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Ordinary Differential Equations

An ordinary differential equation (or ODE) is an equation involving deriva-
tives of an unknown quantity with respect to a single variable. More precisely,
suppose j, k ∈ N , E is a Euclidean space, and

F : dom(F ) ⊆ R ×
n+ 1 copies︷ ︸︸ ︷

E × · · · × E → Rj . (1)

Then an nth order ordinary differential equation is an equation of the form

F (t, x(t), ẋ(t), ẍ(t), x(3)(t), · · · , x(n)(t)) = 0. (2)

If I ⊆ R is an interval, then x : I → E is said to be a solution of (2) on I if x
has derivatives up to order n at every t ∈ I, and those derivatives satisfy (2).
Often, we will suppress the dependence of x on t. Also, there will often be
side conditions given that narrow down the set of solutions. In this class, we
will concentrate on initial conditions which prescribe x(`)(t0) for some fixed
t0 ∈ R (called the initial time) and some choices of ` ∈ {0, 1, . . . , n}. Some
ODE classes study two-point boundary-value problems, in which the value of
a function and its derivatives at two different points are required to satisfy
given algebraic equations, but we won’t focus on them in this one.

First-order Equations

Every ODE can be transformed into an equivalent first-order equation. In
particular, given x : I → E, suppose we define

y1 := x

y2 := ẋ

y3 := ẍ

...

yn := x(n−1),
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and let y : I → En be defined by y = (y1, . . . , yn). For i = 1, 2, . . . , n − 1,
define

Gi : R × En × En → R

by

G1(t, u, p) := p1 − u2

G2(t, u, p) := p2 − u3

G3(t, u, p) := p3 − u4

...

Gn−1(t, u, p) := pn−1 − un,

and, given F as in (1), define Gn : dom(Gn) ⊆ R × En × En → Rj by

Gn(t, u, p) := F (t, u1, . . . , un, p1),

where

dom(Gn) =
{

(t, u, p) ∈ R × En × En
∣∣ (t, u1, . . . , un, p1) ∈ dom(F )

}
.

Letting G : dom(Gn) ⊆ R × En ×En → Rn−1+j be defined by

G :=


G1

G2

G3
...
Gn

 ,

we see that x satisfies (2) if and only if y satisfies G(t, y(t), ẏ(t)) = 0.

Equations Resolved w.r.t. the Derivative

Consider the first-order initial-value problem (or IVP)
F (t, x, ẋ) = 0

x(t0) = x0

ẋ(t0) = p0,

(3)
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where F : dom(F ) ⊆ R × Rn × Rn → Rn , and x0, p0 are given elements of
Rn satisfying F (t0, x0, p0) = 0. The Implicit Function Theorem says that
typically the solutions (t, x, p) of the (algebraic) equation F (t, x, p) = 0 near
(t0, x0, p0) form an (n+ 1)-dimensional surface that can be parametrized by
(t, x). In other words, locally the equation F (t, x, p) = 0 is equivalent to an
equation of the form p = f(t, x) for some f : dom(f) ⊆ R × Rn → Rn with
(t0, x0) in the interior of dom(f). Using this f , (3) is locally equivalent to
the IVP {

ẋ = f(t, x)

x(t0) = x0.

Autonomous Equations

Let f : dom(f) ⊆ R × Rn → Rn . The ODE

ẋ = f(t, x) (4)

is autonomous if f doesn’t really depend on t, i.e., if dom(f) = R × Ω for
some Ω ⊆ Rn and there is a function g : Ω→ Rn such that f(t, u) = g(u) for
every t ∈ R and every u ∈ Ω.

Every nonautonomous ODE is actually equivalent to an autonomous
ODE. To see why this is so, given x : R → Rn , define y : R → Rn+1 by
y(t) = (t, x1(t), . . . , xn(t)), and given f : dom(f) ⊆ R × Rn → Rn , define a
new function f̃ : dom(f̃) ⊆ Rn+1 → Rn+1 by

f̃(p) =


1

f1(p1, (p2, . . . , pn+1))
...

fn(p1, (p2, . . . , pn+1))

 ,

where f = (f1, . . . , fn)T and

dom(f̃) =
{
p ∈ Rn+1

∣∣ (p1, (p2, . . . , pn+1)) ∈ dom(f)
}
.

Then x satisfies (4) if and only if y satisfies ẏ = f̃(y).
Because of the discussion above, we will focus our study on first-order

autonomous ODEs that are resolved w.r.t. the derivative. This decision
is not completely without loss of generality, because by converting other
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sorts of ODEs into an equivalent one of this form, we may be neglecting
some special structure that might be useful for us to consider. This trade-off
between abstractness and specificity is one that you will encounter (and have
probably already encountered) in other areas of mathematics. Sometimes,
when transforming the equation would involve too great a loss of information,
we’ll specifically study higher-order and/or nonautonomous equations.

Dynamical Systems

As we shall see, by placing conditions on the function f : Ω ⊆ Rn → Rn and
the point x0 ∈ Ω we can guarantee that the autonomous IVP{

ẋ = f(x)

x(0) = x0

(5)

has a solution defined on some interval I containing 0 in its interior, and this
solution will be unique (up to restriction or extension). Furthermore, it is
possible to “splice” together solutions of (5) in a natural way, and, in fact,
get solutions to IVPs with different initial times. These considerations lead
us to study a structure known as a dynamical system.

Given Ω ⊆ Rn , a continuous dynamical system (or a flow) on Ω is a
function ϕ : R × Ω→ Ω satisfying:

1. ϕ(0, x) = x for every x ∈ Ω;

2. ϕ(s, ϕ(t, x)) = ϕ(s+ t, x) for every x ∈ Ω and every s, t ∈ R;

3. ϕ is continuous.

If f and Ω are sufficiently “nice” we will be able to define a function ϕ :
R×Ω → Ω by letting ϕ(·, x0) be the unique solution of (5), and this definition
will make ϕ a dynamical system. Conversely, any continuous dynamical
system ϕ(t, x) that is differentiable w.r.t. t is generated by an IVP.
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Exercise 1 Suppose that:

• ϕ : R × Ω→ Ω is a continuous dynamical system;

• ∂ϕ(t, x)

∂t
exists for every t ∈ R and every x ∈ Ω;

• x0 ∈ Ω is given;

• y : R → Ω is defined by y(t) := ϕ(t, x0);

• f : Ω→ Ω is defined by f(p) :=
∂ϕ(s, p)

∂s

∣∣∣∣
s=0

.

Show that y solves the IVP {
ẏ = f(y)

y(0) = x0.

In this class (and Math 635) we will also study discrete dynamical systems.
Given Ω ⊆ Rn , a discrete dynamical system on Ω is a function ϕ : Z×Ω→ Ω
satisfying:

1. ϕ(0, x) = x for every x ∈ Ω;

2. ϕ(`, ϕ(m, x)) = ϕ(`+m, x) for every x ∈ Ω and every `,m ∈ Z;

3. ϕ is continuous.

There is a one-to-one correspondence between discrete dynamical systems
ϕ and homeomorphisms (continuous invertible functions) F : Ω → Ω, this
correspondence being given by ϕ(1, ·) = F . If we relax the requirement of
invertibility and take a (possibly noninvertible) continuous function F : Ω→
Ω and define ϕ : {0, 1, . . .} × Ω→ Ω by

ϕ(n, x) =

n copies︷ ︸︸ ︷
F (F (· · · (F (x)) · · · )),

then ϕ will almost meet the requirements to be a dynamical system, the
only exception being that property 2, known as the group property may
fail because ϕ(n, x) is not even defined for n < 0. We may still call this
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a dynamical system; if we’re being careful we may call it a semidynamical
system.

In a dynamical system, the set Ω is called the phase space. Dynamical
systems are used to describe the evolution of physical systems in which the
state of the system at some future time depends only on the initial state of
the system and on the elapsed time. As an example, Newtonian mechanics
permits us to view the earth-moon-sun system as a dynamical system, but
the phase space is not physical space R3 , but is instead an 18-dimensional
Euclidean space in which the coordinates of each point reflect the position
and momentum of each of the three objects. (Why isn’t a 9-dimensional
space, corresponding to the three spatial coordinates of the three objects,
sufficient?)
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Existence of Solutions
Lecture 2
Math 634

9/1/99

Approximate Solutions

Consider the IVP {
ẋ = f(t, x)

x(t0) = a,
(6)

where f : dom(f) ⊆ R×Rn → Rn is continuous, and (t0, a) ∈ dom(f) is con-
stant. The Fundamental Theorem of Calculus implies that (6) is equivalent
to the integral equation

x(t) = a+

∫ t

t0

f(s, x(s)) ds. (7)

How does one go about proving that (7) has a solution if, unlike the case
with so many IVPs studied in introductory courses, a formula for a solution
cannot be found? One idea is to construct a sequence of “approximate” so-
lutions, with the approximations becoming better and better, in some sense,
as we move along the sequence. If we can show that this sequence, or a
subsequence, converges to something, that limit might be an exact solution.

One way of constructing approximate solutions is Picard iteration. Here,
we plug an initial guess in for x on the right-hand side of (7), take the
resulting value of the right-hand side and plug that in for x again, etc. More
precisely, we can set x1(t) := a and recursively define xk+1 in terms of xk for
k > 1 by

xk+1(t) := a+

∫ t

t0

f(s, xk(s)) ds.

Note that if, for some k, xk = xk+1 then we have found a solution.
Another approach is to construct a Tonelli sequence. For each k ∈ N, let

xk(t) be defined by

xk(t) =


a, if t0 ≤ t ≤ t0 + 1/k

a+

∫ t−1/k

t0

f(s, xk(s)) dx, if t ≥ t0 + 1/k
(8)
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for t ≥ t0, and define xk(t) similarly for t ≤ t0.
We will use the Tonelli sequence to show that (7) (and therefore (6)) has

a solution, and will use Picard iterates to show that, under an additional
hypothesis on f , the solution of (7) is unique.

Existence

For the first result, we will need the following definitions and theorems.

Definition A sequence of functions gk : U ⊆ R → Rn is uniformly bounded if
there exists M > 0 such that |gk(t)| ≤M for every t ∈ U and every k ∈ N .

Definition A sequence of functions gk : U ⊆ R → Rn is uniformly equicontinu-
ous if for every ε > 0 there exists a number δ > 0 such that |gk(t1)−gk(t2)| <
ε for every k ∈ N and every t1, t2 ∈ U satisfying |t1 − t2| < δ.

Definition A sequence of functions gk : U ⊆ R → Rn converges uniformly to
a function g : U ⊆ R → Rn if for every ε > 0 there exists a number N ∈ N
such that if k ≥ N and t ∈ U then |gk(t)− g(t)| < ε.

Definition If a ∈ Rn and β > 0, then the open ball of radius β centered at a,
denoted B(a, β), is the set{

x ∈ Rn
∣∣ |x− a| < β

}
.

Theorem (Arzela-Ascoli) Every uniformly bounded, uniformly equicontinuous
sequence of functions gk : U ⊆ R → Rn has a subsequence that converges
uniformly on compact (closed and bounded) sets.

Theorem (Uniform Convergence) If a sequence of continuous functions hk :
[b, c]→ Rn converges uniformly to h : [b, c]→ Rn , then

lim
k↑∞

∫ c

b

hk(s) ds =

∫ c

b

h(s) ds.

We are now in a position to state and prove the Cauchy-Peano Existence
Theorem.

Theorem (Cauchy-Peano) Suppose f : [t0−α, t0 +α]×B(a, β)→ Rn is contin-
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uous and bounded by M > 0. Then (7) has a solution defined on [t0−b, t0+b],
where b = min{α, β/M}.

Proof. For simplicity, we will only consider t ∈ [t0, t0 + b]. For each k ∈ N ,
let xk : [t0, t0 + b]→ Rn be defined by (8). We will show that (xk) converges
to a solution of (6).

Step 1: Each xk is well-defined.
Fix k ∈ N . Note that the point (t0, a) is in the interior of a set on which
f is well-defined. Because of the formula for xk(t) and the fact that it is
recursively defined on intervals of width 1/k moving steadily to the right, if
xk failed to be defined on [t0, t0 + b] then there would be t1 ∈ [t0 + 1/k, t0 + b)
for which |xk(t1) − a| = β. Pick the first such t1. Using (8) and the bound
on f , we see that

|xk(t1)− a| =
∣∣∣∣∣
∫ t1−1/k

t0

f(s, xk(s)) ds

∣∣∣∣∣ ≤
∫ t1−1/k

t0

|f(s, xk(s))| ds

≤
∫ t1−1/k

t0

M ds = M(t1 − t0 − 1/k) < M(b − 1/k)

≤ β −M/k < β = |xk(t1)− a|,

which is a contradiction.
Step 2: (xk) is uniformly bounded.

Calculating as above, the formula (8) implies that

|xk(t)| ≤ |a|+
∫ b+t0−1/k

t0

|f(s, xk(s))| dx ≤ |a|+ (b− 1/k)M ≤ |a|+ β.

Step 3: (xk) is uniformly equicontinuous.
If t1, t2 ≥ t0 + 1/k, then

|xk(t1)− xk(t2)| =
∣∣∣∣∫ t2

t1

f(s, xk(s)) ds

∣∣∣∣ ≤ ∣∣∣∣∫ t2

t1

|f(s, xk(s))| ds
∣∣∣∣ ≤M |t2 − t1|.

Since xk is constant on [t0, t0 + 1/k] and continuous at t0 + 1/k, the estimate
|xk(t1)− xk(t2)| ≤ M |t2 − t1| holds for every t1, t2 ∈ [t0, t0 + b]. Thus, given
ε > 0, we can set δ = ε/M and see that uniform equicontinuity holds.

Step 4: Some subsequence (xk`) of (xk) converges uniformly, say, to x on
[t0, t0 + b].
This follows directly from the previous steps and the Arzela-Ascoli Theorem.
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Step 5: The sequence (f(·, xk`(·))) converges uniformly to f(·, x(·)) on
[t0, t0 + b].
Let ε > 0 be given. Since f is continuous on a compact set, it is uniformly
continuous. Thus, we can pick δ > 0 such that |f(s, p)−f(s, q)| < ε whenever
|p − q| < δ. Since (xk`) converges uniformly to x, we can pick N ∈ N such
that |xk`(s)− x(s)| < δ whenever s ∈ [t0, t0 + b] and ` ≥ N . If ` ≥ N , then
|f(s, xk`(s))− f(s, x(s))| < ε.

Step 6: The function x is a solution of (6).
Fix t ∈ [t0, t0 + b]. If t = t0, then clearly (7) holds. If t > t0, then for `
sufficiently large

xk`(t) = a +

∫ t

t0

f(s, xk`(s)) ds−
∫ t

t−1/k`

f(s, xk`(s)) ds. (9)

Obviously, the left-hand side of (9) converges to x(t) as ` ↑ ∞. By the
Uniform Convergence Theorem and the uniform convergence of (f(·, xk`(·))),
the first integral on the right-hand side of (9) converges to∫ t

t0

f(s, x(s)) ds,

and by the boundedness of f the second integral converges to 0. Hence,
taking the limit of (9) as ` ↑ ∞ we see that x satisfies (7), and therefore (6),
on [t0, t0 + b].

Note that this theorem guarantees existence, but not necessarily unique-
ness, of a solution of (6).

Exercise 2 How many solutions of the IVP{
ẋ = 2

√
|x|

x(0) = 0,

on the interval (−∞,∞) are there? Give formulas for all of them.
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Uniqueness of Solutions
Lecture 3
Math 634

9/3/99

Uniqueness

If more than continuity of f is assumed, it may be possible to prove that{
ẋ = f(t, x)

x(t0) = a,
(10)

has a unique solution. In particular Lipschitz continuity of f(t, ·) is sufficient.
(Recall that g : dom(g) ⊆ Rn → Rn is Lipschitz continuous if there exists
a constant L > 0 such that |g(x1) − g(x2)| ≤ L|x1 − x2| for every x1, x2 ∈
dom(g); L is called a Lipschitz constant for g.)

One approach to uniqueness is developed in the following exercise, which
uses what are know as Gronwall inequalities.
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Exercise 3 Assume that the conditions of the Cauchy-Peano Theorem hold
and that, in addition, f(t, ·) is Lipschitz continuous with Lipschitz constant
L for every t. Show that the solution of (10) is unique on [t0, t0 + b] by
completing the following steps. (The solution can similarly be shown to be
unique on [t0 − b, t0], but we won’t bother doing that here.)

(a) If x1 and x2 are each solutions of (10) on [t0, t0+b] and U : [t0, t0+b]→
R is defined by U(t) := |x1(t)− x2(t)|, show that

U(t) ≤ L

∫ t

t0

U(s) ds (11)

for every t ∈ [t0, t0 + b].

(b) Pick ε > 0 and let

V (t) := ε+ L

∫ t

t0

U(s) ds.

Show that

V ′(t) ≤ LV (t) (12)

for every t ∈ [t0, t0 + b], and that V (t0) = ε.

(c) Dividing both sides of (12) by V (t) and integrating from t = t0 to
t = T , show that V (T ) ≤ ε exp[L(T − t0)].

(d) By using (11) and letting ε ↓ 0, show that U(T ) = 0 for all T ∈
[t0, t0 + b], so x1 = x2.

We will prove an existence-uniqueness theorem that combines the results
of the Cauchy-Peano Theorem and Exercise 3. The reason for this apparently
redundant effort is that the concepts and techniques introduced in this proof
will be useful throughout this course.

First, we review some definitions and results pertaining to metric spaces.

Definition A metric space is a set X together with a function d : X ×X → R
satisfying:
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1. d(x, y) ≥ 0 for every x, y ∈ X , with equality if and only if x = y;

2. d(x, y) = d(y, x) for every x, y ∈ X ;

3. d(x, y) + d(y, z) ≥ d(x, z) for every x, y, z ∈ X .

Definition A normed vector space is a vector space together with a function
‖ · ‖ : X → R satisfying:

1. ‖x‖ ≥ 0 for every x ∈ X , with equality if and only if x = 0;

2. ‖λx‖ = |λ|‖x‖ for every x ∈ X and every scalar λ;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ X .

Every normed vector space is a metric space with metric d(x, y) = ‖x−y‖.

Definition An inner product space is a vector space together with a function
〈·, ·〉 : X ×X → R satisfying:

1. 〈x, x〉 ≥ 0 for every x ∈ X , with equality if and only if x = 0;

2. 〈x, y〉 = 〈y, x〉 for every x, y ∈ X ;

3. 〈λx+µy, z〉 = λ〈x, z〉+µ〈y, z〉 for every x, y, z ∈ X and all scalars µ, λ.

Every inner product space is a normed vector space with norm ‖x‖ =√
〈x, x〉.

Definition A sequence (xn) in a metric space X is said to be (a) Cauchy
(sequence) if for every ε > 0, there exists N ∈ N such that d(xm, xn) < ε
whenever m,n ≥ N .

Definition A sequence (xn) in a metric space X converges to x if for every
ε > 0, there exists N ∈ N such that d(xn, x) < ε whenever n ≥ N .

Definition A metric space is said to be complete if every Cauchy sequence in
X converges (in X ). A complete normed vector space is called a Banach
space. A complete inner product space is called a Hilbert space.
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Definition A function f : X → Y from a metric space to a metric space is said
to be Lipschitz continuous if there exists L ∈ R such that d(f(u), f(v)) ≤
Ld(u, v) for every u, v ∈ X . We call L a Lipschitz constant, and write Lip(f)
for the smallest Lipschitz constant that works.

Definition A contraction is a Lipschitz continuous function from a metric
space to itself that has Lipschitz constant less than 1.

Definition A fixed point of a function T : X → X is a point x ∈ X such that
T (x) = x.

Theorem (Contraction Mapping Principle) If X is a complete metric space and
T : X → X is a contraction, then T has a unique fixed point in X .

Proof. Pick λ < 1 such that d(T (x), T (y)) ≤ λd(x, y) for every x, y ∈ X .
Pick any point x0 ∈ X . Define a sequence (xk) by the recursive formula

xk+1 = T (xk). (13)

If k ≥ ` ≥ N , then

d(xk, x`) ≤ d(xk, xk−1) + d(xk−1, xk−2) + · · ·+ d(x`+1, x`)

≤ λd(xk−1, xk−2) + λd(xk−2, xk−3) + · · ·+ λd(x`, x`−1)

...

≤ λk−1d(x1, x0) + λk−2d(x1, x0) + · · ·+ λ`d(x1, x0)

≤ λN

1− λd(x1, x0).

Hence, (xk) is a Cauchy sequence. Since X is complete, (xk) converges to
some x ∈ X . By letting k ↑ ∞ in (13) and using the continuity of T , we see
that x = T (x), so x is a fixed point of T .

If there were another fixed point y of T , then d(x, y) = d(T (x), T (y)) ≤
λd(x, y), so d(x, y) = 0, which means x = y. This shows uniqueness of the
fixed point.
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Picard-Lindelöf Theorem
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Theorem The space C([a, b]) of continuous functions from [a, b] to Rn equipped
with the norm

‖f‖∞ := sup
{
|f(x)|

∣∣ x ∈ [a, b]
}

is a Banach space.

Definition Two different norms ‖ · ‖1 and ‖ · ‖2 on a vector space X are
equivalent if there exist constants m,M > 0 such that

m‖x‖1 ≤ ‖x‖2 ≤M‖x‖1

for every x ∈ X .

Theorem If (X , ‖ · ‖1) is a Banach space and ‖ · ‖2 is equivalent to ‖ · ‖1 on
X , then (X , ‖ · ‖2) is a Banach space.

Theorem A closed subspace of a complete metric space is a complete metric
space.

We are now in a position to state and prove the Picard-Lindelöf Existence-
Uniqueness Theorem. Recall that we are dealing with the IVP{

ẋ = f(t, x)

x(t0) = a.
(14)

Theorem (Picard-Lindelöf) Suppose f : [t0 − α, t0 + α] × B(a, β) → Rn is
continuous and bounded by M . Suppose, furthermore, that f(t, ·) is Lipschitz
continuous with Lipschitz constant L for every t ∈ [t0−α, t0 +α]. Then (14)
has a unique solution defined on [t0 − b, t0 + b], where b = min{α, β/M}.

