
=

6
7
,

and

x3 = f7/2(6/7) =
7
2
· 6

7

(
1− 6

7

)
= 3

(
1
7

)
=

3
7

= x1,

so {xn} is 2-periodic.

Chaotic Populations

If µ ∈ (3.57, 4) and x1 is chosen at random in (0, 1), then the resulting population sequence
{xn} is likely to be chaotic. This means that it manifests no discernible pattern: It doesn’t diverge
to∞, it doesn’t diverge to −∞, it doesn’t converge to a constant, it isn’t k-periodic, and it doesn’t
get closer and closer to a k-periodic sequence.

For example, if µ = 3.7 and x1 = 0.3, then the plot of the population sequence {xn} looks like:
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