
Logical Outline of Chapter 3

- 1 Dilation has the expected effect on the size of special polygons.
- 2 Dilation has the expected effect on the size of arbitrary sets.
- 3 Nonsingular matrix multiplication expands each open set by the same factor by which it expands $[0, 1)^n$.
- 4 Nonsingular matrix multiplication expands each open set by the same factor.
- 5 Nonsingular matrix multiplication expands each set by the same factor.
- 6 There are sets of positive size that when multiplied by the elementary matrix E get expanded by the factor $|\det(E)|$.
- 7 Multiplication by the elementary matrix E expands arbitrary sets by the factor $|\det(E)|$.
- 8 Determinants are multiplicative.
- 9 Every nonsingular matrix is the product of elementary matrices.
- 10 Multiplication by the nonsingular matrix T expands arbitrary sets by the factor $|\det(T)|$.
- 11 If T is orthogonal, then $|\det(T)| = 1$.
- 12 Orthogonal matrix multiplication preserves size.

 $\boxed{13} \lambda(\{0\} \times \mathbb{R}^{n-1}) = 0.$

- 14 Proper (linear) subspaces of \mathbb{R}^n have measure zero.
- 15 Singular matrix multiplication maps \mathbb{R}^n to a proper linear subspace of \mathbb{R}^n .
- 16 Multiplication by the singular matrix T shrinks size to 0.
- 17 Multiplication by a matrix T expands arbitrary sets by the factor $|\det(T)|$.
- 18 Translation preserves size of special polygons.
- 19 Translation preserves size of arbitrary sets.
- 20 Rigid motions preserve size.