Proof. Let X be the set of continuous functions from [t0−b, t0 +b] to B(a, β).
The norm

‖g‖w := sup
{
e−2L|t−t0||g(t)|

∣∣ t ∈ [t0 − b, t0 + b]
}
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is equivalent to the standard supremum norm ‖ · ‖∞ on C([t0 − b, t0 + b]), so
this vector space is complete under this weighted norm. The set X endowed
with this norm/metric is a closed subset of this complete Banach space, so X
equipped with the metric d(x1, x2) := ‖x1−x2‖w is a complete metric space.

Given x ∈ X , define T (x) to be the function on [t0 − b, t0 + b] given by
the formula

T (x)(t) = a+

∫ t

t0

f(s, x(s)) dx.

Step 1: If x ∈ X then T (x) makes sense.
This should be obvious.

Step 2: If x ∈ X then T (x) ∈ X .
If x ∈ X , then it is clear that T (x) is continuous (and, in fact, differentiable).
Furthermore, for t ∈ [t0 − b, t0 + b]

|T (x)(t)− a| =
∣∣∣∣∫ t

t0

f(s, x(s)) ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

t0

|f(s, x(s))| ds
∣∣∣∣ ≤Mb ≤ β,

so T (x)(t) ∈ B(a, β). Hence, T (x) ∈ X .
Step 3: T is a contraction on X .

Let x, y ∈ X , and note that ‖T (x)− T (y)‖w is

sup

{
e−2L|t−t0|

∣∣∣∣∫ t

t0

[f(s, x(s))− f(s, y(s))] ds

∣∣∣∣
∣∣∣∣∣ t ∈ [t0 − b, t0 + b]

}
.

For a fixed t ∈ [t0 − b, t0 + b],

e−2L|t−t0|
∣∣∣∣∫ t

t0

[f(s, x(s))− f(s, y(s))] ds

∣∣∣∣
≤ e−2L|t−t0|

∣∣∣∣∫ t

t0

|f(s, x(s))− f(s, y(s))| ds
∣∣∣∣

≤ e−2L|t−t0|
∣∣∣∣∫ t

t0

L|x(s)− y(s)| ds
∣∣∣∣

≤ Le−2L|t−t0|
∣∣∣∣∫ t

t0

‖x− y‖we2L|s−t0| ds

∣∣∣∣
=
‖x− y‖w

2

(
1− e−2L|t−t0|

)
≤ 1

2
‖x− y‖w.

17



Taking the supremum over all t ∈ [t0−b, t0+b], we find that T is a contraction
(with λ = 1/2).

By the contraction mapping principle, we therefore know that T has a
unique fixed point in X . This means that (14) has a unique solution in X
(which is the only place a solution could be).
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Intervals of Existence
Lecture 5
Math 634
9/10/99

Maximal Interval of Existence

We begin our discussion with some definitions and an important theorem of
real analysis.

Definition Given f : D ⊆ R×Rn → Rn , we say that f(t, x) is locally Lipschitz
continuous w.r.t. x on D if for each (t0, a) ∈ D there is a number L and
a product set I × U ⊆ D containing (t0, a) in its interior such that the
restriction of f(t, ·) to U is Lipschitz continuous with Lipschitz constant L
for every t ∈ I.

Definition A subset K of a topological space is compact if whenever K is con-
tained in the union of a collection of open sets, there is a finite subcollection
of that collection whose union also contains K. The original collection is
called a cover of K, and the finite subcollection is called a finite subcover of
the original cover.

Theorem (Heine-Borel) A subset of Rn is compact if and only if it is closed
and bounded.

Now, suppose that D is an open subset of R × Rn , (t0, a) ∈ D, and
f : D → Rn is locally Lipschitz continuous w.r.t. x on D. Then the Picard-
Lindelöf Theorem indicates that the IVP{

ẋ = f(t, x)

x(t0) = a
(15)

has a solution existing on some time interval containing t0 in its interior and
that the solution is unique on that interval. Let’s say that an interval of
existence is an interval containing t0 on which a solution of (15) exists. The
following theorem indicates how large an interval of existence may be.

Theorem (Maximal Interval of Existence) The IVP (15) has a maximal inter-
val of existence, and it is of the form (ω−, ω+), with ω− ∈ [−∞,∞) and
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ω+ ∈ (−∞,∞]. There is a unique solution x(t) of (15) on (ω−, ω+), and
(t, x(t)) leaves every compact subset K of D as t ↓ ω− and as t ↑ ω+.

Proof.
Step 1: If I1 and I2 are open intervals of existence with corresponding

solutions x1 and x2, then x1 and x2 agree on I1 ∩ I2.
Let I = I1∩I2, and let I∗ be the largest interval containing t0 and contained
in I on which x1 and x2 agree. By the Picard-Lindelöf Theorem, I∗ is
nonempty. If I∗ 6= I, then I∗ has an endpoint t1 in I. By continuity,
x1(t1) = x2(t1) =: a1. The Picard-Lindelöf Theorem implies that{

ẋ = f(t, x)

x(t1) = a1

(16)

has a local solution that is unique. But restrictions of x1 and x2 near t1 each
provide a solution to (16), so x1 and x2 must agree in a neighborhood of t1.
This contradiction tells us that I∗ = I.

Now, let (ω−, ω+) be the union of all open intervals of existence.
Step 2: (ω−, ω+) is an interval of existence.

Given t ∈ (ω−, ω+), pick an open interval of existence Ĩ that contains t, and
let x(t) = x̃(t), where x̃ is a solution to (15) on Ĩ. Because of step 1, this
determines a well-defined function x : (ω−, ω+)→ Rn ; clearly, it solves (15).

Step 3: (ω−, ω+) is the maximal interval of existence.
An extension argument similar to the one in Step 1 shows that every interval
of existence is contained in an open interval of existence. Every open interval
of existence is, in turn, a subset of (ω−, ω+).

Step 4: x is the only solution of (15) on (ω−, ω+).
This is a special case of Step 1.

Step 5: (t, x(t)) leaves every compact subset K ⊂ D as t ↓ ω− and as
t ↑ ω+.
We only treat what happens as t ↑ ω+; the other case is similar.

Let a compact subset K of D be given. For each point (t, a) ∈ K, pick
numbers α(t, a) > 0 and β(t, a) > 0 such that

[t− 2α(t, a), t+ 2α(t, a)]× B(a, 2β(t, a)) ⊂ D.

Note that the collection of sets{
(t− α(t, a), t+ α(t, a))× B(a, β(t, a))

∣∣ (t, a) ∈ K
}
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is a cover of K. Since K is compact, a finite subcollection, say{
(ti − α(ti, ai), ti + α(ti, ai))× B(ai, β(ti, ai))

}m
i=1
,

covers K. Let

K′ :=
m⋃
i=1

(
[ti − 2α(ti, ai), ti + α(ti, ai)]× B(ai, 2β(ti, ai))

)
,

let

α̃ := min
{
α(ti, ai)

}m
i=1
,

and let

β̃ := min
{
β(ti, xi)

}m
i=1
.

Since K′ is a compact subset of D, there is a constant M > 0 such that f is
bounded by M on K′. By the triangle inequality,

[t0 − α̃, t0 + α̃]× B(a, β̃) ⊆ K′,

for every (t0, a) ∈ K, so f is bounded by M on each such product set.
According to the Picard-Lindelöf Theorem, this means that for every (t0, a) ∈
K a solution to ẋ = f(t, x) starting at (t0, a) exists for at least min{α̃, β̃/M}
units of time. Hence, x(t) /∈ K for t > ω+ −min{α̃, β̃/M}.

Corollary If D′ is a bounded set and D = (c, d)× D′ (with c ∈ [−∞,∞) and
d ∈ (−∞,∞]), then either ω+ = d or x(t) → ∂D′ as t ↑ ω+, and either
ω− = c or x(t)→ ∂D′ as t ↓ ω−.

Corollary If D = (c, d) × Rn (with c ∈ [−∞,∞) and d ∈ (−∞,∞]), then
either ω+ = d or |x(t)| ↑ ∞ as t ↑ ω+, and either ω− = c or |x(t)| ↑ ∞ as
t ↓ ω−.

If we’re dealing with an autonomous equation on a bounded set, then the
first corollary applies to tell us that the only way a solution could fail to exist
for all time is for it to approach the boundary of the spatial domain. (Note
that this is not the same as saying that x(t) converges to a particular point
on the boundary; can you give a relevant example?) The second corollary
says that autonomous equations on all of Rn have solutions that exist until
they become unbounded.
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Global Existence

For the solution set of the autonomous ODE ẋ = f(x) to be representable
by a dynamical system, it is necessary for solutions to exist for all time. As
the discussion above illustrates, this is not always the case. When solutions
do die out in finite time by hitting the boundary of the phase space Ω or by
going off to infinity, it may be possible to change the vector field f to a vector
field f̃ that points in the same direction as the original but has solutions that
exist for all time.

For example, if Ω = Rn , then we could consider the modified equation

ẋ =
f(x)

1 + |f(x)| .

Clearly, |ẋ| < 1, so it is impossible for |x| to approach infinity in finite time.
If, on the other hand, Ω 6= Rn , then consider the modified equation

ẋ =
f(x)

1 + |f(x)| ·
d(x,Rn \ Ω)

1 + d(x,Rn \ Ω)
,

where d(x,Rn \ Ω) is the distance from x to the complement of Ω. It is not
hard to show that it is impossible for a solution x of this equation to become
unbounded or to approach the complement of Ω in finite time, so, again, we
have global existence.

It may or may not seem obvious that if two vector fields point in the same
direction at each point, then the solution curves of the corresponding ODEs
in phase space match up. In the following exercise, you are asked to prove
that this is true.
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Exercise 4 Suppose that Ω is a subset of Rn , that f : Ω→ Rn and g : Ω→
Rn are (continuous) vector fields, and that there is a continuous function
h : Ω→ (0,∞) such that g(u) = h(u)f(u) for every u ∈ Ω. If x is the only
solution of {

ẋ = f(x)

x(0) = a

(defined on the maximal interval of existence) and y is the only solution of{
ẏ = g(y)

y(0) = a,

(defined on the maximal interval of existence), show that there is an in-
creasing function j : dom(y) → dom(x) such that y(t) = x(j(t)) for every
t ∈ dom(y).

23



Dependence on Parameters
Lecture 6
Math 634
9/13/99

Parameters vs. Initial Conditions

Consider the IVP {
ẋ = f(t, x)

x(t0) = a,
(17)

and the paramterized IVP {
ẋ = f(t, x, µ)

x(t0) = a,
(18)

where µ ∈ Rk . We are interested in studying how the solution of (17) de-
pends on the initial condition a and how the solution of (18) depends on the
parameter µ. In a sense, these two questions are equivalent. For example, if
x solves (17) and we let x̃ := x− a and f̃(t, x̃, a) := f(t, x̃+ a), then x̃ solves{

˙̃x = f̃(t, x̃, a)

x̃(t0) = 0,

so a appears as a parameter rather than an initial condition. If, on the other
hand, x solves (18), and we let x̃ := (x, µ) and f̃(t, x̃) := (f(t, x, µ), 0), then
x̃ solves {

˙̃x = f̃(t, x̃)

x̃(t0) = (a, µ),

so µ appears as part of the initial condition, rather than as a parameter in
the ODE.

We will concentrate on (18).

Continuous Dependence

The following result can be proved by an approach like that outlined in
Exercise 3.
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Theorem (Grownwall Inequality) Suppose that X(t) is a nonnegative, contin-
uous, real-valued function on [t0, T ] and that there are constants C,K > 0
such that

X(t) ≤ C +K

∫ t

t0

X(s) ds

for every t ∈ [t0, T ]. Then

X(t) ≤ CeK(t−t0)

for every t ∈ [t0, T ].

Using the Grownwall inequality, we can prove that the solution of (18)
depends continuously on µ.

Theorem (Continuous Dependence) Suppose

f : [t0 − α, t0 + α]× Ω1 × Ω2 ⊆ R × Rn × Rk → Rn

is continuous. Suppose, furthermore, that f(t, ·, µ) is Lipschitz continuous
with Lipschitz constant L1 > 0 for every (t, µ) ∈ [t0 − α, t0 + α] × Ω2 and
f(t, x, ·) is Lipschitz continuous with Lipschitz constant L2 > 0 for every
(t, x) ∈ [t0 − α, t0 + α]× Ω1. If xi : [t0 − α, t0 + α]→ Rn (i = 1, 2) satisfy{

ẋi = f(t, xi, µi)

xi(t0) = a,

then

|x1(t)− x2(t)| ≤ L2

L1

|µ1 − µ2|(eL1|t−t0| − 1) (19)

for t ∈ [t0 − α, t0 + α].

This theorem shows continuous dependence on parameters if, in addi-
tion to the hypotheses of the Picard-Lindelöf Theorem, the right-hand side
of the equation is assumed to be Lipschitz continuous with respect to the
parameter (on finite time intervals). The connection between (17) and (18)
shows that the hypotheses of the Picard-Lindelöf Theorem are sufficient to
guarantee continuous dependence on initial conditions. Note the exponential
dependence of the modulus of continuity on |t− t0|.
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Proof. For simplicity, we only consider t ≥ t0. Note that

|x1(t)− x2(t)| =
∣∣∣∣∫ t

t0

[f(s, x1(s), µ1)− f(s, x2(s), µ2] ds

∣∣∣∣
≤
∫ t

t0

|f(s, x1(s), µ1)− f(s, x2(s), µ2)| ds

≤
∫ t

t0

[|f(s, x1(s), µ1)− f(s, x1(s), µ2)|+ |f(s, x1(s), µ2)− f(s, x2(s), µ2)|] ds

≤
∫ t

t0

[L2|µ1 − µ2|+ L1|x1(s)− x2(s)|] ds

Let X(t) = L2|µ1 − µ2|+ L1|x1(t)− x2(t)|. Then

X(t) ≤ L2|µ1 − µ2|+ L1

∫ t

t0

X(s) ds,

so by the Gronwall Inequality X(t) ≤ L2|µ1 − µ2|eL1(t−t0). This means that
(19) holds.

Exercise 5 Suppose that f : R × R → R and g : R × R → R are continuous
and are each Lipschitz continuous with respect to their second variable.
Suppose, also, that x is a global solution to{

ẋ = f(t, x)

x(t0) = a,

and y is a global solution to {
ẏ = g(t, y)

y(t0) = b.

(a) If f(t, p) < g(t, p) for every (t, p) ∈ R × R and a < b, show that
x(t) < y(t) for every t ≥ t0.

(b) If f(t, p) ≤ g(t, p) for every (t, p) ∈ R × R and a ≤ b, show that
x(t) ≤ y(t) for every t ≥ t0. (Hint: You may want to use the results
of part (a) along with a limiting argument.)
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Differentiable Dependence

Theorem (Differentiable Dependence) Suppose f : R × R × R → R is a con-
tinuous function and is continuously differentiable with respect to x and µ.
Then the solution x(·, µ) of {

ẋ = f(t, x, µ)

x(t0) = a
(20)

is differentiable with respect to µ, and y = xµ := ∂x/∂µ satisfies{
ẏ = fx(t, x(t, µ), µ)y + fµ(t, x(t, µ), µ)

y(t0) = 0.
(21)

That xµ, if it exists, should satisfy the IVP (21) is not terribly surprising;
(21) can be derived (formally) by differentiating (20) with respect to µ. The
real difficulty is showing that xµ exists. The key to the proof is to use the
fact that (21) has a solution y and then to use the Gronwall inequality to
show that difference quotients for xµ converge to y.

Proof. Given µ, it is not hard to see that the right-hand side of the ODE in
(21) is continuous in t and y and is locally Lipschitz continuous with respect
to y, so by the Picard-Lindelöf Theorem we know that (21) has a unique
solution y(·, µ). Let

w(t, µ,∆µ) :=
x(t, µ+ ∆µ)− x(t, µ)

∆µ
.

We want to show that w(t, µ,∆µ)→ y(t, µ) as ∆µ→ 0.
Let z(t, µ,∆µ) := w(t, µ,∆µ)− y(t, µ). Then

dz

dt
(t, µ,∆µ) =

dw

dt
(t, µ,∆µ)− fx(t, x(t, µ), µ)y(t, µ)− fµ(t, x(t, µ), µ),

and

dw

dt
(t, µ,∆µ) =

f(t, x(t, µ+ ∆µ), µ+ ∆µ)− f(t, x(t, µ), µ)

∆µ

=
f(t, x(t, µ+ ∆µ), µ+ ∆µ)− f(t, x(t, µ), µ+ ∆µ)

∆µ

+
f(t, x(t, µ), µ+ ∆µ)− f(t, x(t, µ), µ)

∆µ

= fx(t, x(t, µ) + θ1∆x, µ + ∆µ)w(t, µ,∆µ) + fµ(t, x(t, µ), µ+ θ2∆µ),
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for some θ1, θ2 ∈ [0, 1] (by the Mean Value Theorem), where

∆x := x(t, µ+ ∆µ)− x(t, µ).

Hence,

|dz
dt

(t, µ,∆µ)| ≤ |fµ(t, x(t, µ), µ+ θ2∆µ)− fµ(t, x(t, µ), µ)|

+ |fx(t, x(t, µ) + θ1∆x, µ + ∆µ)| · |z(t, µ,∆µ)|
+ |fx(t, x(t, µ) + θ1∆x, µ + ∆µ)− fx(t, x(t, µ), µ+ ∆µ)| · |y(t, µ)|
+ |fx(t, x(t, µ), µ+ ∆µ)− fx(t, x(t, µ), µ)| · |y(t, µ)|
≤ p(t, µ,∆µ) + (|fx(t, x(t, µ), µ)|+ p(t, µ,∆µ))|z(t, µ,∆µ)|,

where p(t, µ,∆µ)→ 0 as ∆µ→ 0, uniformly on bounded sets.
Letting X(t) = ε+ (K + ε)|z|, we see that if

|fx(t, x(t, µ), µ)| ≤ K (22)

and

|p(t, µ,∆µ)| < ε, (23)

then

|z(t)| ≤
∫ t

t0

∣∣∣∣dzds
∣∣∣∣ ds ≤ ∫ t

t0

X(s) ds

so

X(t) ≤ ε+ (K + ε)

∫ t

t0

X(s) ds,

which gives X(t) ≤ εe(K+ε)(t−t0), by Gronwall’s inequality. This, in turn,
gives

|z| ≤ ε(e(K+ε)(t−t0) − 1)

K + ε
.

Given t ≥ t0, pick K so large that (22) holds. As ∆µ→ 0, we can take ε
arbitrarily small and still have (23) hold, to see that

lim
∆µ→0

z(t, µ,∆µ) = 0.
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Constant Coefficient Linear Equations
Lecture 7
Math 634
9/15/99

Linear Equations

Definition Given

f : R × Rn → Rn ,

we say that the first-order ODE

ẋ = f(t, x) (24)

is linear if every linear combination of solutions of (24) is a solution of (24).

Definition Given two vector spaces X and Y , L(X ,Y) is the space of linear
maps from X to Y .

Exercise 6 Show that if (24) is linear (and f is continuous) then there
is a function A : R → L(Rn ,Rn) such that f(t, p) = A(t)p, for every
(t, p) ∈ R × Rn .

ODEs of the form ẋ = A(t)x+ g(t) are also often called linear, although
they don’t satisfy the definition given above. These are called inhomoge-
neous; ODEs satisfying the previous definition are called homogeneous.

Constant Coefficients and the Matrix Exponential

Here we will study the autonomous IVP{
ẋ = Ax

x(0) = x0,
(25)

where A ∈ L(Rn ,Rn), or equivalently A is a (constant) n× n matrix.
If n = 1, then we’re dealing with ẋ = ax. The solution is x(t) = etax0.

When n > 1, we will show that we can similarly define etA in a natural way,
and the solution of (25) will be given by x(t) = etAx0.
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Given B ∈ L(Rn ,Rn), we define its matrix exponential

eB :=

∞∑
k=0

Bk

k!
.

We will show that this series converges, but first we specify a norm on
L(Rn ,Rn).

Definition The operator norm ‖B‖ of an element B ∈ L(Rn ,Rn) is defined
by

‖B‖ = sup
x 6=0

|Bx|
|x| = sup

|x|=1

|Bx|.

L(Rn ,Rn) is a Banach space under the operator norm. Thus, to show
that the series for eB converges, it suffices to show that∥∥∥∥∥

m∑
k=`

Bk

k!

∥∥∥∥∥
can be made arbitrarily small by taking m ≥ ` ≥ N for N sufficiently large.

Suppose B1, B2 ∈ L(Rn ,Rn) and B2 does not map everything to zero.
Then

‖B1B2‖ = sup
x 6=0

|B1B2x|
|x| = sup

B2x 6=0,x 6=0

|B1B2x|
|B2x|

· |B2x|
|x|

≤
(

sup
y 6=0

|B1y|
|y|

)(
sup
x 6=0

|B2x|
|x|

)
= ‖B1‖ · ‖B2‖.

If B2 does map everything to zero, then ‖B2‖ = ‖B1B2‖ = 0, so ‖B1B2‖ ≤
‖B1‖ · ‖B2‖, obviously. Thus, the operator norm is submultiplicative. Using
this property, we have∥∥∥∥∥

m∑
k=`

Bk

k!

∥∥∥∥∥ ≤
m∑
k=`

∥∥∥∥Bk

k!

∥∥∥∥ ≤ m∑
k=`

‖B‖k
k!

.

Since the regular exponential series (for real arguments) has an infinite radius
of convergence, we know that the last quantity in this estimate goes to zero
as `,m ↑ ∞.
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Thus, eB makes sense, and, in particular, etA makes sense for each fixed
t ∈ R and each A ∈ L(Rn ,Rn). But does x(t) := etAx0 solve (25)? To check
that, we’ll need the following important property.

Lemma If B1, B2 ∈ L(Rn ,Rn) and B1B2 = B2B1, then eB1+B2 = eB1eB2.

Proof. Using commutativity, we have

eB1eB2 =

( ∞∑
j=0

Bj
1

j!

)( ∞∑
k=0

Bk
2

k!

)
=
∞∑
j=0

∞∑
k=0

Bj
1B

k
2

j!k!
=
∞∑
i=0

∑
j+k=i

Bj
1B

k
2

j!k!

=
∞∑
i=0

i∑
j=0

Bj
1B

(i−j)
2

j!(i− j)! =
∞∑
i=0

i∑
j=0

(
i
j

)
Bj

1B
(i−j)
2

i!

=

∞∑
i=0

(B1 +B2)i

i!
= e(B1+B2).

Now, if x : R → Rn is defined by x(t) := etAx0, then

d

dt
x(t) = lim

h→0

x(t + h)− x(t)

h
= lim

h→0

e(t+h)Ax0 − etAx0

h

=

(
lim
h→0

e(t+h)A − etA
h

)
x0 =

(
lim
h→0

ehA − I
h

)
etAx0

=

(
lim
h→0

∞∑
k=1

hk−1Ak

k!

)
etAx0 = AetAx0 = Ax(t),

so x(t) = etAx0 really does solve (25).
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Understanding the Matrix Exponential
Lecture 8
Math 634
9/17/99

Transformations

Now that we have a representation of the solution of constant-coefficient
initial-value problems, we should ask ourselves: “What good is it?” Does the
power series formula for the matrix exponential provide an efficient means
for calculating exact solutions? Not usually. Is it an efficient way to compute
accurate numerical approximations to the matrix exponential? Not according
to Matrix Computations by Golub and Van Loan. Does it provide insight
into how solutions behave? It is not clear that it does. There are, however,
transformations that may help us handle these problems.

Suppose thatB,P ∈ L(Rn ,Rn) are related by a similarity transformation;
i.e., B = QPQ−1 for some invertible Q. Calculating, we find that

eB =

∞∑
k=0

Bk

k!
=

∞∑
k=0

(QPQ−1)k

k!
=

∞∑
k=0

QP kQ−1

k!

= Q

( ∞∑
k=0

P k

k!

)
Q−1 = QePQ−1.

It would be nice if, given B, we could choose Q so that P were a diagonal
matrix, since

ediag{p1,p2,... ,pn} = diag{ep1 , ep2, . . . , epn}.

Unfortunately, this cannot always be done. Over the next few lectures, we
will show that what can be done, in general, is to pick Q so that P = S+N ,
where S is a semisimple matrix with a fairly simple form, N is a nilpotent
matrix of a fairly simple form, and S and N commute. (Recall that a matrix
is semisimple if it is diagonalizable over the complex numbers and that a
matrix is nilpotent if some power of the matrix is 0.) The forms of S and N
are simple enough that we can calculate their exponentials fairly easily, and
then we can multiply them to get the exponential of S +N .

We will spend a significant amount of time carrying out the project de-
scribed in the previous paragraph, even though it is linear algebra that some
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of you have probably seen before. Since understanding the behavior of con-
stant coefficient systems plays a vital role in helping us understand more
complicated systems, I feel that the time investment is worth it. The partic-
ular approach we will take follows chapters 3, 4, 5, and 6, and appendix 3 of
Hirsch and Smale fairly closely.

Eigensystems

Given B ∈ L(Rn ,Rn), recall that that λ ∈ C is an eigenvalue of B if Bx =
λx for some nonzero x ∈ Rn or if B̃x = λx for some nonzero x ∈ C n ,
where B̃ is the complexification of B; i.e., the element of L(C n , C n) which
agrees with B on Rn . (Just as we often identify a linear operator with a
matrix representation of it, we will usually not make a distinction between
an operator on a real vector space and its complexification.) A nonzero vector
x for which Bx = λx for some scalar λ is an eigenvector. An eigenvalue λ
with corresponding eigenvector x form an eigenpair (λ, x).

If an operator A ∈ L(Rn ,Rn) is chosen at random, it would almost surely
have n distinct eigenvalues {λ1, . . . , λn} and n corresponding linearly inde-
pendent eigenvectors {x1, . . . , xn}. If this is the case, then A is similar to
the (possibly complex) diagonal matrix

λ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 λn

 .
More specifically,

A =

x1 · · · xn

 ·

λ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 λn

 ·
x1 · · · xn

−1

.

If the eigenvalues of A are real and distinct, then this means that

tA =

x1 · · · xn

 ·

tλ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 tλn

 ·
x1 · · · xn

−1

,
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and the formula for the matrix exponential then yields

etA =

x1 · · · xn

 ·

etλ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 etλn

 ·
x1 · · · xn

−1

.

This formula should make clear how the projections of etAx0 grow or decay
as t→ ±∞.

The same sort of analysis works when the eigenvalues are (nontrivially)
complex, but the resulting formula is not as enlightening. In addition to the
difficulty of a complex change of basis, the behavior of etλk is less clear when
λk is not real.

One way around this is the following. Sort the eigenvalues (and eigenvec-
tors) of A so that complex conjugate eigenvalues {λ1, λ1, . . . , λm, λm} come
first and are grouped together and so that real eigenvalues {λm+1, . . . , λr}
come last. For k ≤ m, set ak = Reλk ∈ R, bk = Imλk ∈ R, yk = Rexk ∈ Rn ,
and zk = Im xk ∈ Rn . Then

Ayk = ARe xk = ReAxk = Reλkxk = (Reλk)(Re xk)− (Imλk)(Imxk)

= akyk − bkzk,

and

Azk = A Im xk = ImAxk = Imλkxk = (Imλk)(Re xk) + (Reλk)(Imxk)

= bkyk + akzk.

Using these facts, we have A = QPQ−1, where

Q =

 z1 y1 · · · · · · zm ym xm+1 · · · xr


and
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P =



a1 −b1 0 0 · · · · · · 0 0 0 . . . · · · 0
b1 a1 0 0 · · · · · · 0 0 0 . . . · · · 0

0 0
. . .

. . .
. . .

. . .
...

...
...

...
...

...

0 0
. . .

. . .
. . .

. . .
...

...
...

...
...

...
...

...
. . .

. . .
. . .

. . . 0 0
...

...
...

...
...

...
. . .

. . .
. . .

. . . 0 0
...

...
...

...
0 0 · · · · · · 0 0 am −bm 0 · · · · · · 0
0 0 · · · · · · 0 0 bm am 0 · · · · · · 0

0 0 · · · · · · · · · · · · 0 0 λm+1 0 · · · 0
...

... · · · · · · · · · · · · ...
... 0

. . .
. . .

...
...

... · · · · · · · · · · · · ...
...

...
. . .

. . . 0
0 0 · · · · · · · · · · · · 0 0 0 · · · 0 λr



.

In order to compute etA from this formula, we’ll need to know how to
compute etAk , where

Ak =

[
ak −bk
bk ak

]
.

This can be done using the power series formula. An alternative approach is
to realize that [

x(t)
y(t)

]
:= etAk

[
c
d

]
is supposed to solve the IVP

ẋ = akx− bky
ẏ = bkx+ aky

x(0) = c

y(0) = d.

(26)

Since we can check that the solution of (26) is[
x(t)
y(t)

]
=

[
eakt(c cos bkt− d sin bkt)
eakt(d cos bkt+ c sin bkt)

]
,
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we can conclude that

etAk =

[
eakt cos bkt −eakt sin bkt
eakt sin bkt eakt cos bkt

]
Putting this all together and using the form of P , we see that etA =

QetPQ−1, where

etP =

[ B1 0

0T B2

]
,

B1 =

ea1t cos b1t −ea1t sin b1t 0 0 · · · · · · 0 0
ea1t sin b1t ea1t cos b1t 0 0 · · · · · · 0 0

0 0
. . .

. . .
. . .

. . .
...

...

0 0
. . .

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

. . . 0 0
...

...
. . .

. . .
. . .

. . . 0 0
0 0 · · · · · · 0 0 eamt cos bmt −eamt sin bmt
0 0 · · · · · · 0 0 eamt sin bmt eamt cos bmt


,

B2 = 
eλm+1t 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 eλrt

 ,
and 0 is a 2m× (r −m− 1) block of 0’s.

This representation of etA shows that not only may the projections of
etAx0 grow or decay exponentially, they may also exhibit sinusoidal oscillatory
behavior.
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Generalized Eigenspace Decomposition
Lecture 9
Math 634
9/20/99

Eigenvalues don’t have to be distinct for the analysis of the matrix ex-
ponential that was done last time to work. There just needs to be a basis
of eigenvectors for Rn (or C n). Unfortunately, we don’t always have such a
basis. For this reason, we need to generalize the notion of an eigenvector.

First, some definitions:

Definition The algebraic multiplicity of an eigenvalue λ of an operator A is
the multiplicity of λ as a zero of the characteristic polynomial det(A− xI).

Definition The geometric multiplicity of an eigenvalue λ of an operator A is
the dimension of the corresponding eigenspace, i.e., the dimension of the
space of all the eigenvectors of A corresponding to λ.

It is not hard to show (e.g., through a change-of-basis argument) that
the geometric multiplicity of an eigenvalue is always less than or equal to its
algebraic multiplicity.

Definition A generalized eigenvector of A is a vector x such that (A−λI)kx =
0 for some scalar λ and some k ∈ N .

Definition If λ is an eigenvalue of A, then the generalized eigenspace of A
belonging to λ is the space of all generalized eigenvectors of A corresponding
to λ.

Definition We say that a vector space V is the direct sum of subspaces V1, . . . ,Vm
of V and write

V = V1 ⊕ · · · ⊕ Vm

if for each v ∈ V there is a unique (v1, . . . , vm) ∈ V1 × · · · × Vm such that
v = v1 + · · ·+ vm.

Theorem (Primary Decomposition Theorem) Let B be an operator on E , where
E is a complex vector space, or else E is real and B has real eigenvalues. Then
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E is the direct sum of the generalized eigenspaces of B. The dimension of
each generalized eigenspace is the algebraic multiplicity of the corresponding
eigenvalue.

Before proving this theorem, we introduce some notation and state and
prove two lemmas.

Given T : V → V, let

N(T ) =
{
x ∈ V

∣∣ T kx = 0 for some k > 0
}
,

and let

R(T ) =
{
x ∈ V

∣∣ T ku = x has a solution u for every k > 0
}
.

Note that N(T ) is the union of the null spaces of the positive powers of T
and R(T ) is the intersection of the ranges of the positive powers of T . This
union and intersection are each nested, and that implies that there is is a
number m ∈ N such that R(T ) is the range of Tm and N(T ) is the nullspace
of Tm.

Lemma If T : V → V, then V = N(T )⊕R(T ).

Proof. Pick m such that R(T ) is the range of Tm and N(T ) is the nullspace
of Tm. Note that T |R(T ) : R(T ) → R(T ) is invertible. Given x ∈ V, let

y =
(
T |R(T )

)−m
Tmx and z = x − y. Clearly, x = y + z, y ∈ R(T ), and

Tmz = Tmx− Tmy = 0, so z ∈ N(T ). If x = ỹ + z̃ for some other ỹ ∈ R(T )
and z̃ ∈ N(T ) then Tmỹ = Tmx− Tmz̃ = Tmx, so ỹ = y and z̃ = z.

Lemma If λj, λk are distinct eigenvalues of T : V → V, then

N(T − λjI) ⊆ R(T − λkI).

Proof. Note first that (T − λkI)N(T − λjI) ⊆ N(T − λjI). We claim that,
in fact, (T − λkI)N(T − λjI) = N(T − λjI); i.e., that

(T − λkI)|N(T−λjI) : N(T − λjI)→ N(T − λjI)

is invertible. Suppose it isn’t; then we can pick a nonzero x ∈ N(T − λjI)
such that (T − λkI)x = 0. But if x ∈ N(T − λjI) then (T − λjI)mjx = 0 for
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some mj ≥ 0. Calculating,

(T − λjI)x = Tx− λjx = λkx− λjx = (λk − λj)x,
(T − λjI)2x = T (λk − λj)x− λj(λk − λj)x = (λk − λj)2x,

...

(T − λjI)mjx = · · · = (λk − λj)mjx 6= 0,

contrary to assumption. Hence, the claim holds.
Note that this implies not only that

(T − λkI)N(T − λjI) = N(T − λjI)

but also that

(T − λkI)mN(T − λjI) = N(T − λjI)

for every m ∈ N . This means that

N(T − λjI) ⊆ R(T − λkI).

Proof of the Principal Decomposition Theorem. It is obviously true if the di-
mension of E is 0 or 1. We prove it for dim E > 1 by induction on dimE .
Suppose it holds on all spaces of smaller dimension than E . Let λ1, λ2, . . . , λq
be the eigenvalues of B with algebraic multiplicities n1, n2, . . . , nq. By the
first lemma,

E = N(B − λqI)⊕R(B − λqI).

Note that dimR(B − λqI) < dim E , and R(B − λqI) is (positively) invariant
under B. Applying our assumption to B|R(B−λqI) : R(B−λqI)→ R(B−λqI),

we get a decomposition of R(B − λqI) into the generalized eigenspaces of
B|R(B−λqI). By the second lemma, these are just

N(B − λ1I), N(B − λ2I), . . . , N(B − λq−1I),

so

E = N(B − λ1I)⊕N(B − λ2I)⊕ · · · ⊕N(B − λq−1I)⊕N(B − λqI).
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Now, by the second lemma, we know that B|N(B−λkI) has λk as its only
eigenvalue, so dimN(B − λkI) ≤ nk. Since

q∑
k=1

nk = dimE =

q∑
k=1

dimN(B − λkI),

we actually have dimN(B − λkI) = nk.
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Operators on Generalized Eigenspaces
Lecture 10
Math 634
9/22/99

We’ve seen that the space on which a linear operator acts can be de-
composed into the direct sum of generalized eigenspaces of that operator.
The operator maps each of these generalized eigenspaces into itself, and,
consequently, solutions of the differential equation starting in a generalized
eigenspace stay in that generalized eigenspace for all time. Now we will see
how the solutions within such a subspace behave by seeing how the operator
behaves on this subspace.

It may seem like nothing much can be said in general since, given a finite-
dimensional vector space V, we can define a nilpotent operator S on V by

1. picking a basis {v1, . . . , vm} for V;

2. creating a graph by connecting the nodes {v1, . . . , vm, 0} with directed
edges in such a way that from each node there is a unique directed path
to 0;

3. defining S(vj) to be the unique node vk such that there is a directed
edge from vj to vk;

4. extending S linearly to all of V.

By adding any multiple of I to S we have an operator for which V is a gen-
eralized eigenspace. It turns out, however, that there are really only a small
number of different possible structures that may arise from this seemingly
general process.

To make this more precise, we first need a definition, some new notation,
and a lemma.

Definition A subspace Z of a vector space V is a cyclic subspace of S on V if
SZ ⊆ Z and there is some x ∈ Z such that Z is spanned by {x, Sx, S2x, . . . }.

Given S, note that every vector x ∈ V generates a cyclic subspace. Call
it Z(x) or Z(x, S). If S is nilpotent, write nil(x) or nil(x, S) for the smallest
nonnegative integer k such that Skx = 0.
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Lemma The set {x, Sx, . . . , Snil(x)−1x} is a basis for Z(x).

Proof. Obviously these vectors span Z(x); the question is whether they are
linearly independent. If they were not, we could write down a linear com-
bination α1S

p1x + · · · + αkS
pkx, with αj 6= 0 and 0 ≤ p1 < p2 < · · · <

pk ≤ nil(x) − 1, that added up to zero. Applying Snil(x)−p1−1 to this lin-
ear combination would yield α1S

nil(x)−1x = 0, contradicting the definition of
nil(x).

Theorem If S : V → V is nilpotent then V can be written as the direct sum of
cyclic subspaces of S on V. The dimensions of these subspaces are determined
by the operator S.

Proof. The proof is inductive on the dimension of V. It is clearly true if
dimV = 0 or 1. Assume it is true for all operators on spaces of dimension
less than dimV.

Step 1: The dimension of SV is less than the dimension of V.
If this weren’t the case, then S would be invertible and could not possibly
be nilpotent.

Step 2: For some k ∈ N and for some nonzero yj ∈ SV, j = 1, . . . , k,

SV = Z(y1)⊕ · · · ⊕ Z(yk). (27)

This is a consequence of Step 1 and the induction hypothesis.

Pick xj ∈ V such that Sxj = yj, for j = 1, . . . , k. Suppose that zj ∈ Z(xj)
for each j and

z1 + · · ·+ zk = 0. (28)

We will show that zj = 0 for each j. This will mean that the direct sum
Z(x1)⊕ · · · ⊕ Z(xk) exists.

Step 3: Sz1 + · · ·+ Szk = 0.
This follows from applying S to both sides of (28).
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Step 4: For each j, Szj ∈ Z(yj).
The fact that zj ∈ Z(xj) implies that

zj = α0xj + α1Sxj + · · ·+ αnil(xj)−1S
nil(xj)−1xj (29)

for some αi. Applying S to both sides of (29) gives

Szj = α0yj + α1Syj + · · ·+ αnil(xj)−2S
nil(xj)−2yj ∈ Z(yj).

Step 5: For each j, Szj = 0.
This is a consequence of Step 3, Step 4, and (27).

Step 6: For each j, zj ∈ Z(yj).
If

zj = α0xj + α1Sxj + · · ·+ αnil(xj)−1S
nil(xj)−1xj

then by Step 5

0 = Szj = α0yj + α1Syj + · · ·+ αnil(xj)−2S
nil(xj)−2yj.

Since nil(xj) − 2 = nil(yj) − 1, the vectors in this linear combination are
linearly independent; thus, αi = 0 for i = 0, . . . , nil(xj) − 2. In particular,
α0 = 0, so

zj = α1yj + · · ·+ αnil(xj)−1S
nil(xj)−2yj ∈ Z(yj).

Step 7: For each j, zj = 0.
This is a consequence of Step 6, (27), and (28).

We now know that Z(x1) ⊕ · · · ⊕ Z(xk) =: Ṽ exists, but it is not nec-
essarily all of V. Choose a subspace W of Null(S) such that Null(S) =
(Ṽ ∩ Null(S)) ⊕ W. Choose a basis {w1, . . . , w`} for W and note that
W = Z(w1)⊕ · · · ⊕ Z(w`).

Step 8: The direct sum Z(x1)⊕· · ·⊕Z(xk)⊕Z(w1)⊕· · ·⊕Z(w`) exists.
This is a consequence of the fact that the direct sums Z(x1) ⊕ · · · ⊕ Z(xk)
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and Z(w1)⊕ · · · ⊕ Z(w`) exist and that Ṽ ∩W = {0}.

Step 9: V = Z(x1)⊕ · · · ⊕ Z(xk)⊕ Z(w1)⊕ · · · ⊕ Z(w`).
Let x ∈ V be given. Recall that Sx ∈ SV = Z(y1) ⊕ · · · ⊕ Z(yk). Write
Sx = s1 + · · ·+ sk with sj ∈ Z(yj). If

sj = α0yj + α1Syj + · · ·+ αnil(yj)−1S
nil(yj)−1yj,

let

uj = α0xj + α1Sxj + · · ·+ αnil(yj)−1S
nil(yj)−1xj ,

and note that Suj = sj and that uj ∈ Z(xj). Setting u = u1 + · · ·+ uk, we
have

S(x− u) = Sx− Su = (s1 + · · ·+ sk)− (s1 + · · ·+ sk) = 0,

so x− u ∈ Null(S). By definition of W, that means that

x− u ∈ Z(x1)⊕ · · · ⊕ Z(xk)⊕ Z(w1)⊕ · · · ⊕ Z(w`).

Since u ∈ Z(x1)⊕ · · · ⊕ Z(xk), we have

x ∈ Z(x1)⊕ · · · ⊕ Z(xk)⊕Z(w1)⊕ · · · ⊕ Z(w`).

This completes the proof of the first sentence in the theorem. The second
sentence follows similarly by induction.
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Real Canonical Form
Lecture 11
Math 634
9/24/99

Real Canonical Form

We now use the information contained in the previous theorems to find simple
matrices representing linear operators. Clearly, a nilpotent operator S on a
cyclic space Z(x) can be represented by the matrix

0 · · · · · · · · · 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

 ,

with the corresponding basis being {x, Sx, . . . , Snil(x)−1x}. Thus, an operator
T on a generalized eigenspace N(T − λI) can be represented by a matrix of
the form 

λ 0 · · · · · · 0

1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 λ

 . (30)

If λ = a+ bi ∈ C \ R is an eigenvalue of an operator T ∈ L(Rn ,Rn), and
Z(x, T − λI) is one of the cyclic subspaces whose direct sum is N(T − λI),
then Z(x, T−λI) can be taken to be one of the cyclic subspaces whose direct
sum isN(T−λI). If we set k = nil(x, T−λI)−1 and yj = Re((T − λI)jx) and
zj = Im((T − λI)jx) for j = 0, . . . , k, then we have Tyj = ayj − bzj + yj+1

and Tzj = byj + azj + zj+1 for j = 0, . . . , k − 1, and Tyk = ayk − bzk
and Tzk = byk + azk. The 2k + 2 real vectors {z0, y0, . . . , zk, yk} span
Z(x, T − λI)⊕ Z(x, T − λI) over C and also span a (2k + 2)-dimensional
space over R that is invariant under T . On this real vector space, the action
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of T can be represented by the matrix

a −b 0 0 · · · · · · · · · · · · 0 0
b a 0 0 · · · · · · · · · · · · 0 0

1 0
. . .

. . .
. . .

. . .
...

...

0 1
. . .

. . .
. . .

. . .
...

...

0 0
. . .

. . .
. . .

. . .
. . .

. . .
...

...

0 0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0 0
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0 0
0 0 · · · · · · 0 0 1 0 a −b
0 0 · · · · · · 0 0 0 1 b a



. (31)

The restriction of an operator to one of its generalized eigenspaces has a
matrix representation like

λ1 λ
1 λ

 [
λ
1 λ

]
[
λ
] [

λ
]

. . .


(32)

if the eigenvalue λ is real, with blocks of the form (30) running down the
diagonal. If the eigenvalue is complex, then the matrix representation is
similar to (32) but with blocks of the form (31) instead of the form (30) on
the diagonal.

Finally, the matrix representation of the entire operator is block diagonal,
with blocks of the form (32) (or its counterpart for complex eigenvalues).
This is called the real canonical form. If we specify the order in which blocks
should appear, then matrices are similar if and only if they have the same
real canonical form.
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Solving Linear Systems
Lecture 12
Math 634
9/27/99

Exercise 7 Classify all the real canonical forms for operators on R4 . In other
words, find a collection of 4×4 matrices, possibly with (real) variable entries
and possibly with constraints on those variables, such that

1. Only matrices in real canonical form match one of the matrices in
your collection.

2. Each operator on R4 has a matrix representation matching one of the
matrices in your collection.

3. No matrix matching one of your matrices is similar to a matrix match-
ing one of your other matrices.

For example, a suitable collection of matrices for operators on R2 would
be: [

λ 0
1 λ

]
;

[
λ 0
0 µ

]
;

[
a −b
b a

]
, (b 6= 0).

Computing etA

Given an operator A ∈ L(Rn ,Rn), let M be its real canonical form. Write
M = S +N , where S has M ’s diagonal elements λk and diagonal blocks[

a −b
b a

]
and 0’s else, and N has M ’s off-diagonal 1’s and 2×2 identity matrices. If you
consider the restrictions of S and N to each of the cyclic subspaces of A−λI
into which the generalized eigenspace N(A− λI) of A is decomposed, you’ll
probably be able to see that these restrictions commute. As a consequence
of this fact (and the way Rn can be represented in terms of these cyclic
subspaces), S and N commute. Thus etM = etSetN .
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Now, etS has eλkt where S has λk, and has[
eakt cos bkt −eakt sin bkt
eakt sin bkt eakt cos bkt

]
where S has [

ak −bk
bk ak

]
.

The series definition can be used to compute etN , since the fact that N is
nilpotent implies that the series is actually a finite sum. The entries of etN

will be polynomials in t. For example,
0

1
. . .
. . .

. . .

1 0

 7→


1

t
. . .

...
. . .

. . .

tm · · · t 1


and

[
0 0
0 0

]
[
1 0
0 1

]
. . .

. . .
. . .[

1 0
0 1

] [
0 0
0 0

]


7→



[
1 0
0 1

]
[
t 0
0 t

]
. . .

...
. . .

. . .[
tm/m! 0

0 tm/m!

]
· · ·

[
t 0
0 t

] [
1 0
0 1

]


.

Identifying A with its matrix representation with respect to the standard
basis, we have A = PMP−1 for some invertible matrix P . Consequently,
etA = PetMP−1. Thus, the entries of etA will be linear combinations of poly-
nomials times exponentials or polynomials times exponentials times trigono-
metric functions.
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Exercise 8 Compute etA (and justify your computations) if

1. A =


0 0 0 0
1 0 0 1
1 0 0 1
0 −1 1 0



2. A =


1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4



Linear Planar Systems

A thorough understanding of constant coefficient linear systems ẋ = Ax in
the plane is very helpful in understanding systems that are nonlinear and/or
higher-dimensional.

There are 3 main categories of real canonical forms for an operator A in
L(R2 ,R2):

•
[
λ 0
0 µ

]

•
[
λ 0
1 λ

]

•
[
a −b
b a

]
, (b 6= 0)

We will subdivide these 3 categories further into a total of 14 categories
and consider the corresponding phase portraits, i.e., sketches of some of the
trajectories or parametric curves traced out by solutions in phase space.
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A =

[
λ 0
0 µ

]
(λ < 0 < µ)

saddle

u2

u1b

1

A =

[
λ 0
0 µ

]
(λ < µ < 0)

stable node

u2

u1b

2

A =

[
λ 0
0 µ

]
(λ = µ < 0)

stable node

u2

u1b

3
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A =

[
λ 0
0 µ

]
(0 < µ < λ)

unstable node

u2

u1b

4

A =

[
λ 0
0 µ

]
(0 < λ = µ)

unstable node

u2

u1b

5

A =

[
λ 0
0 µ

]
(λ < µ = 0)

degenerate

u2

u1b

b

b

6
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A =

[
λ 0
0 µ

]
(0 = µ < λ)

degenerate

u2

u1b

b

b

7

A =

[
λ 0
0 µ

]
(0 = µ = λ)

degenerate

u2

u1b

b

b

b

b

b

b

bb

8

A =

[
λ 0
1 λ

]
(λ < 0)

stable node

u2

u1b

9
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A =

[
λ 0
1 λ

]
(0 < λ)

unstable node

u2

u1b

10

A =

[
λ 0
1 λ

]
(λ = 0)

degenerate

u2

u1b

b

b

11

A =

[
a −b
b a

]
(a < 0 < b)

stable spiral

u2

u1b

12
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A =

[
a −b
b a

]
(b < 0 < a)

unstable spiral

u2

u1b

13

A =

[
a −b
b a

]
(a = 0, b > 0)

center

u2

u1b

14

If A is not in real canonical form, then the phase portrait should look
similar but may be rotated, flipped, stretched, skewed, etc.
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Qualitative Behavior of Linear Systems
Lecture 13
Math 634
9/29/99

Parameter Plane

Some of the information from the preceding phase portraits can be summa-
rized in a parameter diagram. In particular, let τ = traceA and let δ = detA,
so the characteristic polynomial is λ2 − τλ + δ. Then the behavior of the
trivial solution x(t) ≡ 0 is given by locating the corresponding point in the
(τ, δ)-plane:

δ

τdegenerate degenerate

center δ =
τ
2 /4

unstable spiralstable spiral

unstable nodestable node

saddle
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Growth and Decay Rates

Given A ∈ L(Rn ,Rn), let

Eu =

{⊕
λ>0

N(A− λI)

}
⊕

⊕
Reλ>0
Imλ6=0

{
Reu

∣∣ u ∈ N(A− λI)
}⊕


⊕

Reλ>0
Imλ6=0

{
Im u

∣∣ u ∈ N(A− λI)
} ,

Es =

{⊕
λ<0

N(A− λI)

}
⊕

⊕
Reλ<0
Imλ6=0

{
Reu

∣∣ u ∈ N(A− λI)
}⊕


⊕

Reλ<0
Imλ6=0

{
Im u

∣∣ u ∈ N(A− λI)
} ,

and

E c = N(A)⊕
⊕

Reλ=0
Imλ6=0

{
Reu

∣∣ u ∈ N(A− λI)
}⊕


⊕

Reλ=0
Imλ6=0

{
Im u

∣∣ u ∈ N(A− λI)
} .

From our previous study of the real canonical form, we know that

Rn = Eu ⊕ Es ⊕ E c.

We call Eu the unstable space of A, Es the stable space of A, and E c the center
space of A.

Each of these subspaces of Rn is invariant under the differential equation

ẋ = Ax. (33)

In other words, if x : R → Rn is a solution of (33) and x(0) is in Eu, Es,
or E c, then x(t) is in Eu, Es, or E c, respectively, for all t ∈ R. We shall see
that each of these spaces is characterized by the growth or decay rates of the
solutions it contains. Before doing so, we state and prove a basic fact about
finite-dimensional normed vector spaces.
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Theorem All norms on Rn are equivalent.

Proof. Since equivalence of norms is transitive, it suffices to prove that every
norm N : Rn → R is equivalent to the standard Euclidean norm | · |.

Given an arbitrary norm N , and letting xi be the projection of x ∈ Rn
onto the ith standard basis vector ei, note that

N(x) = N

(
n∑
i=1

xiei

)
≤

n∑
i=1

|xi|N(ei) ≤
n∑
i=1

|x|N(ei)

≤
(

n∑
i=1

N(ei)

)
|x|.

This shows half of equivalence; it also shows that N is continuous, since, by
the triangle inequality,

|N(x)−N(y)| ≤ N(x− y) ≤
(

n∑
i=1

N(ei)

)
|x− y|.

The set S :=
{
x ∈ Rn

∣∣ |x| = 1
}

is clearly closed and bounded and, therefore,
compact, so by the extreme value theorem, N must achieve a minimum on
S. Since N is a norm (and is, therefore, positive definite), this minimum
must be positive; call it k. Then for any x 6= 0,

N(x) = N

(
|x| x|x|

)
= |x|N

(
x

|x|

)
≥ k|x|,

and the estimate N(x) ≥ k|x| obviously holds if x = 0, as well.

Theorem Given A ∈ L(Rn ,Rn) and the corresponding decomposition Rn =
Eu ⊕ Es ⊕ E c, we have

Eu =
{
x ∈ Rn

∣∣ ∃c > 0 s.t. lim
t↓−∞

|e−ctetAx| = 0}, (34)

Es =
{
x ∈ Rn

∣∣ ∃c > 0 s.t. lim
t↑∞
|ectetAx| = 0}, (35)

and

E c =
{
x ∈ Rn

∣∣ ∀c > 0, lim
t↓−∞

|ectetAx| = 0 and lim
t↑∞
|e−ctetAx| = 0}. (36)
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Proof. By equivalence of norms, instead of using the standard Euclidean
norm on Rn we can use the norm

‖x‖ := sup{|P1x|, . . . , |Pnx|},

where Pi : Rn → R represents projection onto the ith basis vector correspond-
ing to the real canonical form. Because of our knowledge of the structure of
the real canonical form, we know that Pie

tAx is either of the form

p(t)eλt, (37)

where p(t) is a polynomial in t and λ ∈ R is an eigenvalue of A, or of the
form

p(t)eat(α cos bt + β sin bt), (38)

where p(t) is a polynomial in t, a + bi ∈ C \ R is an eigenvalue of A, and α
and β are real constants. Furthermore, we know that if Pi corresponds to a
vector in Eu then λ and a are positive, if Pi corresponds to a vector in Es
then λ and a are negative, and if Pi corresponds to a vector in E c then λ and
a are zero.

Now, suppose x ∈ Es. Then each Pie
tAx is either identically zero or

has as a factor a negative exponential whose constant is the real part of an
eigenvalue of A that is to the left of the imaginary axis in the complex plane.
Let σ(A) be the set of eigenvalues of A, and set

c =

∣∣max
{

Reλ
∣∣ λ ∈ σ(A) and Reλ < 0

}∣∣
2

.

Then ectPie
tAx is either identically zero or decays exponentially to zero as

t ↑ ∞.
Conversely, suppose x /∈ Es. Then Pix 6= 0 for some Pi corresponding

to a real canonical basis vector in Eu or in E c. In either case, Pie
tAx is not

identically zero and is of the form (37) where λ ≥ 0 or of the form (38) where
a ≥ 0. Thus, if c > 0 then

lim sup
t↑∞

|ectPietAx| =∞,

so

lim sup
t↑∞

‖ectetAx‖ =∞.
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The preceding two paragraphs showed that (35) is correct. By applying
this fact to the time-reversed problem ẋ = −Ax, we find that (34) is correct,
as well. We now consider (36).

If x ∈ E c, then for each i, Pie
tAx is either a polynomial or the product

of a polynomial and a periodic function. If c > 0 and we multiply such a
function of t by ect and let t ↓ −∞ or we multiply it by e−ct and let t ↑ ∞,
then the result converges to zero.

If, on the other hand, x /∈ E c then for some i, Pie
tAx contains a nontrivial

exponential term. If c > 0 is sufficiently small then either ectPie
tAx diverges

as t ↓ −∞ or e−ctPie
tAx diverges as t ↑ ∞. This completes the verification

of (36).
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Exponential Decay
Lecture 14
Math 634
10/1/99

Definition If Eu = Rn , we say that the origin is a source and etA is an expan-
sion.

Definition If Es = Rn , we say that the origin is a sink and etA is a contraction.

Theorem

(a) The origin is a source for the equation ẋ = Ax if and only if for a given
norm ‖ · ‖ there are constants k, b > 0 such that

‖etAx‖ ≤ ketb‖x‖

for every t ≤ 0 and x ∈ Rn .

(b) The origin is a sink for the equation ẋ = Ax if and only if for a given
norm ‖ · ‖ there are constants k, b > 0 such that

‖etAx‖ ≤ ke−tb‖x‖

for every t ≥ 0 and x ∈ Rn .

Proof. The “if” parts are a consequence of the previous theorem. The “only
if” parts follow from the proof of the previous theorem.

Note that a contraction does not always “contract” things immediately;
i.e., |etAx| � |x|, in general. For example, consider

A =

[
−1/4 0

1 −1/4

]
.

If

x(t) =

[
x1(t)
x2(t)

]
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is a solution of ẋ = Ax, then

d

dt
|x(t)|2 = 2〈x, ẋ〉 = 2

[
x1 x2

] [−1/4 0
1 −1/4

] [
x1

x2

]
= −1

2
x2

1 + 2x1x2 −
1

2
x2

2

= x1x2 −
1

2
(x1 − x2)2,

which is greater than zero if, for example, x1 = x2 > 0. However, we have
the following:

Theorem

(a) If etA is an expansion then there is some norm ‖ · ‖ and some constant
b > 0 such that

‖etAx‖ ≤ etb‖x‖

for every t ≤ 0 and x ∈ Rn .

(b) If etA is a contraction then there is some norm ‖ · ‖ and some constant
b > 0 such that

‖etAx‖ ≤ e−tb‖x‖

for every t ≥ 0 and x ∈ Rn .

Proof. The idea of the proof is to pick a basis with respect to which A is
represented by a matrix like the real canonical form but with some small
constant ε > 0 in place of the off-diagonal 1’s. (This can be done by rescal-
ing.) If the Euclidean norm with respect to this basis is used, the desired
estimates hold. The details of the proof may be found in Chapter 7, §1, of
Hirsch and Smale.

Exercise 9

(a) Show that if etA and etB are both contractions on Rn , and BA = AB,
then et(A+B) is a contraction.

(b) Give a concrete example that shows that (a) can fail if the assumption
that AB = BA is dropped.
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Exercise 10 Problem 5 on page 137 of Hirsch and Smale reads:
“For any solution to ẋ = Ax, A ∈ L(Rn ,Rn), show that exactly one of the
following alternatives holds:

(a) lim
t↑∞

x(t) = 0 and lim
t↓−∞

|x(t)| =∞;

(b) lim
t↑∞
|x(t)| =∞ and lim

t↓−∞
x(t) = 0;

(c) there exist constants M,N > 0 such that M < |x(t)| < N for all
t ∈ R.”

Is what they ask you to prove true? If so, prove it. If not, determine what
other possible alternatives exist, and prove that you have accounted for all
possibilities.
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Nonautonomous Linear Systems
Lecture 15
Math 634
10/4/99

We now move from the constant coefficient equation ẋ = Ax to the nonau-
tonomous equation

ẋ = A(t)x. (39)

For simplicity we will assume that the domain of A is R.

Solution Formulas

In the scalar, or one-dimensional, version of (39)

ẋ = a(t)x (40)

we can separate variables and arrive at the formula

x(t) = x0e
R t
t0
a(τ) dτ

for the solution of (40) that satisfies the initial condition x(t0) = x0.
It seems like the analogous formula for the solution of (39) with initial

condition x(t0) = x0 should be

x(t) = e
R t
t0
A(τ) dτ

x0. (41)

Certainly, the right-hand side of (41) makes sense (assuming that A is con-
tinuous). But does it give the correct answer?

Let’s consider a specific example. Let

A(t) =

[
0 0
1 t

]
and t0 = 0. Note that∫ t

0

A(τ) dτ =

[
0 0
t t2/2

]
=
t2

2

[
0 0

2/t 1

]
,
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and

e

2
40 0
t t2/2

3
5

=

[
1 0
0 1

]
+
t2

2

[
0 0

2/t 1

]
+

(
t2

2

)2

2!

[
0 0

2/t 1

]
+

(
t2

2

)3

3!

[
0 0

2/t 1

]
+ · · ·

=

[
1 0
0 1

]
+
(
et

2/2 − 1
)[ 0 0

2/t 1

]
=

[
1 0

2
t

(
et

2/2 − 1
)

et
2/2

]
.

On the other hand, we can solve the corresponding system

ẋ1 = 0
ẋ2 = x1 + tx2

directly. Clearly x1(t) = α for some constant α. Plugging this into the
equation for x2, we have a first-order scalar equation which can be solved by
finding an integrating factor. This yields

x2(t) = βet
2/2 + αet

2/2

∫ t

0

e−s
2/2 ds

for some constant β. Since x1(0) = α and x2(0) = β, the solution of (39) is[
x1(t)
x2(t)

]
=

[
1 0

et
2/2
∫ t

0
e−s

2/2 ds et
2/2

] [
x1(0)
x2(0)

]
.

Since

et
2/2

∫ t

0

e−s
2/2 ds 6= 2

t

(
et

2/2 − 1
)

(41) doesn’t work? What went wrong? The answer is that

d

dt
e
R t
0
A(τ) dτ = lim

h→0

e
R t+h
0 A(τ) dτ − e

R t
0 A(τ) dτ

h
6= lim

h→0

e
R t
0 A(τ) dτ

[
e
R t+h
t A(τ) dτ − I

]
h

,

in general, because of possible noncommutativity.

Structure of Solution Set

We abandon attempts to find a general formula for solving (39), and instead
analyze the general structure of the solution set.
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Definition If x(1), x(2), . . . , x(n) are linearly independent solutions of (39) (i.e.,
no nontrivial linear combination gives the zero function) then the matrix

X(t) :=
[
x(1)(t) · · · x(n)(t)

]
is called a fundamental matrix for (39).

Theorem The dimension of the vector space of solutions of (39) is n.

Proof. Pick n linearly independent vectors v(k) ∈ Rn , k = 1, . . . , n, and let
x(k) be the solution of (39) that satisfies the initial condition x(k)(0) = v(k).
Then these n solutions are linearly independent. Furthermore, we claim that
any solution x of (39) is a linear combination of these n solutions. To see
why this is so, note that x(0) must be expressible as a linear combination
of {v(1), . . . , v(n)}. The corresponding linear combination of {x(1), . . . , x(n)}
is, by linearity, a solution of (39) that agrees with x at t = 0. Since A
is continuous, the Picard-Lindelöf Theorem applies to (39) to tell us that
solutions of IVPs are unique, so this linear combination of {x(1), . . . , x(n)}
must be identical to x.

Definition If X(t) is a fundamental matrix and X(0) = I, then it is called the
principal fundamental matrix. (Uniqueness of solutions implies that there is
only one such matrix.)

Definition Given n functions (in some order) from R to Rn , their Wronskian
is the determinant of the matrix that has these functions as its columns (in
the corresponding order).

Theorem The Wronskian of n solutions of (39) is identically zero if and only
if the solutions are linearly dependent.

Proof. Suppose x(1), . . . , x(n) are linearly dependent solutions; i.e.,

n∑
k=1

αkx
(k) = 0

for some constants α1, . . . , αn with
∑n

k=1 α
2
k 6= 0. Then

∑n
k=1 αkx

(k)(t) = 0
for every t, so the columns of the Wronskian W (t) are linearly dependent for
every t. This means W ≡ 0.
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Conversely, suppose that the Wronskian W of n solutions x(1), . . . , x(n) is
identically zero. In particular, W (0) = 0, so x(1)(0), . . . , x(n)(0) are linearly
dependent vectors. Pick constants α1, . . . , αn, with

∑n
k=1 α

2
k 6= 0, such that∑n

k=1 αkx
(k)(0) = 0. The function

∑n
k=1 αkx

(k) is a solution of (39) that is 0
when t = 0, but so is the function that is identically zero. By uniqueness of
solutions,

∑n
k=1 αkx

(k) = 0; i.e., x(1), . . . , x(n) are linearly dependent.

Note that this proof also shows that if the Wronskian of n solutions of
(39) is zero for some t, then it is zero for all t.

What if we’re dealing with n arbitrary vector-valued functions (that are
not necessarily solutions of (39))? If they are linearly dependent then their
Wronskian is identically zero, but the converse is not true. For example,[

1
0

]
and

[
t
0

]
have a Wronskian that is identically zero, but they are not linearly dependent.
Also, n functions can have a Wronskian that is zero for some t and nonzero
for other t. Consider, for example,[

1
0

]
and

[
0
t

]
.

Initial-Value Problems

Given a fundamental matrix X(t) for (39), let G(t, t0) := X(t)[X(t0)]−1. We
claim that x(t) := G(t, t0)v solves the IVP{

ẋ = A(t)x

x(t0) = v.

To verify this, note that

d

dt
x =

d

dt
(X(t)[X(t0)]−1v) = A(t)X(t)[X(t0)]−1v = A(t)x,

and

x(t0) = G(t0, t0)v = X(t0)[X(t0)]−1v = v.
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Inhomogeneous Equations

Consider the IVP {
ẋ = A(t)x+ f(t)

x(t0) = x0.
(42)

In light of the results from the previous section when f was identically zero,
it’s reasonable to look for a solution x of (42) of the form x(t) = G(t, t0)y(t),
where G is as before, and y is some vector-valued function.

Note that

ẋ(t) = A(t)X(t)[X(t0)]−1y(t) + G(t, t0)ẏ(t) = A(t)x(t) +G(t, t0)ẏ(t);

therefore, we need G(t, t0)ẏ(t) = f(t). Isolating, ẏ(t), we need

ẏ(t) = X(t0)[X(t)]−1f(t) = G(t0, t)f(t). (43)

Integrating both sides of (43), we see that y should satisfy

y(t)− y(t0) =

∫ t

t0

G(t0, s)f(s) ds.

If x(t0) is to be x0, then, since G(t0, t0) = I, we need y(t0) = x0, so y(t)
should be

x0 +

∫ t

t0

G(t0, s)f(s) ds,

or, equivalently, x(t) should be

G(t, t0)x0 +

∫ t

t0

G(t, s)f(s) ds,

since G(t, t0)G(t0, s) = G(t, s). This is called the Variation of Constants
formula or the Variation of Parameters formula.
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Nearly Autonomous Linear Systems
Lecture 16
Math 634
10/6/99

Suppose A(t) is, in some sense, close to a constant matrix A. The question
we wish to address in this section is the extent to which solutions of the
nonautonomous system

ẋ = A(t)x (44)

behave like solutions of the autonomous system

ẋ = Ax. (45)

Before getting to our main results, we present a pair of lemmas.

Lemma The following are equivalent:

1. Each solution of (45) is bounded as t ↑ ∞.

2. The function t 7→ ‖etA‖ is bounded as t ↑ ∞ (where ‖ · ‖ is the usual
operator norm).

3. Reλ ≤ 0 for every eigenvalue λ of A and the algebraic multiplicity of
each imaginary eigenvalue matches its geometric multiplicity.

Proof. That statement 2 implies statement 1 is a consequence of the defini-
tion of the operator norm, since, for each solution x of (45),

|x(t)| = |etAx(0)| ≤ ‖etA‖ · |x(0)|.

That statement 1 implies statement 3, and statement 3 implies statement 2
are consequences of what we have learned about the real canonical form of
A, along with the equivalence of norms on Rn .

Lemma (Generalized Gronwall Inequality) Suppose X and Φ are non-negative,
continuous, real-valued functions on [t0, T ] for which there is a nonnegative
constant C such that

X(t) ≤ C +

∫ t

t0

Φ(s)X(s) ds,
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for every t ∈ [t0, T ]. Then

X(t) ≤ Ce
R t
t0

Φ(s) ds
.

Proof. The proof is very similar to the proof of the standard Gronwall in-
equality. The details are left to the reader.

The first main result deals with the case when A(t) converges to A suffi-
ciently quickly as t ↑ ∞.

Theorem Suppose that each solution of (45) remains bounded as t ↑ ∞ and
that, for some t0 ∈ R, ∫ ∞

t0

‖A(t)− A‖ dt <∞, (46)

where ‖·‖ is the standard operator norm. Then each solution of (44) remains
bounded as t ↑ ∞.

Proof. Let t0 be such that (46) holds. Given a solution x of (44), let
f(t) = (A(t) − A)x(t), and note that x satisfies the constant-coefficient in-
homogeneous problem

ẋ = Ax+ f(t). (47)

Since the matrix exponential provides a fundamental matrix solution to
constant-coefficient linear systems, applying the variation of constants for-
mula to (47) yields

x(t) = e(t−t0)Ax(t0) +

∫ t

t0

e(t−s)A(A(s)−A)x(s) ds. (48)

Now, by the first lemma, the boundedness of solutions of (45) in forward
time tells us that there is a constant M > 0 such that ‖etA‖ ≤ M for every
t ≥ t0. Taking norms and estimating, gives (for t ≥ t0)

|x(t)| ≤ ‖e(t−t0)A‖ · |x(t0)|+
∫ t

t0

‖e(t−s)A‖ · ‖A(s)− A‖ · |x(s)| ds

≤M |x(t0)|+
∫ t

t0

M‖A(s)− A‖ · |x(s)| ds.
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Setting X(t) = |x(t)|, Φ(t) = M‖A(t) − A‖, and C = M |x(t0)|, and
applying the generalized Gronwall inequality, we find that

|x(t)| ≤M |x(t0)|eM
R t
t0
‖A(s)−A‖ ds

.

By (46), the right-hand side of this inequality is bounded on [t0,∞), so x(t)
is bounded as t ↑ ∞.

The next result deals with the case when the origin is a sink for (45).
Will all the solutions of (44) also all converge to the origin as t ↑ ∞? Yes, if
‖A(t)− A‖ is sufficiently small.

Theorem Suppose all the eigenvalues of A have negative real part. Then there
is a constant ε > 0 such that if ‖A(t) − A‖ ≤ ε for all t sufficiently large
then every solution of (44) converges to 0 as t ↑ ∞.

Proof. Since the origin is a sink, we know that we can choose constants
k, b > 0 such that ‖etA‖ ≤ ke−bt for all t ≥ 0. Pick a constant ε ∈ (0, b/k),
and assume that there is a time t0 ∈ R such that ‖A(t) − A‖ ≤ ε for every
t ≥ t0.

Now, given a solution x of (44) we can conclude, as in the proof of the
previous theorem, that

|x(t)| ≤ ‖e(t−t0)A‖ · |x(t0)|+
∫ t

t0

‖e(t−s)A‖ · ‖A(s)− A‖ · |x(s)| ds

for all t ≥ t0. This implies that

|x(t)| ≤ ke−b(t−t0)|x(t0)|+
∫ t

t0

ke−b(t−s)ε · |x(s)| ds

for all t ≥ t0. Multiplying through by eb(t−t0) and setting y(t) := eb(t−t0)|x(t)|
yield

y(t) ≤ k|x(t0)|+ kε

∫ t

t0

y(s) ds

for all t ≥ t0. The standard Gronwall inequality applied to this estimate
gives

y(t) ≤ k|x(t0)|ekε(t−t0)
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for all t ≥ t0, or, equivalently,

|x(t)| ≤ k|x(t0)|e(kε−b)(t−t0)

for all t ≥ t0. Since ε < b/k, this inequality implies that x(t) → 0 as
t ↑ ∞.

Thus, the origin remains a “sink” even when we perturb A by a small
time-dependent quantity. Can we perhaps just look at the (possibly, time-
dependent) eigenvalues of A(t) itself and conclude, for example, that if all of
those eigenvalues have negative real part for all t then all solutions of (44)
converge to the origin as t ↑ ∞? The following example of Markus and Yam-
abe shows that the answer is “No”.

Exercise 11 Show that if

A(t) =

[
−1 + 3

2
cos2 t 1− 3

2
sin t cos t

−1− 3
2

sin t cos t −1 + 3
2

sin2 t

]
then the eigenvalues of A(t) both have negative real part for every t ∈ R,
but

x(t) :=

[
− cos t
sin t

]
et/2,

which becomes unbounded as t→∞, is a solution to (44).
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Periodic Linear Systems
Lecture 17
Math 634
10/8/99

We now consider

ẋ = A(t)x (49)

when A is a continuous periodic n× n matrix function of t; i.e., when there
is a constant T > 0 such that A(t + T ) = A(t) for every t ∈ R. When that
condition is satisfied, we say, more precisely, that A is T -periodic. If T is the
smallest positive number for which this condition holds, we say that T is the
minimal period of A.

Let A be T -periodic, and let X(t) be a fundamental matrix for (49).
Define X̃ : R → L(Rn ,Rn) by X̃(t) = X(t + T ). Clearly, the columns of X̃
are linearly independent functions of t. Also,

d

dt
X̃(t) =

d

dt
X(t+ T ) = X ′(t+ T ) = A(t + t)X(t+ T ) = A(t)X̃(t),

so X̃ solves the matrix equivalent of (49). Hence, X̃ is a fundamental matrix
for (49).

Because the dimension of the solution space of (49) is n, this means that
there is a nonsingular (constant) matrix C such that X(t+ T ) = X(t)C for
every t ∈ R. C is called a monodromy matrix.

Lemma There exists B ∈ L(C n , C n) such that C = eTB.

Proof. Without loss of generality, we assume that T = 1, since if it isn’t we
can just rescale B by a scalar constant. We also assume, without loss of
generality, that C is in Jordan canonical form. (If it isn’t, then use the fact
that P−1CP = eB implies that C = ePBP

−1
.) Furthermore, because of the

way the matrix exponential acts on a block diagonal matrix, it suffices to
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show that for each p× p Jordan block

C̃ :=


λ 0 · · · · · · 0

1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 λ

 ,

C̃ = eB̃ for some B̃ ∈ L(C p , C p).
Now, an obvious candidate for B̃ is the natural logarithm of C̃, defined in

some reasonable way. Since the matrix exponential was defined by a power
series, it seems reasonable to use a similar definition for a matrix logarithm.
Note that C̃ = λI + N = λI(I + λ−1N), where N is nilpotent. (Since C is
invertible, we know that all of the eigenvalues λ are nonzero.) We guess

B̃ = (log λ)I + log(I + λ−1N), (50)

where

log(I +M) := −
∞∑
k=1

(−M)k

k
,

in analogy to the Maclaurin series for log(1 + x). Since N is nilpotent, this
series terminates in our application of it to (50). Direct substitution shows

that eB̃ = C̃, as desired.

The eigenvalues ρ of C are called the Floquet multipliers (or character-
istic multipliers) of (49). The corresponding numbers λ satisfying ρ = eλT

are called the Floquet exponents (or characteristic exponents) of (49). Note
that the Floquet exponents are only determined up to a multiple of (2πi)/T .
Given B for which C = eTB, the exponents can be chosen to be the eigen-
values of B.

Theorem There exists a T -periodic function P : R → L(Rn ,Rn) such that

X(t) = P (t)etB.
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Proof. Let P (t) = X(t)e−tB. Then

P (t+ T ) = X(t+ T )e−(t+T )B = X(t+ T )e−TBe−tB = X(t)Ce−TBe−tB

= X(t)eTBe−TBe−tB = X(t)e−tB = P (t).

The decomposition of X(t) given in this theorem shows that the behavior
of solutions can be broken down into the composition of a part that is periodic
in time and a part that is exponential in time. Recall, however, that B may
have entries that are not real numbers, so P (t) may be complex, also. If we
want to decompose X(t) into a real periodic matrix times a matrix of the
form etB where B is real, we observe that X(t+2T ) = X(t)C2, where C is the
same monodromy matrix as before. It can be shown that the square of a real
matrix can be written as the exponential of a real matrix. Write C2 = eTB

with B real, and let P (t) = X(t)e−tB as before. Then, X(t) = P (t)etB where
P is now 2T -periodic, and everything is real.

The Floquet multipliers and exponents do not depend on the particular
fundamental matrix chosen, even though the monodromy matrix does. They
depend only on A(t). To see this, let X(t) and Y (t) be fundamental matrices
with corresponding monodromy matrices C and D. Because X(t) and Y (t)
are fundamental matrices, there is a nonsingular constant matrix S such
that Y (t) = X(t)S for all t ∈ R. In particular, Y (0) = X(0)S and Y (T ) =
X(T )S. Thus,

C = [X(0)]−1X(T ) = S[Y (0)]−1Y (T )S−1 = S[Y (0)]−1Y (0)DS−1 = SDS−1.

This means that the monodromy matrices are similar and, therefore, have
the same eigenvalues.

Interpreting Floquet Multipliers and Exponents

Theorem If ρ is a Floquet multiplier of (49) and λ is a corresponding Floquet
exponent, then there is a nontrivial solution x of (49) such that x(t + T ) =
ρx(t) for every t ∈ R and x(t) = eλtp(t) for some T -periodic vector function
p.

Proof. Pick x0 to be an eigenvector of B corresponding to the eigenvalue λ,
where X(t) = P (t)etB is the decomposition of a fundamental matrix X(t).
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Let x(t) = X(t)x0. Then, clearly, x solves (49). The power series formula for
the matrix exponential implies that x0 is an eigenvector of etB with eigenvalue
eλt. Hence,

x(t) = X(t)x0 = P (t)etBx0 = P (t)eλtx0 = eλtp(t),

where p(t) = P (t)x0. Also,

x(t + T ) = eλT eλtp(t+ T ) = ρeλtp(t) = ρx(t).

Time-dependent Change of Variables

Let x solve (49), and let y(t) = [P (t)]−1x(t), where P is as defined previously.
Then

d

dt
[P (t)y(t)] =

d

dt
x(t) = A(t)x(t) = A(t)P (t)y(t) = A(t)X(t)e−tBy(t).

But

d

dt
[P (t)y(t)] = P ′(t)y(t) + P (t)y′(t)

= [X ′(t)e−tB −X(t)e−tBB]y(t) +X(t)e−tBy′(t)

= A(t)X(t)e−tBy(t)−X(t)e−tBBy(t) +X(t)e−tby′(t),

so

X(t)e−tBy′(t) = X(t)e−tBBy(t),

which implies that y′(t) = By(t); i.e., y solves a constant coefficient linear
equation. Since P is periodic and, therefore, bounded, the growth and decay
of x and y are closely related. Furthermore, the growth or decay of y is
determined by the eigenvalues of B, i.e., by the Floquet exponents of (49).
For example, we have the following results.

Theorem If all the Floquet exponents of (49) have negative real parts then all
solutions of (49) converge to 0 as t ↑ ∞.

Theorem If there is a nontrivial T -periodic solution of (49) then there must
be a Floquet multiplier of modulus 1.
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Computing Floquet Multipliers and Exponents

Although Floquet multipliers and exponents are determined by A(t), it is
not obvious how to calculate them. As a previous exercise illustrated, the
eigenvalues of A(t) don’t seem to be extremely relevant. The following result
helps a little bit.

Theorem If (49) has Floquet multipliers ρ1, . . . , ρn and corresponding Floquet
exponents λ1, . . . , λn, then

ρ1 · · · ρn = exp

(∫ T

0

traceA(t) dt

)
(51)

and

λ1 + · · ·+ λn ≡
1

T

∫ T

0

traceA(t) dt mod
2πi

T
(52)

Proof. We focus on (51). The formula (52) will follow immediately from (51).
Let W (t) be the determinant of the principal fundamental matrix X(t).

Let Sn be the set of permutations of {1, 2, . . . , n} and let ε : Sn → {−1, 1}
be the parity map. Then

W (t) =
∑
σ∈Sn

ε(σ)X1,σ(1)X2,σ(2) · · ·Xn,σ(n),

where Xi,j is the (i, j)-th entry of X(t).
Differentiating yields

dW (t)

dt
=
∑
σ∈Sn

ε(σ)
d

dt

[
X1,σ(1)X2,σ(2) · · ·Xn,σ(n)

]
=

n∑
i=1

∑
σ∈Sn

ε(σ)X1,σ(1) · · ·Xi−1,σ(i−1)

[
d

dt
Xi,σ(i)

]
Xi+1,σ(i+1) · · ·Xn,σ(n)

=
n∑
i=1

∑
σ∈Sn

ε(σ)X1,σ(1) · · ·Xi−1,σ(i−1)

[
n∑
j=1

Ai,j(t)Xj,σ(i)

]
Xi+1,σ(i+1) · · ·Xn,σ(n)

=
n∑
i=1

n∑
j=1

Ai,j(t)

(∑
σ∈Sn

ε(σ)X1,σ(1) · · ·Xi−1,σ(i−1)Xj,σ(i)Xi+1,σ(i+1) · · ·Xn,σ(n)

)
.
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If i 6= j, the inner sum is the determinant of the matrix obtained by
replacing the ith row of X(t) by its jth row. This new matrix, having two
identical rows, must necessarily have determinant 0. Hence,

dW (t)

dt
=

n∑
i=1

Ai,i(t) detX(t) = [traceA(t)]W (t).

Thus,

W (t) = e
R t
0

traceA(s) dsW (0) = e
R t
0

traceA(s) ds.

In particular,

e
R T
0 traceA(s) ds = W (T ) = detX(T ) = det(P (T )eTB) = det(P (0)eTB)

= det eTB = detC = ρ1ρ2 · · · ρn.

Exercise 12 Consider (49) where

A(t) =

[
1
2
− cos t b
a 3

2
+ sin t

]
and a and b are constants. Show that there is a solution of (49) that
becomes unbounded as t ↑ ∞.
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Invariant Sets and Limit Sets
Lecture 18
Math 634
10/11/99

We will now begin an intensive study of the continuously differentiable
autonomous system

ẋ = f(x)

or, equivalently, of the corresponding dynamical system ϕ(t, x). We will
denote the phase space Ω and assume that it is an open (not necessarily
proper) subset of Rn .

Orbits

Definition Given x ∈ Ω, the (complete) orbit through x is the set

γ(x) :=
{
ϕ(t, x)

∣∣ t ∈ R},
the positive semiorbit through x is the set

γ+(x) :=
{
ϕ(t, x)

∣∣ t ≥ 0},

and the negative semiorbit through x is the set

γ−(x) :=
{
ϕ(t, x)

∣∣ t ≤ 0}.

Invariant Sets

Definition A setM⊆ Ω is invariant under ϕ if it contains the complete orbit
of every point of M. In other words, for every x ∈ M and every t ∈ R,
ϕ(t, x) ∈M.

Definition A set M ⊆ Ω is positively invariant under ϕ if it contains the
positive semiorbit of every point ofM. In other words, for every x ∈M and
every t ≥ 0, ϕ(t, x) ∈ M.

Definition A set M ⊆ Ω is negatively invariant under ϕ if it contains the
negative semiorbit of every point of M. In other words, for every x ∈ M
and every t ≤ 0, ϕ(t, x) ∈M.
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Limit Sets

Definition Given x ∈ Ω, the ω-limit set of x, denoted ω(x), is the set{
y ∈ Ω

∣∣ lim inf
t↑∞

|ϕ(t, x)− y| = 0
}

=
{
y ∈ Ω

∣∣ ∃t1, t2, . . .→∞ s.t. ϕ(tk, x)→ y as k ↑ ∞
}
.

Definition Given x ∈ Ω, the α-limit set of x, denoted α(x), is the set{
y ∈ Ω

∣∣ lim inf
t↓−∞

|ϕ(t, x)− y| = 0
}

=
{
y ∈ Ω

∣∣ ∃t1, t2, . . .→ −∞ s.t. ϕ(tk, x)→ y as k ↑ ∞
}
.

Lemma If, for each A ∈ Ω, we let A represent the topological closure of A in
Ω, then

ω(x) =
⋂
τ∈R

γ+(ϕ(τ, x)) (53)

and

α(x) =
⋂
τ∈R

γ−(ϕ(τ, x)). (54)

Proof. It suffices to prove (53); (54) can then be established by time reversal.
Let y ∈ ω(x) be given. Pick a sequence t1, t2, . . . → ∞ such that

ϕ(tk, x) → y as k ↑ ∞. Let τ ∈ R be given. Pick K ∈ N such that
tk ≥ τ for all k ≥ K. Note that ϕ(tk, x) ∈ γ+(ϕ(τ, x)) for all k ≥ K, so

y ∈ γ+(ϕ(τ, x)).

Since this holds for all τ ∈ R, we know that

y ∈
⋂
τ∈R

γ+(ϕ(τ, x)). (55)

Since (55) holds for each y ∈ ω(x), we know that

ω(x) ⊆
⋂
τ∈R

γ+(ϕ(τ, x)). (56)
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Now, we prove the inverse inclusion. Let

y ∈
⋂
τ∈R

γ+(ϕ(τ, x))

be given. This implies, in particular, that

y ∈
⋂
τ∈N

γ+(ϕ(τ, x)).

For each k ∈ N , we have

y ∈ γ+(ϕ(k, x))

so we can pick zk ∈ γ+(ϕ(k, x)) such that |zk − y| < 1/k. Since zk ∈
γ+(ϕ(k, x)), we can pick sk ≥ 0 such that zk = ϕ(sk, ϕ(k, x)). If we set
tk = k + sk, we see that tk ≥ k, so the sequence t1, t2, . . . goes to infinity.
Also, since

|ϕ(tk, x)− y| = |ϕ(sk + k, x)− y| = |ϕ(sk, ϕ(k, x))− y| = |zk − y| < 1/k,

we know that ϕ(tk, x) → y as k ↑ ∞. Hence, y ∈ ω(x). Since this holds for
every

y ∈
⋂
τ∈R

γ+(ϕ(τ, x)),

we know that ⋂
τ∈R

γ+(ϕ(τ, x)) ⊆ ω(x).

Combining this with (56) gives (53).

We now describe some properties of limit sets.

Theorem Given x ∈ Ω, ω(x) and α(x) are closed (relative to Ω) and invariant.
If γ+(x) is contained in some compact subset of Ω, then ω(x) is nonempty,
compact, and connected. If γ−(x) is contained in some compact subset of Ω,
then α(x) is nonempty, compact, and connected.

80



Proof. Again, time-reversal arguments tell us that we only need to prove the
statements about ω(x).

Step 1: ω(x) is closed.
This is a consequence of the lemma and the fact that the intersection of
closed sets is closed.

Step 2: ω(x) is invariant.
Let y ∈ ω(x) and t ∈ R be given. Choose a sequence of times (tk) converging
to infinity such that ϕ(tk, x)→ y as k ↑ ∞. For each k ∈ N , let sk = tk + t,
and note that (sk) converges to infinity and

ϕ(sk, x) = ϕ(tk + t, x) = ϕ(t, ϕ(tk, x))→ ϕ(t, y)

as k ↑ ∞ (by the continuity of ϕ(t, ·)). Hence, ϕ(t, y) ∈ ω(x). Since t ∈ R
and y ∈ ω(x) were arbitrary, we know that ω(x) is invariant.

Now, suppose that γ+(x) is contained in a compact subset K of Ω.

Step 3: ω(x) is nonempty.
The sequence ϕ(1, x), ϕ(2, x), . . . is contained in γ+(x) ⊆ K, so by the
Bolzano-Weierstrass Theorem, some subseqence ϕ(t1, x), ϕ(t2, x), . . . converges
to a point y ∈ K. By definition, y ∈ ω(x).

Step 4: ω(x) is compact.
By the Heine-Borel Theorem, K is closed (relative to Rn), so, by the choice
of K, ω(x) ⊆ K. Since, by Step 1, ω(x) is closed relative to Ω, it is also
closed relative to K. Since K is compact, this means ω(x) is closed (relative
to Rn). Also, by the Heine-Borel Theorem, K is bounded so its subset ω(x)
is bounded, too. Thus, ω(x) is closed (relative to Rn) and bounded and,
therefore, compact.

Step 5: ω(x) is connected.
Suppose ω(x) were disconnected. Then there would be disjoint open subsets
G and H of Ω such that G ∩ ω(x) and H ∩ ω(x) are nonempty, and ω(x) is
contained in G ∪H. Then there would have to be a sequence s1, s2, . . .→∞
and a sequence t1, t2, . . . → ∞ such that ϕ(sk, x) ∈ G, ϕ(tk, x) ∈ H, and
sk < tk < sk+1 for each k ∈ N . Because (for each fixed k ∈ N){

ϕ(t, x)
∣∣ t ∈ [sk, tk]

}
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is a (connected) curve going from a point in G to a point inH, there must be a
time τk ∈ (sk, tk) such that ϕ(τk, x) ∈ K\G\H. Pick such a τk for each k ∈ N
and note that τ1, τ2, . . .→∞ and, by the Bolzano-Weierstrass Theorem, some
subsequence of (ϕ(τk, x)) must converge to a point y in K \G \H. Note that
y, being outside of G ∪ H, cannot be in ω(x), which is a contradiction.

Examples of empty ω-limit sets are easy to find. Consider, for example,
the one-dimensional dynamical system ϕ(t, x) := x + t (generated by the
differential equation ẋ = 1.

Examples of dynamical systems with nonempty, noncompact, discon-
nected ω-limit sets are a little harder to find. Consider the planar au-
tonomous system {

ẋ = −y(1− x2)

ẏ = x+ y(1− x2).

Although it takes a little work to show it, this differential equation generates
a dynamical system on R2 (without the need for rescaling), and

ω(x) =
{

(−1, y)
∣∣ y ∈ R} ∪ {(1, y)

∣∣ y ∈ R}
for every x in the punctured strip{

(x, y) ∈ R2
∣∣ |x| < 1 and x2 + y2 > 0

}
.
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Regular and Singular Points
Lecture 19
Math 634
10/13/99

Consider the differential equation ẋ = f(x) and its associated dynamical
system ϕ(t, x) on a phase space Ω.

Definition We say that a point x ∈ Ω is an equilibrium point or a singular
point or a critical point if f(x) = 0. For such a point, ϕ(t, x) = x for all
t ∈ R.

Definition A point x ∈ Ω that is not a singular point is called a regular point.

We shall show that all of the interesting local behavior of a continuous
dynamical system takes place close to singular points. We shall do this by
showing that in the neighborhood of each regular point, the flow is very
similar to unidirectional, constant-velocity flow.

One way of making the notion of similarity of flows precise is the following.

Definition Two dynamical systems ϕ : R × Ω → Ω and ψ : R × Θ → Θ are
topologically conjugate if there exists a homeomorphism (i.e., a continuous
bijection with continuous inverse) h : Ω→ Θ such that

h(ϕ(t, x)) = ψ(t, h(x)) (57)

for every t ∈ R and every x ∈ Ω. In other words, ψ = h ◦ ϕ(t, ·) ◦ h−1, or,
equivalently, the diagram

Ω
ϕ(t,·)−−−→ Ω

h

y yh
Θ

ψ(t,·)−−−→ Θ

commutes for each t ∈ R. The function h is called a topological conjugacy.
If, in addition, h and h−1 are r-times continuously differentiable, we say that
ϕ and ψ are Cr-conjugate.

A weaker type of similarity is the following.
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Definition Two dynamical systems ϕ : R × Ω → Ω and ψ : R × Θ → Θ are
topologically equivalent if there exists a homeomorphism h : Ω → Θ and a
time reparametrization function α : R × Ω → R such that, for each x ∈ Ω,
α(·, x) : R → R is an increasing surjection and

h(ϕ(α(t, x), x)) = ψ(t, h(x))

for every t ∈ R and every x ∈ Ω. If, in addition, h is r-times continuously
differentiable, we say that ϕ and ψ are Cr-equivalent.

A topological equivalence maps orbits to orbits and preserves the orien-
tation of time but may reparametrize time on each individual orbit.

As an example of the difference between these two concepts, consider the
two planar dynamical systems

ϕ(t, x) =

[
cos t − sin t
sin t cos t

]
x

and

ψ(t, y) =

[
cos 2t − sin 2t
sin 2t cos 2t

]
y,

generated, respectively, by the differential equations

ẋ =

[
0 −1
1 0

]
x

and

ẏ =

[
0 −2
2 0

]
y.

The functions h(x) = x and α(t, x) = 2t show that these two flows are
topologically equivalent. But these two flows are not topologically conjugate,
since, by setting t = π we see that any function h : R2 → R2 satisfying (57)
would have to satisfy h(x) = h(−x) for all x, which would mean that h is
not invertible.

Because of examples like this, topological equivalence seems to be the
preferred concept when dealing with flows. The following theorem, however,
shows that in a neighborhood of a regular point, a smooth flow satisfies
a local version of Cr-conjugacy with respect to a unidirectional, constant-
velocity flow.
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Theorem (Cr Rectification Theorem) Suppose f : Ω→ Rn is r-times continu-
ously differentiable (with r ≥ 1) and x0 is a regular point of the flow generated
by

ẋ = f(x). (58)

Then there is a neighborhood V of x0, a neighborhood W of the origin in Rn ,
and a Cr invertible map g : V → W such that, for each solution x of (58) in
V, y(t) := g(x(t)) satisfies the equation

ẏ =


1
0
...
0

 (59)

in W.

Proof. Without loss of generality, we shall assume that x0 = 0 and f(x0) =
f(0) = αe1 for some α > 0. Let W be a small ball centered at 0 in Rn ,
and define G(y) := G((y1, . . . , yn)T ) = ϕ(y1, (0, y2, . . . , yn)T ), where ϕ is the
flow generated by (58). (While ϕ might not be a genuine dynamical system
because it might not be defined for all time, we know that it is at least defined
long enough that G is well-defined if W is sufficiently small.)

In words, G(y) is the solution obtained by projecting y onto the plane
through the origin perpendicular to f(0) and locating the solution of (58)
that starts at this projected point after y1 units of time have elapsed.

Step 1: ϕ(·, p) is Cr+1.
We know that

d

dt
ϕ(t, p) = f(ϕ(t, p)). (60)

If f is continuous then, since ϕ(·, p) is continuous, (60) implies that ϕ(·, p)
is C1. If f is C1, then the previous observation implies that ϕ(·, p) is C1.
Then (60) implies that d

dt
ϕ(t, p) is the composition of C1 functions and is,

therefore, C1; this means that ϕ(·, p) is C2. Continuing inductively, we see
that, since f is Cr, ϕ(·, p) is Cr+1.

Step 2: ϕ(t, ·) is Cr.
This is a consequence of applying differentiability with respect to parameters
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inductively.

Step 3: G is Cr.
This is a consequence of Steps 1 and 2 and the formula for G in terms of ϕ.

Step 4: DG(0) is an invertible matrix.
Since

∂G(y)

∂y1

∣∣∣∣
y=0

=
∂

∂t
ϕ(t, 0)

∣∣∣∣
t=0

= f(0) = αe1

and

∂G(y)

∂yk

∣∣∣∣
y=0

=
∂

∂p
ϕ(0, p)

∣∣∣∣
p=0

ek =
∂p

∂p

∣∣∣∣
p=0

ek = ek,

for k 6= 1, we have

DG(0) =

 αe1 e2 · · · en

 ,
which is invertible since α 6= 0.

Step 5: If W is sufficiently small, then G is invertible.
This is a consequence of Step 4 and the Inverse Function Theorem.

Set g equal to the (locally defined) inverse of G. Since G is Cr, so is g.
The only thing remaining to check is that if x satisfies (58) then g◦x satisfies
(59). Equivalently, we can check that if y satisfies (59) then G◦y satisfies (58).

Step 6: If y satisfies (59) then G ◦ y satisfies (58).
By the chain rule,

d

dt
G(y(t)) =

∂

∂s
ϕ(s, (0, y2, . . . , yn))

∣∣∣∣
s=y1

ẏ1 +
∂

∂p
ϕ(y1, p)

∣∣∣∣
p=(0,y2,... ,yn)


0
ẏ2
...
ẏn


= f(ϕ(y1, (0, y2, . . . , yn))) = f(G(y)).
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Definitions of Stability
Lecture 20
Math 634
10/15/99

In the previous lecture, we saw that all the “interesting” local behavior of
flows occurs near equilibrium points. One important aspect of the behavior
of flows has to do with whether solutions that start near a given solution stay
near it for all time and/or move closer to it as time elapses. This question,
which is the subject of stability theory, is not just of interest when the given
solution corresponds to an equilibrium solution, so we study it–initially, at
least–in a fairly broad context.

Definitions

First, we define some types of stability for solutions of the (possibly nonau-
tonomous) equation

ẋ = f(t, x). (61)

Definition A solution x(t) of (61) is (Lyapunov) stable if for each ε > 0 and
t0 ∈ R there exists δ = δ(ε, t0) > 0 such that if x(t) is a solution of (61) and
|x(t0)− x(t0)| < δ then |x(t)− x(t)| < ε for all t ≥ t0.

Definition A solution x(t) of (61) is asymptotically stable if it is (Lyapunov)
stable and if for every t0 ∈ R there exists δ = δ(t0) > 0 such that if x(t) is a
solution of (61) and |x(t0)− x(t0)| < δ then |x(t)− x(t)| → 0 as t ↑ ∞.

Definition A solution x(t) of (61) is uniformly stable if for each ε > 0 there
exists δ = δ(ε) > 0 such that if x(t) is a solution of (61) and |x(t0)−x(t0)| < δ
for some t0 ∈ R then |x(t)− x(t)| < ε for all t ≥ t0.

Some authors use a weaker definition of uniform stability that turns out
to be equivalent to Lyapunov stability for autonomous equations. Since our
main interest is in autonomous equations and this alternative definition is
somewhat more complicated than the definition given above, we will not use
it here.

Definition A solution x(t) of (61) is orbitally stable if for every ε > 0 there
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exists δ = δ(ε) > 0 such that if x(t) is a solution of (61) and |x(t1)−x(t0)| < δ
for some t0, t1 ∈ R then ⋃

t≥t1

x(t) ⊆
⋃
t≥t0

B(x(t), ε).

Next, we present a couple of definitions of stability for subsets of the
(open) phase space Ω ⊆ Rn of a dynamical system ϕ(t, x). (In these defini-
tions, a neighborhood of a set A ⊆ Ω is an open subset of Ω that contains
A.)

Definition The set A is stable if every neighborhood of A contains a positively
invariant neighborhood of A.

Note that the definition implies that stable sets are positively invariant.

Definition The set A is asymptotically stable if it is stable and there is some
neighborhood V of A such that ω(x) ⊆ A for every x ∈ V. (If V can be
chosen to be the entire phase space, then A is globally asymptotically stable.)

Examples

We now consider a few examples that clarify some properties of these defini-
tions.

{
ẋ = −y/2
ẏ = 2x.

y

xb

1

Orbits are ellipses with major axis along the y-axis. The equilibrium
solution at the origin is Lyapunov stable even though nearby orbits sometimes
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move away from it.

{
ṙ = 0

θ̇ = r2,

or, equivalently,{
ẋ = −(x2 + y2)y

ẏ = (x2 + y2)x.

y

xb

2

The solution moving around the unit circle is not Lyapunov stable, since
nearby solutions move with different angular velocities. It is, however, or-
bitally stable. Also, the set consisting of the unit circle is stable.

{
ṙ = r(1− r)
θ̇ = sin2(θ/2).

y

xb b

3

The constant solution (x, y) = (1, 0) is not Lyapunov stable and the set
{(1, 0)} is not stable. However, every solution beginning near (1, 0) converges
to (1, 0) as t ↑ ∞. This shows that it is not redundant to require Lyapunov
stability (or stability) in the definition of asymptotic stability of a solution
(or a set).
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Stability in Autonomous Equations

When we are dealing with a smooth autonomous differential equation

ẋ = f(x) (62)

on an open set Ω ⊆ Rn , all of the varieties of stability can be applied to
essentially the same object. In particular, let x be a function that solves
(62), and let

A(x) :=
{
x(t)

∣∣ t ∈ R}
be the corresponding orbit. Then it makes sense to talk about the Lyapunov,
asymptotic, orbital, or uniform stability of x, and it makes sense to talk about
the stability or asymptotic stability of A(x).

In this context, certain relationships between the various types of stability
follow from the definitions without too much difficulty.

Theorem Let x be a function that solves (62), and let A(x) be the correspond-
ing orbit. Then:

1. If x is asymptotically stable then x is Lyapunov stable;

2. If x is uniformly stable then x is Lyapunov stable;

3. If x is uniformly stable then x is orbitally stable;

4. If A(x) is asymptotically stable then A(x) is stable;

5. If A(x) contains only a single point, then Lyapunov stability of x, or-
bital stability of x, uniform stability of x, and stability of A(x) are
equivalent.

We will not prove this theorem, but we will note that parts 1 and 2 are
immediate results of the definitions (even if we were dealing with a nonau-
tonomous equation) and part 4 is also an immediate result of the definitions
(even if A were an arbitrary set).
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Exercise 13 In items 1–18, an autonomous differential equation, a phase
space Ω (that is an open subset of Rn), and a particular solution x of the
equation are specified. For each of these items, state which of the following
statements is/are true:

(a) x is Lyapunov stable;

(b) x is asymptotically stable;

(c) x is orbitally stable;

(d) x is uniformly stable;

(e) A(x) is stable;

(f) A(x) is asymptotically stable.

You do not need to justify your answers or show your work. It may con-
venient to express your answers in a concise form (e.g., in a table of some
sort). Use of variables r and θ signifies that the equation (as well as the
particular solution) is to be interpreted as in polar form.
(The exercise is continued in the next box.)
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Exercise 13 (continued)

1. ẋ = x, Ω = R, x(t) := 0

2. ẋ = x, Ω = R, x(t) := et

3. {ẋ1 = 1 + x2
2, ẋ2 = 0}, Ω = R2 , x(t) := (t, 0)

4. {ṙ = 0, θ̇ = r2}, Ω = R2 , x(t) := (1, t)

5. ẋ = x, Ω = (0,∞), x(t) := et

6. {ẋ1 = 1, ẋ2 = −x1x2}, Ω = R2 , x(t) := (t, 0)

7. ẋ = tanhx, Ω = R, x(t) := sinh−1(et)

8. {ẋ1 = tanhx1, ẋ2 = 0}, Ω = (0,∞)× R, x(t) := (sinh−1(et), 0)

9. ẋ = tanhx, Ω = (0,∞), x(t) := sinh−1(et)

10. {ẋ1 = sech x1, ẋ2 = −x1x2 sech x1}, Ω = R2 ,
x(t) := (sinh−1(t), 0)

11. ẋ = x2/(1 + x2), Ω = R, x(t) := −2/(t+
√
t2 + 4)

12. {ẋ1 = sech x1, ẋ2 = −x2}, Ω = R2 , x(t) := (sinh−1(t), 0)

13. ẋ = sech x, Ω = R, x(t) := sinh−1(t)

14. {ẋ1 = 1, ẋ2 = 0}, Ω = R2 , x(t) := (t, 0)

15. ẋ = 0, Ω = R, x(t) := 0

16. ẋ = 1, Ω = R, x(t) := t

17. {ẋ1 = −x1, ẋ2 = −x2}, Ω = R2 , x(t) := (e−t, 0)

18. ẋ = −x, Ω = R, x(t) := 0
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Principle of Linearized Stability
Lecture 21
Math 634
10/18/99

Suppose f is a continuously differentiable function such that

ẋ = f(x) (63)

generates a continuous dynamical system ϕ on Ω ⊆ Rn . Suppose, moreover,
that x0 ∈ Ω is a singular point of ϕ. If x solves (63) and we set u := x− x0

and A := Df(x0), we see that, by the definition of derivative,

u̇ = f(u+ x0) = f(x0) +Df(x0)u+R(u) = Au+R(u), (64)

where R(u)/|u| → 0 as |u| ↓ 0. Because R(u) is small when u is small, it is
reasonable to believe that solutions of (64) behave similarly to solutions of

u̇ = Au (65)

for u near 0. Equivalently, it is reasonable to believe that solutions of (63)
behave like solutions of

ẋ = A(x− x0) (66)

for x near x0. Equation (65) (or sometimes (66)) is called the linearization
of (63) at x0.

Now, we’ve defined (several types of) stability for equilibrium solutions
of (63) (as well as for other types of solutions and sets), but we haven’t really
given any tools for determining stability. In this lecture we present one such
tool, using the linearized equation(s) discussed above.

Definition An equilibrium point x0 of (63) is hyperbolic if none of the eigen-
values of Df(x0) have zero real part.

If x0 is hyperbolic, then either all the eigenvalues of A := Df(x0) have
negative real part or at least one has positive real part. In the former case,
we know that 0 is an asymptotically stable equilibrium solution of (65); in
the latter case, we know that 0 is an unstable solution of (65). The following
theorem says that similar things can be said about the nonlinear equation
(63).
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Theorem (Principle of Linearized Stability) If x0 is a hyperbolic equilibrium so-
lution of (63), then x0 is either unstable or asymptotically stable, and its
stability type (w.r.t. (63)) matches the stability type of 0 as an equilibrium
solution of (65) (where A := Df(x0)).

This theorem is an immediate consequence of the following two proposi-
tions.

Proposition (Asymptotic Stability) If x0 is an equilibrium point of (63) and all
the eigenvalues of A := Df(x0) have negative real part, then x0 is asymptot-
ically stable.

Proposition (Instability) If x0 is an equilibrium point of (63) and some eigen-
value of A := Df(x0) has positive real part, then x0 is unstable.

Before we prove these propositions, we state and prove a lemma to which
we have referred before in passing.

Lemma Let V be a finite-dimensional real vector space and let L ∈ L(V,V).
If all the eigenvalues of L have real part larger than c, then there is an inner
product 〈·, ·〉 and an induced norm ‖ · ‖ on V such that

〈v, Lv〉 ≥ c‖v‖2

for every v ∈ V.

Proof. Let n = dimV, and pick ε > 0 so small that all the eigenvalues of L
have real part greater than c + nε. Choose a basis {v1, . . . , vn} for V that
puts L in “modified” real canonical form with the off-diagonal 1’s replaced
by ε’s, and let 〈·, ·〉 be the inner product associated with this basis (i.e.
〈vi, vj〉 = δij) and let ‖ · ‖ be the induced norm on V.

Given v =
∑n

i=1 αivi ∈ V, note that (if L = (`ij))

〈v, Lv〉 =
n∑
i=1

`iiα
2
i +

n∑
i=1

∑
j 6=i

`ijαiαj ≥
n∑
i=1

`iiα
2
i −

n∑
i=1

∑
j 6=i

ε

(
α2
i + α2

j

2

)
≥

n∑
i=1

`iiα
2
i −

n∑
i=1

nεα2
i =

n∑
i=1

(`ii − nε)α2
i ≥

n∑
i=1

cα2
i = c‖v‖2.
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Note that applying this theorem to −L also tells us that, for some inner
product,

〈v, Lv〉 ≤ c‖v‖2 (67)

if all the eigenvalues of L have real part less than c.

Proof of Proposition on Asymptotic Stability. Without loss of generality, as-
sume that x0 = 0. Pick c < 0 such that all the eigenvalues of A have real
part strictly less than c. Because of equivalence of norms and because of the
lemma, we can work with a norm ‖ · ‖ and a corresponding inner product
〈·, ·〉 for which (67) holds, with L = A. Let r > 0 be small enough that
‖R(x)‖ ≤ −c/2‖x‖ for all x satisfying ‖x‖ ≤ r, and let

Br :=
{
x ∈ Ω

∣∣ ‖x‖ < r}.

If x(t) is a solution of (63) that starts in Br at time t = 0, then as long as
x(t) remains in Br

d

dt
‖x(t)‖2 = 2〈x(t), ẋ(t)〉 = 2〈x(t), f(x(t))〉

= 2〈x(t), Ax(t)〉 + 2〈x(t), R(x(t))〉
≤ 2c‖x(t)‖2 + 2‖x(t)‖ · ‖R(x(t))‖
≤ 2c‖x(t)‖2 − c‖x(t)‖2 = c‖x(t)‖2.

This means that x(t) ∈ Br for all t ≥ 0, and x(t) converges to 0 (exponentially
quickly) as t ↑ ∞.

The proof of the second proposition will be geometric and will contain
ideas that will be used to prove stronger results later in this course.

Proof of Proposition on Instability. We assume again that x0 = 0. If Eu,Es,
and E c are, respectively, the unstable, stable, and center spaces corresponding
to (65), set E− := Es ⊕ E c and E+ := Eu. Then Rn = E+ ⊕ E−, all of the
eigenvalues of A+ := A|E+ have positive real part, and all of the eigenvalues
of A− := A|E− have nonpositive real part. Pick constants a > b > 0 such
that all of the eigenvalues of A+ have real part larger than a and all of the
eigenvalues of A− have real part less than b. Define an inner product 〈·, ·〉+
(and induced norm ‖ · ‖+) on E+ such that

〈v, Av〉+ ≥ a‖v‖2
+
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for all v ∈ E+, and define an inner product 〈·, ·〉− (and induced norm ‖ · ‖−)
on E− such that

〈w,Aw〉− ≤ b‖w‖2
−

for all w ∈ E−. Define 〈·, ·〉 on E+ ⊕ E− to be the direct sum of 〈·, ·〉+ and
〈·, ·〉−; i.e., let

〈v1 + w1, v2 + w2〉 := 〈v1, v2〉+ + 〈w1, w2〉−

for all (v1, w1), (v2, w2) ∈ E+ × E−. Let ‖ · ‖ be the induced norm, and note
that

‖v + w‖2 = ‖v‖2
+ + ‖w‖2

− = ‖v‖2 + ‖w‖2

for all (v, w) ∈ E+ × E−.
Now, take (63) and project it onto E+ and E− to get the corresponding

system for (v, w) ∈ E+ × E−{
v̇ = A+v +R+(v, w)

ẇ = A−w +R−(v, w),
(68)

with ‖R±(v, w)‖/‖v + w‖ converging to 0 as ‖v + w‖ ↓ 0. Pick ε > 0
small enough that a − b − 2

√
2ε > 0, and pick r > 0 small enough that

‖R±(v, w)‖ ≤ ε‖v + w‖ whenever

v + w ∈ Br :=
{
v + w ∈ E+ ⊕ E−

∣∣ ‖v + w‖ < r
}
.

Consider the truncated cone

Kr :=
{
v + w ∈ E+ ⊕ E−

∣∣ ‖v‖ > ‖w‖} ∩ Br.
(See Figure 1.) Suppose x = v + w is a solution of (68) that starts in Kr at
time t = 0. For as long as the solution remains in Kr,

d

dt
‖v‖2 = 2〈v, v̇〉 = 2〈v, A+v〉+ 2〈v, R+(v, w)〉

≥ 2a‖v‖2 − 2‖v‖ · ‖R+(v, w)‖ ≥ 2a‖v‖2 − 2ε‖v‖ · ‖v + w‖
= 2a‖v‖2 − 2ε‖v‖

(
‖v‖2 + ‖w‖2

)1/2 ≥ 2a‖v‖2 − 2
√

2ε‖v‖2

= 2(a−
√

2ε)‖v‖2,
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Br

Kr

Figure 1: The truncated cone.

and

d

dt
‖w‖2 = 2〈w, ẇ〉 = 2〈w,A−w〉+ 2〈w,R−(v, w)〉

≤ 2b‖w‖2 + 2‖w‖ · ‖R−(v, w)‖ ≤ 2b‖w‖2 + 2ε‖w‖ · ‖v + w‖
= 2b‖w‖2 + 2ε‖w‖

(
‖v‖2 + ‖w‖2

)1/2 ≤ 2b‖v‖2 + 2
√

2ε‖v‖2

= 2(b+
√

2ε)‖v‖2.

The first estimate says that as long as the solution stays in Kr, ‖v‖ grows
exponentially; this means that the solution must eventually leave Kr. Com-
bining the first and second estimates, we have

d

dt
(‖v‖2 − ‖w‖2) ≥ 2(a− b− 2

√
2ε)‖v‖2 > 0,

so g(v + w) := ‖v‖2 − ‖w‖2 increases as t increases. But g is 0 on the
lateral surface of Kr and is strictly positive in Kr, so the solution cannot
leave Kr through its lateral surface. Thus, the solution leaves Kr by leaving
Br. Since this holds for all solutions starting in Kr, we know that x0 must
be an unstable equilibrium point for (63).
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Lyapunov’s Direct Method
Lecture 22
Math 634
10/20/99

An other tool for determining stability of solutions is Lyapunov’s direct
method. While this method may actually seem rather indirect, it does work
directly on the equation in question instead of on its linearization.

We will consider this method for equilibrium solutions of (possibly) nonau-
tonomous equations. Let Ω ⊆ Rn be open and contain the origin, and sup-
pose that f : R×Ω → Rn is a continuously differentiable function. Suppose,
furthermore, that f(t, 0) = 0 for every t ∈ R, so x(t) := 0 is a solution of the
equation

ẋ = f(t, x). (69)

(The results we obtain in this narrow context can be applied to determine
the stability of other constant solutions of (69) by translation.)

In this lecture, a subset of Ω that contains the origin in its interior will
be called a neighborhood of 0.

Definition Suppose that D is a neighborhood of 0 and that W : D → R is
continuous and satisfies W (0) = 0. Then:

• If W (x) ≥ 0 for every x ∈ D, then W is positive semidefinite.

• If W (x) > 0 for every x ∈ D \ {0}, then W is positive definite.

• If W (x) ≤ 0 for every x ∈ D, then W is negative semidefinite.

• If W (x) < 0 for every x ∈ D \ {0}, then W is negative definite.

Definition Suppose that D is a neighborhood of 0 and that V : R × D → R
is continuous and satisfies V (t, 0) = 0 for every t ∈ R. Then:

• If there is a positive semidefinite function W : D → R such that
V (t, x) ≥W (x) for every (t, x) ∈ R×D, then V is positive semidefinite.

• If there is a positive definite function W : D → R such that V (t, x) ≥
W (x) for every (t, x) ∈ R ×D, then V is positive definite.
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• If there is a negative semidefinite function W : D → R such that
V (t, x) ≤W (x) for every (t, x) ∈ R×D, then V is negative semidefinite.

• If there is a negative definite function W : D → R such that V (t, x) ≤
W (x) for every (t, x) ∈ R ×D, then V is negative definite.

Definition If V : R×D is continuously differentiable then its orbital derivative
(w.r.t. (69)) is the function V̇ : R ×D → R given by the formula

V̇ (t, x) :=
∂V

∂t
(t, x) +

∂V

∂x
(t, x) · f(t, x).

(Here “∂V (t, x)/∂x” represents the gradient of the function V (t, ·).)

Note that if x(t) is a solution of (69) then, by the chain rule,

d

dt
V (t, x(t)) = V̇ (t, x(t)).

A function whose orbital derivative is always nonpositive is sometimes called
a Lyapunov function.

Theorem (Lyapunov Stability) If there is a neighborhood D of 0 and a contin-
uously differentiable positive definite function V : R × D → R whose orbital
derivative V̇ is negative semidefinite, then 0 is a Lyapunov stable solution of
(69).

Proof. Let ε > 0 and t0 ∈ R be given. Assume, without loss of generality,
that B(0, ε) is contained in D. Pick a positive definite function W : D → R
such that V (t, x) ≥W (x) for every (t, x) ∈ R ×D. Let

m := min
{
W (x)

∣∣ |x| = ε
}
.

Since W is continuous and positive definite, m is well-defined and positive.
Pick δ > 0 small enough that δ < ε and

max
{
V (t0, x)

∣∣ |x| ≤ δ
}
< m.

(Since V is positive definite and continuous, this is possible.)
Now, if x(t) solves (69) and |x(t0)| < δ then V (t0, x(t0)) < m, and

d

dt
V (t, x(t)) = V̇ (t, x(t)) ≤ 0,
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for all t, so V (t, x(t)) < m for every t ≥ t0. Thus, W (x(t)) < m for every
t ≥ t0, so, for every t ≥ t0, |x(t)| 6= ε. Since |x(t0)| < ε, this tells us that
|x(t)| < ε for every t ≥ t0.

Theorem (Asymptotic Stability) Suppose that there is a neighborhood D of 0
and a continuously differentiable positive definite function V : R × D → R
whose orbital derivative V̇ is negative definite, and suppose that there is a
positive definite function W : D → R such that V (t, x) ≤ W (x) for every
(t, x) ∈ R ×D. Then 0 is an asymptotically stable solution of (69).

Proof. By the previous theorem, 0 is a Lyapunov stable solution of (69). Let
t0 ∈ R be given. Assume, without loss of generality, that D is compact.
By Lyapunov stability, we know that we can choose a neighborhood U of 0
such that if x(t) is a solution of (69) and x(t0) ∈ U , then x(t) ∈ D for every
t ≥ t0. We claim that, in fact, if x(t) is a solution of (69) and x(t0) ∈ U ,
then x(t)→ 0 as t ↑ ∞. Verifying this claim will prove the theorem.

Suppose that V (t, x(t)) does not converge to 0 as t ↑ ∞. The negative
definiteness of V̇ implies that V (·, x(·)) is nonincreasing, so, since V ≥ 0,
there must be a number c > 0 such that V (t, x(t)) ≥ c for every t ≥ t0. Then
W (x(t)) ≥ c > 0 for every t ≥ t0. Since W (0) = 0 and W is continuous,

inf
{
|x(t)|

∣∣ t ≥ t0
}
≥ ε (70)

for some constant ε > 0. Pick a negative definite function Y : D → R such
that V̇ (t, x) ≤ Y (x) for every (t, x) ∈ R×D. The compactness of D\B(0, ε),
along with (70), implies that{

Y (x(t))
∣∣ t ≥ t0

}
is bounded away from 0. This, in turn, implies that{

V̇ (t, x(t))
∣∣ t ≥ t0

}
is bounded away from 0. In other words,

d

dt
V (t, x(t)) = V̇ (t, x(t)) ≤ −δ (71)

for some constant δ > 0. Clearly, (71) contradicts the nonnegativity of V for
large t.
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That contradiction implies that V (t, x(t)) → 0 as t ↑ ∞. Pick a pos-
itive definite function W : D → R such that V (t, x) ≥ W (x) for every
(t, x) ∈ R ×D, and note that W (x(t))→ 0 as t ↑ ∞.

Let r > 0 be given, and let

wr = min
{
W (p)

∣∣ p ∈ D \B(0, r)
}
,

which is defined and positive by the compactness of D and the continuity
and positive definiteness of W . Since W (x(t)) → 0 as t ↑ ∞, there exists T
such that W (x(t)) < wr for every t > T . Thus, for t > T , it must be the
case that x(t) ∈ B(0, r). Hence, 0 is asymptotically stable.

It may seem strange that we ned to bound V by a time-independent,
positive definite function W from above. Indeed, some textbooks (see, e.g.,
Theorem 2.20 in Stability, Instability, and Chaos by Glendinning) contain
asymptotic stability theorems omitting this hypothesis. A counterexample
by Massera demonstrates the necessity of the hypothesis.
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Exercise 14 Show, by means of a counterexample, that the theorem on
asymptotic stability via Lyapunov’s direct method fails if the hypothesis
about W is dropped.
(You may, but do not have to, proceed as follows. Let g : R → R be a
function that is twice continuously differentiable and satisfies g(t) ≥ e−t

for every t ∈ R, g(t) ≤ 1 for every t ≥ 0, g(t) = e−t for every

t /∈
⋃
n∈N

(n− 2−n, n+ 2−n),

and g(n) = 1 for every n ∈ N . Let f : R × R → R be the function defined
by the formula

f(t, x) :=
g′(t)

g(t)
x,

and let V : R × R → R be the function defined by the formula

V (t, x) :=
x2

[g(t)]2

[
3−

∫ t

0

[g(τ)]2 dτ

]
.

Show that, for x near 0, V (t, x) is positive definite, V̇ (t, x) is negative
definite, and the solution 0 of (69) is not asymptotically stable.)
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LaSalle’s Invariance Principle
Lecture 23
Math 634
10/22/99

Linearization versus Lyapunov Functions

In the previous two lectures, we have talked about two different tools that
can be used to prove that an equilibrium point x0 of an autonomous system

ẋ = f(x) (72)

is asymptotically stable: linearization and Lyapunov’s direct method. One
might ask which of these methods is better. Certainly, linearization seems
easier to apply because of its straightforward nature: Compute the eigen-
values of Df(x0). The direct method requires you to find an appropriate
Lyapunov function, which doesn’t seem so straightforward. But, in fact,
anytime linearization works, a simple Lyapunov function works, as well.

To be more precise, suppose x0 = 0 and all the eigenvalues of A := Df(0)
have negative real part. Pick an inner product 〈·, ·〉 and induced norm ‖ · ‖
such that, for some c > 0,

〈x,Ax〉 ≤ −c‖x‖2

for all x ∈ Rn . Pick r > 0 small enough that ‖f(x) − Ax‖ ≤ (c/2)‖x‖
whenever ‖x‖ ≤ r, let

D =
{
x ∈ Rn

∣∣ ‖x‖ ≤ r
}
,

and define V : R × D → R by the formula V (t, x) = ‖x‖2. Since ‖ · ‖ is a
norm, V is positive definite. Also

V̇ (t, x) = 2〈x, f(x)〉 = 2(〈x,Ax〉+ 〈x, f(x)−Ax〉)
≤ 2(−c‖x‖2 + ‖x‖‖f(x)−Ax‖) ≤ −c‖x‖2,

so V̇ is negative definite.
On the other hand, there are very simple examples to illustrate that the

direct method works in some cases where linearization doesn’t. For example,
consider ẋ = −x3 on R. The equilibrium point at the origin is not hyperbolic,
so linearization fails to determine stability, but it is easy to check that x2 is
positive definite and has a negative definite orbital derivative, thus ensuring
the asymptotic stability of 0.
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A More Complicated Example

The previous example is so simple that it might make one question whether
the direct method is of any use on problems where stability cannot be de-
termined by linearization or by inspection. Thus, let’s consider something
more complicated. Consider the planar system{

ẋ = −y − x3

ẏ = x5.

The origin is a nonhyperbolic equilibrium point, with 0 being the only eigen-
value, so the principle of linearized stability is of no use. A sketch of the
phase portrait indicates that orbits circle the origin in the counterclockwise
direction, but it is not obvious whether they spiral in, spiral out, or move on
closed curves.

The simplest potential Lyapunov function that often turns out to be
useful is the square of the standard Euclidean norm, which in this case is
V := x2 + y2. The orbital derivative is

V̇ = 2xẋ+ 2yẏ = 2x5y − 2xy − 2x4. (73)

For some points (x, y) near the origin (e.g., (δ, δ)) V̇ < 0, while for other
points near the origin (e.g., (δ,−δ)) V̇ > 0, so this function doesn’t seem to
be of much use.

Sometimes when the square of the standard Euclidean norm doesn’t
work, some other homogeneous quadratic function does. Suppose we try
V := x2 + αxy + βy2, with α and β to be determined. Then

V̇ = (2x+ αy)ẋ+ (αx+ 2βy)ẏ = −(2x+ αy)(y + x3) + (αx+ 2βy)x5

= −2x4 + αx6 − 2xy − αx3y + 2βx5y − αy2.

Setting (x, y) = (δ,−δ2) for δ positive and small, we see that V̇ is not going
to be negative semidefinite, no matter what we pick α and β to be.

If these quadratic functions don’t work, maybe something customized
for the particular equation might. Note that the right-hand side of the first
equation in (73) sort of suggests that x3 and y should be treated as quantities
of the same order of magnitude. Let’s try V := x6 + αy2, for some α > 0 to
be determined. Clearly, V is positive definite, and

V̇ = 6x5ẋ+ 2αyẏ = (2α− 6)x5y − 6x8.

104



If α 6= 3, then V̇ is of opposite signs for (x, y) = (δ, δ) and for (x, y) = (δ,−δ)
when δ is small. Hence, we should set α = 3, yielding V̇ = −6x8 ≤ 0. Thus
V is positive definite and V̇ is negative semidefinite, implying that the origin
is Lyapunov stable.

Is the origin asymptotically stable? Perhaps we can make a minor mod-
ification to the preceding formula for V so as to make V̇ strictly negative
in a deleted neighborhood of the origin without destroying the positive def-
initeness of V . If we added a small quantity whose orbital derivative was
strictly negative when x = 0 and |y| is small and positive, this might work.
Experimentation suggests that a positive multiple of xy3 might work, since
this quantity changes from positive to negative as we cross the y-axis in the
counterclockwise direction. Also, it is at least of higher order than 3y2 near
the origin, so it has the potential of preserving the positive definiteness of V .

In fact, we claim that V := x6 + xy3 + 3y2 is positive definite with
negative definite orbital derivative near 0. A handy inequality, sometimes
called Young’s inequality, that can be used in verifying this claim (and in
other circumstances, as well) is given in the following lemma.

Lemma (Young’s Inequality) If a, b ≥ 0, then

ab ≤ ap

p
+
bq

q
, (74)

for every pair of numbers p, q ∈ (1,∞) satisfying

1

p
+

1

q
= 1. (75)

Proof. Assume that (75) holds. Clearly (74) holds if b = 0, so assume that
b > 0, and fix it. Define g : [0,∞) by the formula

g(x) :=
xp

p
+
bq

q
− xb.

Note that g is continuous, and g′(x) = xp−1 − b for every x ∈ (0,∞). Since
limx↓0 g

′(x) = −b < 0, limx↑∞ g
′(x) = ∞, and g′ is increasing on (0,∞),

we know that g has a unique minimizer at x0 = b1/(p−1). Thus, for every
x ∈ [0,∞) we see, using (75), that

g(x) ≥ g(b1/(p−1)) =
bp/(p−1)

p
+
bq

q
− bp/(p−1) =

(
1

p
+

1

q
− 1

)
bq = 0.
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In particular, g(a) ≥ 0, so (74) holds.

Now, let V = x6 + xy3 + 3y2. Applying Young’s inequality with a = |x|,
b = |y|3, p = 6, and q = 6/5, we see that

|xy3| = |x||y|3 ≤ |x|
6

6
+

5|y|18/5

6
≤ 1

6
x6 +

5

6
y2

if |y| ≤ 1, so

V ≥ 5

6
x6 +

13

6
y2

if |y| ≤ 1. Also,

V̇ = −6x8 + y3ẋ+ 3xy2ẏ = −6x8 − y3(y + x3) + 3x6y2

= −6x8 − x3y3 + 3x6y2 − y4.

Applying Young’s inequality to the two mixed terms in this orbital derivative,
we have

| − x3y3| = |x|3|y|3 ≤ 3|x|8
8

+
5|y|24/5

8
≤ 3

8
x8 +

5

8
y4

if |y| ≤ 1, and

|3x6y2| = 3|x|6|y|2 ≤ 3

[
3|x|8

4
+
|y|8
4

]
=

9

4
x8 +

3

4
y8 ≤ 9

4
x8 +

3

64
y4

if |y| ≤ 1/2. Thus,

V̇ ≤ −27

8
x8 − 21

64
y4

if |y| ≤ 1/2, so, in a neighborhood of 0, V is positive definite and V̇ is
negative definite, which implies that 0 is asymptotically stable.

LaSalle’s Invariance Principle

We would have saved ourselves a lot of work on the previous example if we
could have just stuck with the moderately simple function V = x6 +3y2, even
though its orbital derivative was only negative semidefinite. Notice that the
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set of points where V̇ was 0 was small (the y-axis) and at most of those points
the vector field was not parallel to the set. LaSalle’s Invariance Principle,
which we shall state and prove for the autonomous system

ẋ = f(x), (76)

allows us to use such a V to prove asymptotic stability.

Theorem (LaSalle’s Invariance Principle) Suppose there is a neighborhood D of
0 and a continuously differentiable (time-independent) positive definite func-
tion V : D → R whose orbital derivative V̇ (w.r.t. (76)) is negative semidef-
inite. Let I be the union of all complete orbits contained in{

x ∈ D
∣∣ V̇ (x) = 0

}
.

Then there is a neighborhood U of 0 such that for every x0 ∈ U , ω(x0) ⊆ I.

Before proving this, we note that when applying it to V = x6 +3y2 in the
previous example, the set I is a singleton containing the origin and, since
D can be assumed to be compact, each solution beginning in U actually
converges to 0 as t ↑ ∞.

Proof of LaSalle’s Invariance Principle. Let ϕ be the flow generated by (76).
By a previous theorem, 0 must be Lyapunov stable, so we can pick a neigh-
borhood U of 0 such that ϕ(t, x) ∈ D for every x0 ∈ U and every t ≥ 0.

Let x0 ∈ U and y ∈ ω(x0) be given. By the negative semidefiniteness of
V̇ , we know that V (ϕ(t, x0)) is a nonincreasing function of t. By the positive
definiteness of V , we know that V (ϕ(t, x0)) remains nonnegative, so it must
approach some constant c ≥ 0 as t ↑ ∞. By continuity of V , V (z) = c for
every z ∈ ω(x0). Since ω(x0) is invariant, V (ϕ(t, y)) = c for every t ∈ R.
The definition of orbital derivative then implies that V̇ (ϕ(t, y)) = 0 for every
t ∈ R. Hence, y ∈ I.

Exercise 15 Show that (x(t), y(t)) = (0, 0) is an asymptotically stable solu-
tion of {

ẋ = −x3 + 2y3

ẏ = −2xy2.
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Hartman-Grobman Theorem: Part 1
Lecture 24
Math 634
10/25/99

Let Ω ⊂ Rn be open and let f : Ω → Rn be continuously differentiable.
Suppose that x0 ∈ Ω is a hyperbolic equilibrium point of the autonomous
equation

ẋ = f(x). (77)

Let B = Df(x0), and let ϕ be the (local) flow generated by (77). The
version of the Hartman-Grobman Theorem we’re primarily interested in is
the following.

Theorem (Local Hartman-Grobman Theorem for Flows) Let Ω, f , x0, B, and
ϕ be as described above. Then there are neighborhoods U and V of x0 and a
homeomorphism h : U → V such that

ϕ(t, h(x)) = h(x0 + etB(x− x0))

whenever x ∈ U and x0 + etB(x− x0) ∈ U .

It will be easier to derive this theorem as a consequence of a global the-
orem for maps than to prove it directly. In order to state this version of
the theorem, we will need to introduce a couple of function spaces and a
definition.

Let

C0
b (Rn) =

{
w ∈ C(Rn ,Rn)

∣∣ sup
x∈Rn
|w(x)| <∞

}
.

When equipped with the norm

‖w‖0 := sup
x∈Rn
‖w(x)‖,

where ‖ · ‖ is some norm on Rn , C0
b (Rn) is a Banach space. (We shall pick a

particular norm ‖ · ‖ later.)
Let

C1
b (Rn) =

{
w ∈ C1(Rn ,Rn) ∩ C0

b (Rn)
∣∣ sup
x∈Rn
‖Dw(x)‖ <∞

}
,
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where ‖ · ‖ is the operator norm corresponding to some norm on Rn . Note
that the functional

Lip(w) := sup
x1,x2∈Rn
x1 6=x2

‖w(x1)− w(x2)‖
‖x1 − x2‖

is defined on C1
b (Rn). We will not define a norm on C1

b (Rn), but will often
use Lip, which is not a norm, to describe the size of elements of C1

b (Rn).

Definition If A ∈ L(Rn ,Rn) and none of the eigenvalues of A lie on the unit
circle, then A is hyperbolic.

Note that if x0 is a hyperbolic equilibrium point of (77) and A = eDf(x0),
then A is hyperbolic.

Theorem (Global Hartman-Grobman Theorem for Maps) Suppose that the map
A ∈ L(Rn ,Rn) is hyperbolic and invertible. Then there exists a number ε > 0
such that for every g ∈ C1

b (Rn) satisfying Lip(g) < ε there exists a unique
function v ∈ C0

b (Rn) such that

F (h(x)) = h(Ax)

for every x ∈ Rn , where F = A+g and h = I+v. Furthermore, h : Rn → Rn

is a homeomorphism.
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Hartman-Grobman Theorem: Part 2
Lecture 25
Math 634
10/27/99

Subspaces and Norms

We start off with a lemma that is analogous to the lemma in Lecture 21,
except this one will deal with the magnitude, rather than the real part, of
eigenvalues.

Lemma Let V be a finite-dimensional real vector space and let L ∈ L(V,V).
If all the eigenvalues of L have magnitude less than c, then there is a norm
‖ · ‖ on V such that

‖Lv‖ ≤ c‖v‖

for every v ∈ V.

Proof. As in the previous lemma, the norm will be the Euclidean norm corre-
sponding to the modification of the real canonical basis that yields a matrix
representation of L that has ε’s in place of the off-diagonal 1’s. With respect
to this basis, it can be checked that

LTL = D +R(ε),

where D is a diagonal matrix, each of whose diagonal entries is less than c2,
and R(ε) is a matrix whose entries converge to 0 as ε ↓ 0. Hence, as in the
proof of the earlier lemma, we can conclude that if ε is sufficiently small then

‖Lv‖2 = 〈v, LTLv〉 ≤ c2‖v‖2

for every v ∈ V (where 〈·, ·〉 is the inner product that induces ‖ · ‖).

Note that if L is a linear operator, all of whose eigenvalues have magnitude
greater than c, then by applying the lemma to L−1 (which exists, since 0 is
not an eigenvalue of L), we see that

‖Lv‖ ≥ c‖v‖

for some norm ‖ · ‖.
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Now, suppose that A ∈ L(Rn ,Rn) is hyperbolic. Then, since A has only
finitely many eigenvalues, there is a number a ∈ (0, 1) such that none of the
eigenvalues of A are in the closed annulus

B(0, a−1) \B(0, a).

Using the notation developed when we were deriving the real canonical form,
let

E− =

 ⊕
λ∈(−a,a)

N(A− λI)

⊕
⊕
|λ|<a

Imλ6=0

{
Reu

∣∣ u ∈ N(A− λI)
}⊕


⊕
|λ|<a

Imλ6=0

{
Im u

∣∣ u ∈ N(A− λI)
} ,

and let

E+ =

 ⊕
λ∈(−∞,−a−1)∪(a−1,∞)

N(A− λI)

⊕
⊕
|λ|>a−1

Imλ6=0

{
Reu

∣∣ u ∈ N(A− λI)
}⊕


⊕
|λ|>a−1

Imλ6=0

{
Im u

∣∣ u ∈ N(A− λI)
} .

Then Rn = E− ⊕ E+, and E− and E+ are both invariant under A. Define
P− ∈ L(Rn , E−) and P+ ∈ L(Rn , E+) to be the linear operators that map
each x ∈ Rn to the unique elements P−x ∈ E− and P+x ∈ E+ such that
P−x+ P+x = x.

Let A− ∈ L(E−, E−) and A+ ∈ L(E+, E+) be the restrictions of A to E−
and E+, respectively. By the lemma (and the discussion thereafter) we can
find a norm ‖ · ‖− for E− and a norm ‖ · ‖+ for E+ such that

‖A−x‖− ≤ a‖x‖−

for every x ∈ E−, and

‖A+x‖+ ≥ a−1‖x‖+
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for every x ∈ E+. Define a norm ‖ · ‖ on Rn by the formula

‖x‖ = max{‖P−x‖−, ‖P+x‖+}. (78)

This is the norm on Rn that we will use throughout our proof of the (global)
Hartman-Grobman Theorem (for maps). Note that ‖x‖ = ‖x‖− if x ∈ E−,
and ‖x‖ = ‖x‖+ if x ∈ E+.

Recall that we equipped C0
b (Rn) with the norm ‖ · ‖0 defined by the

formula

‖w‖0 := sup
x∈Rn
‖w(x)‖.

The norm on Rn on the right-hand side of this formula is that given in (78).
Recall also that we will use the functional Lip defined by the formula

Lip(w) := sup
x1,x2∈Rn
x1 6=x2

‖w(x1)− w(x2)‖
‖x1 − x2‖

The norm on Rn on the right-hand side of this formula is also that given in
(78).

Let

C0
b (E−) =

{
w ∈ C(Rn , E−)

∣∣ sup
x∈Rn
‖w(x)‖− <∞

}
,

and let

C0
b (E+) =

{
w ∈ C(Rn , E+)

∣∣ sup
x∈Rn
‖w(x)‖+ <∞

}
.

Since Rn = E− ⊕ E+, it follows that

C0
b (Rn) = C0

b (E−)⊕ C0
b (E+),

and the corresponding decomposition of an element w ∈ C0
b (Rn) is

w = P− ◦ w + P+ ◦ w.

We equip C0
b (E−) and C0

b (E+) with the same norm ‖ · ‖0 that we used on
C0
b (Rn), thereby making each of these two spaces a Banach space. It is not

hard to see that

‖w‖0 = max{‖P− ◦ w‖0, ‖P+ ◦ w‖0}.
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Hartman-Grobman Theorem: Part 3
Lecture 26
Math 634
10/29/99

Linear and Nonlinear Maps

Now, assume that A is invertible, so that

inf
x 6=0

‖Ax‖
‖x‖ > 0.

Choose, and fix, a positive constant

ε < min

{
1− a, inf

x 6=0

‖Ax‖
‖x‖

}
.

Choose, and fix, a function g ∈ C 1
b (R

n) for which Lip(g) < ε. The (global)
Hartman-Grobman Theorem (for maps) will be proved by constructing a
map Θ from C0

b (Rn) to C0
b (Rn) whose fixed points would be precisely those

objects v which, when added to the identity I, would yield solutions h to the
conjugacy equation

(A+ g) ◦ h = h ◦ A, (79)

and then showing that Θ is a contraction (and that h is a homeomorphism).
Plugging h = I+v into (79) and manipulating the result, we can see that

that equation is equivalent to the equation

Lv = Ψ(v), (80)

where Ψ(v) := g ◦ (I + v) ◦A−1 and

Lv = v − A ◦ v ◦ A−1 =: (id−A)v.

Since the composition of continuous functions is continuous, and the com-
position of functions is bounded if the outer function in the composition is
bounded, it is clear that Ψ is a (nonlinear) map from C0

b (Rn) to C0
b (Rn).

Similarly, A and, therefore, L are linear maps from C0
b (Rn) to C0

b (Rn). We
will show that L can be inverted and then apply L−1 to both sides of (80)
to get

v = L−1(Ψ(v)) =: Θ(v), (81)

as our fixed point equation.
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Inverting L
Since A behaves significantly differently on E− than it does on E+, A and,
therefore, L behave significantly differently on C0

b (E−) than they do on
C0
b (E+). For this reason, we will analyze L by looking at its restrictions

to C0
b (E−) and to C0

b (E+). Note that C0
b (E−) and C0

b (E+) are invariant un-
der A and, therefore, under L. Let A− ∈ L(C0

b (E−), C0
b (E−)) and A+ ∈

L(C0
b (E+), C0

b (E+)) be the restrictions of A to C0
b (E−) and C0

b (E+), respec-
tively, and let L− ∈ L(C0

b (E+), C0
b (E+)) and L+ ∈ L(C0

b (E+), C0
b (E+)) be the

corresponding restrictions of L. Then L will be invertible if and only if L−
and L+ are each invertible. To invert L− and L+ we use the following general
result about the invertibility of operators on Banach spaces.

Lemma Let X be a Banach space with norm ‖·‖X and corresponding operator
norm ‖ · ‖L(X ,X ). Let G be a linear map from X to X , and let c < 1 be a
constant. Then:

(a) If ‖G‖L(X ,X ) ≤ c, then id−G is invertible and

‖(id−G)−1‖L(X ,X ) ≤
1

1− c.

(b) If G is invertible and ‖G−1‖L(X ,X ) ≤ c, then id−G is invertible and

‖(id−G)−1‖L(X ,X ) ≤
c

1− c.

Proof. The space of bounded linear maps from X to X is a Banach space
using the operator norm. In case (a), the bound on ‖G‖L(X ,X ), along with
the Cauchy convergence criterion, implies that the series

∞∑
k=0

Gk

converges to a bounded linear map from X to X ; call it H . In fact, we see
that (by the formula for the sum of a geometric series)

‖H‖L(X ,X ) ≤
1

1− c.

It is not hard to check thatH◦(id−G) = (id−G)◦H = id, soH = (id−G)−1.
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In case (b), we can apply the results of (a) with G−1 in place of G to
deduce that id−G−1 is invertible and that

‖(id−G−1)−1‖L(X ,X ) ≤
1

1− c.

Since id−G = −G(id−G−1) = −(id−G−1)G, it is not hard to check that
−(id−G−1)−1G−1 is the inverse of id−G and that

‖ − (id−G−1)−1G−1‖L(X ,X ) ≤
c

1− c.

The first half of this lemma is useful for inverting small perturbations of
the identity, while the second half is useful for inverting large perturbations of
the identity. It should, therefore, not be too surprising that we will apply the
first half with G = A− and the second half with G = A+ (since A compresses
things in the E− direction and stretches things in the E+ direction).

First, consider A−. If w ∈ C0
b (E−), then

‖A−w‖0 = ‖A ◦ w ◦ A−1‖0 = sup
x∈Rn
‖Aw(A−1x)‖ = sup

y∈Rn
‖Aw(y)‖

≤ a sup
y∈Rn
‖w(y)‖ = a‖w‖0,

so the operator norm of A− is bounded by a. Applying the first half of the
lemma with X = C0

b (E−), G = A−, and c = a, we find that L− is invertible,
and its inverse has operator norm bounded by (1− a)−1.

Next, consider A+. It is not hard to see that A+ is invertible, and
(A+)−1w = A−1 ◦ w ◦ A. If w ∈ C0

b (E+), then (because the eigenvalues
of the restriction of A−1 to E+ all have magnitude less than a)

‖(A+)−1w‖0 = ‖A−1 ◦ w ◦ A‖0 = sup
x∈Rn
‖A−1w(Ax)‖ = sup

y∈Rn
‖A−1w(y)‖

≤ a sup
y∈Rn
‖w(y)‖ = a‖w‖0,

so the operator norm of (A+)−1 is bounded by a. Applying the second half
of the lemma with X = C0

b (E+), G = A+, and c = a, we find that L+ is
invertible, and its inverse has operator norm bounded by a(1− a)−1.

Putting these two facts together, we see that L is invertible, and, in fact,

L−1 = (L−)−1 ◦ P− + (L+)−1 ◦ P+.
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If w ∈ C0
b (Rn), then

‖L−1w‖0 = sup
x∈Rn
‖L−1w(x)‖ = sup

x∈Rn
max{‖P−L−1w(x)‖, ‖P+L−1w(x)‖}

= sup
x∈Rn

max{‖(L−)−1P−w(x)‖, ‖(L+)−1P+w(x)‖}

≤ sup
x∈Rn

max

{
1

1− a‖w(x)‖, a

1− a‖w(x)‖
}

=
1

1− a sup
x∈Rn
‖w(x)‖

=
1

1− a‖w‖0,

so the operator norm of L−1 is bounded by (1− a)−1.
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Hartman-Grobman Theorem: Part 4
Lecture 27
Math 634
11/1/99

The Contraction Map

Recall that we are looking for fixed points v of the map Θ := L−1 ◦Ψ, where
Ψ(v) := g ◦ (I + v) ◦ A−1. We have established that L−1 is a well-defined
linear map from C0

b (Rn) to C0
b (Rn) and that its operator norm is bounded by

(1− a)−1. This means that Θ is a well-defined (nonlinear) map from C0
b (Rn)

to C0
b (Rn); furthermore, if v1, v2 ∈ C0

b (Rn), then

‖Θ(v1)−Θ(v2)‖0 = ‖L−1(Ψ(v1)−Ψ(v2))‖0 ≤
1

1− a‖Ψ(v1)−Ψ(v2)‖0

=
1

1− a‖g ◦ (I + v1) ◦ A−1 − g ◦ (I + v2) ◦ A−1‖0

=
1

1− a sup
x∈Rn
‖g(A−1x+ v1(A−1x))− g(A−1x+ v2(A−1x))‖

≤ ε

1− a sup
x∈Rn
‖(A−1x+ v1(A−1x))− (A−1x+ v2(A−1x))‖

=
ε

1− a sup
x∈Rn
‖v1(A−1x)− v2(A−1x)‖

=
ε

1− a sup
y∈Rn
‖v1(y)− v2(y)‖ =

ε

1− a‖v1 − v2‖0.

This shows that Θ is a contraction, since ε was chosen to be less than 1− a.
By the contraction mapping theorem, we know that Θ has a unique fixed
point v ∈ C0

b (Rn); the function h := I + v satisfies F ◦ h = h ◦ A, where
F := A+ g. It remains to show that h is a homeomorphism.

Injectivity

First, we show that F is injective. Suppose it weren’t. Then we could choose
x1, x2 ∈ Rn such that x1 6= x2 but F (x1) = F (x2). This would mean that
Ax1 + g(x1) = Ax2 + g(x2), so

‖A(x1 − x2)‖
‖x1 − x2‖

=
‖Ax1 −Ax2‖
‖x1 − x2‖

=
‖g(x1)− g(x2)‖
‖x1 − x2‖

≤ Lip(g) < ε < inf
x 6=0

‖Ax‖
‖x‖ ,

which would be a contradiction.
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Next, we show that h is injective. Let x1, x2 ∈ Rn satisfying h(x1) = h(x2)
be given. Then

h(Ax1) = F (h(x1)) = F (h(x2)) = h(Ax2),

and, by induction, we have h(Anx1) = h(Anx2) for every n ∈ N . Also,

F (h(A−1x1)) = h(AA−1x1) = h(x1) = h(x2) = h(AA−1x2) = F (h(A−1x2)),

so the injectivity of F implies that h(A−1x1) = h(A−1x2); by induction,
h(A−nx1) = h(A−nx2) for every n ∈ N . Set z = x1− x2. Since I = h− v, we
know that for any n ∈ Z

‖Anz‖ = ‖Anx1 −Anx2‖ = ‖(h(Anx1)− v(Anx1))− (h(Anx2)− v(Anx2))‖
= ‖v(Anx1)− v(Anx2)‖ ≤ 2‖v‖0.

Because of the way the norm was chosen, we then know that for n ≥ 0

‖P+z‖ ≤ an‖AnP+z‖ ≤ an‖Anz‖ ≤ 2an‖v‖0 → 0,

as n ↑ ∞, and we know that for n ≤ 0

‖P−z‖ ≤ a−n‖AnP−z‖ ≤ a−n‖Anz‖ ≤ 2a−n‖v‖0 → 0,

as n ↓ −∞. Hence, z = P−z + P+z = 0, so x1 = x2.

Surjectivity

It may seem intuitive that a map like h that is a bounded perturbation of
the identity is surjective. Unfortunately, there does not appear to be a way
of proving this that is simultaneously elementary, short, and complete. We
will therefore rely on the following topological theorem without proving it.

Theorem (Brouwer Invariance of Domain) Every continuous injective map from
Rn to Rn maps open sets to open sets.

In particular, this theorem implies that h(Rn) is open. If we can show
that h(Rn) is closed, then (since h(Rn) is clearly nonempty) this will mean
that h(Rn) = Rn , i.e., h is surjective.
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So, suppose we have a sequence (h(xk)) of points in h(Rn) that converges
to a point y ∈ Rn . Without loss of generality, assume that

‖h(xk)− y‖ ≤ 1

for every k. This implies that ‖h(xk)‖ ≤ ‖y‖+ 1, which in turn implies that
‖xk‖ ≤ ‖y‖ + ‖v‖0 + 1. Thus, the sequence (xk) is bounded and therefore
has a subsequence (xk`) converging to some point x0 ∈ Rn . By continuity of
h, (h(xk`)) converges to h(x0), which means that h(x0) = y. Hence, h(Rn) is
closed.

Continuity of the Inverse

The bijectivity of h implies that h−1 is defined. We now show that it is
continuous (which will complete the verification that h is a homeomorphism).
The proof will be very similar to the proof that h(Rn) is closed.

Let (yk) be a sequence in Rn that converges to some point y ∈ Rn .
Without loss of generality, assume that

‖yk − y‖ ≤ 1

for every k. This implies that ‖yk‖ ≤ ‖y‖ + 1, which in turn implies that
‖h−1(yk)‖ ≤ ‖y‖ + ‖v‖0 + 1. Suppose that (h−1(yk)) does not converge to
h−1(y). Then the boundedness of (h−1(yk)) implies that some subsequence
(h−1(yk`)) converges to some point x0 6= h−1(y). By the continuity of h,
h(h−1(yk`)) → h(x0) as ` ↑ ∞. But h(h−1(yk`)) = yk` → y as ` ↑ ∞. This
means that y = h(x0) or, equivalently, x0 = h−1(y), contrary to assumption.
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Hartman-Grobman Theorem: Part 5
Lecture 28
Math 634
11/3/99

Modifying the Vector Field

Consider the continuously differentiable autonomous differential equation

ẋ = f(x) (82)

with an equilibrium point that, without loss of generality, is located at the
origin. For x near 0, f(x) ≈ Bx, where B = Df(0). Our goal is to come up
with a modification f̃ of f such that f̃(x) = f(x) for x near 0 and f̃(x) ≈ Bx
for all x. If we accomplish this goal, whatever information we obtain about
the relationship between the equations

ẋ = f̃(x) (83)

and

ẋ = Bx (84)

will also hold between (82) and (84) for x small.
Pick β : [0,∞)→ [0, 1] to be a C∞ function satisfying

β(s) =

{
1 if s ≤ 1

0 if s ≥ 2,

and let C = sups∈[0,∞) |β ′(s)|. Given ε > 0, pick r > 0 so small that

‖Df(x)− B‖ < ε

2C + 1

whenever ‖x‖ ≤ 2r. (We can do this since Df(0) = B and Df is continuous.)
Define f̃ by the formula

f̃(x) = Bx+ β

(
‖x‖
r

)
(f(x)−Bx).

Note that f̃ is continuously differentiable, agrees with f for ‖x‖ ≤ r, and
agrees with B for ‖x‖ ≥ 2r. We claim that f̃ −B has Lipschitz constant less
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than ε. Assuming, without loss of generality, that ‖x‖ and ‖y‖ are less than
or equal to 2r, we have (using the Mean Value Theorem)

‖(f̃(x)− Bx)− (f̃(y)− By)‖

=

∥∥∥∥β(‖x‖r
)

(f(x)− Bx)− β
(
‖y‖
r

)
(f(y)− By)

∥∥∥∥
≤ β

(
‖x‖
r

)
‖(f(x)−Bx)− (f(y)− By)‖

+

∣∣∣∣β(‖x‖r
)
− β

(
‖y‖
r

)∣∣∣∣ ‖f(y)− By‖

≤ ε

2C + 1
‖x− y‖+ C

|‖x‖ − ‖y‖|
r

‖y‖ ε

2C + 1
≤ ε‖x− y‖.

Now, consider the difference between eB and ϕ(1, ·), where ϕ is the flow
generated by f̃ . Let g(x) = ϕ(1, x) − eBx. Then, since f̃(x) = B(x) for all
large x, g(x) = 0 for all large x. Also, g is continuously differentiable, so
g ∈ C1

b (Rn). If we apply the variation of constants formula to (83) rewritten
as

ẋ = Bx+ (f̃(x)−Bx),

we find that

g(x) =

∫ 1

0

e(1−s)B [f̃(ϕ(s, x))−Bϕ(s, x)] ds,

so

‖g(x)− g(y)‖

≤
∫ 1

0

‖e(1−s)B‖‖(f̃(ϕ(s, x))− Bϕ(s, x))− (f̃(ϕ(s, y))− Bϕ(s, y))‖ ds

≤ ε

∫ 1

0

‖e(1−s)B‖‖ϕ(s, x)− ϕ(s, y)‖ ds

≤ ‖x− y‖ε
∫ 1

0

‖e(1−s)B‖‖e(‖B‖+ε)s − 1‖ ds,

by continuous dependence on initial conditions. Since

ε

∫ 1

0

‖e(1−s)B‖‖e(‖B‖+ε)s − 1‖ ds→ 0

as ε ↓ 0, we can make the Lipschitz constant of g as small as we want by
making ε small (through shrinking the neighborhood of the origin on which
f̃ and f agree).
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Conjugacy for t = 1

If 0 is a hyperbolic equilibrium point of (82) (and therefore of (83)) then
none of the eigenvalues of B are imaginary. Setting A = eB, it is not hard
to show that the eigenvalues of A are the exponentials of the eigenvalues of
B, so none of the eigenvalues of A have modulus 1; i.e., A is hyperbolic.
Also, A is invertible (since A−1 = e−B), so we can apply the global Hartman-
Grobman Theorem for maps and conclude that there is a homeomorphism
h : Rn → Rn such that

ϕ(1, h(x)) = h(eBx) (85)

for every x ∈ Rn .

Conjugacy for t 6= 1

For the Hartman-Grobman Theorem for flows, we need

ϕ(t, h(x)) = h(etBx)

for every x ∈ Rn and every t ∈ R. Fix t ∈ R, and consider the function h̃
defined by the formula

h̃(x) = ϕ(t, h(e−tBx)). (86)

As the composition of homeomorphisms, h̃ is a homeomorphism. Also, the
fact that h satisfies (85) implies that

ϕ(1, h̃(x)) = ϕ(1, ϕ(t, h(e−tBx))) = ϕ(t, ϕ(1, h(e−tBx))) = ϕ(t, h(eBe−tBx))

= ϕ(t, h(e−tBeBx))) = h̃(eBx),

so (85) holds if h is replaced by h̃.
Now,

h̃− I = ϕ(t, ·) ◦ h ◦ e−tB − I
= (ϕ(t, ·)− etB) ◦ h ◦ e−tB + etB ◦ (h− I) ◦ e−tB =: v1 + v2.

The fact that ϕ(t, x) and etBx agree for large x implies that ϕ(t, ·) − etB is
bounded, so v1 is bounded, as well. The fact that h− I is bounded implies
that v2 is bounded. Hence, h̃− I is bounded.
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The uniqueness part of the global Hartman-Grobman Theorem for maps
now implies that h and h̃ must be the same function. Using this fact and
substituting y = e−tBx in (86) yields

h(etBy) = ϕ(t, h(y))

for every y ∈ Rn and every t ∈ Rn . This means that the flows generated by
(84) and (83) are globally topologically conjugate, and the flows generated
by (84) and (82) are locally topologically conjugate.
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Constructing Conjugacies
Lecture 29
Math 634
11/5/99

The Hartman-Grobman Theorem gives us conditions under which a con-
jugacy between certain maps or between certain flows may exist. Some lim-
itations of the theorem are:

• The conditions it gives are sufficient, but certainly not necessary, for a
conjugacy to exist.

• It doesn’t give a simple way to construct a conjugacy (in closed form,
at least).

• It doesn’t indicate how smooth the conjugacy might be.

These shortcomings can be addressed in a number of different ways, but we
won’t really go into those here. We will, however, consider some aspects of
conjugacies.

Differentiable Conjugacies of Flows

Consider the autonomous differential equations

ẋ = f(x) (87)

and

ẋ = g(x), (88)

generating, respectively, the flows ϕ and ψ. Recall that the conjugacy equa-
tion for ϕ and ψ is

ϕ(t, h(x)) = h(ψ(t, x)) (89)

for every x and t. Not only is (89) somewhat complicated, it appears to
require you to solve (87) and (88) before you can look for a conjugacy h.
Suppose, however, that h is a differentiable conjugacy. Then, we can differ-
entiate both sides of (89) with respect to t to get

f(ϕ(t, h(x))) = Dh(ψ(t, x))g(ψ(t, x)). (90)
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Substituting (89) into the right-hand side of (90) and replacing ψ(t, x) by x,
we get the equivalent equation

f(h(x)) = Dh(x)g(x). (91)

Note that (91) involves the functions appearing in the differential equations,
rather than the formulas for the solutions of those equations. Note, also,
that (91) is the same equation you would get if you took a solution x of (88)
and required the function h ◦ x to satisfy (87).

An Example for Flows

As the simplest nontrivial example, let a, b ∈ R be distinct constants and
consider the equations

ẋ = ax (92)

and

ẋ = bx (93)

for x ∈ R. Under what conditions on a and b does their exist a topological
conjugacy h taking solutions of (93) to solutions of (92)? Equation (91) tells
us that if h is differentiable then

ah(x) = h′(x)bx. (94)

If b 6= 0, then separating variables in (94) implies that on intervals avoiding
the origin h must be given by the formula

h(x) = C|x|a/b (95)

for some constant C. Clearly, (95) does not define a topological conjugacy
for a single constant C, because it fails to be injective on R; however, the
formula

h(x) =

{
x|x|a/b−1 if x 6= 0

0 if x = 0,
(96)

which is obtained from (95) by taking C = 1 for positive x and C = −1 for
negative x, defines a homeomorphism if ab > 0. Even though the function
defined in (96) may fail to be differentiable at 0, substitution of it into

etah(x) = h(etbx), (97)
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which is (89) for this example, shows that it does, in fact, define a topological
conjugacy when ab > 0. (Note that in no case is this a C1-conjugacy, since
either h′(0) or (h−1)′(0) does not exist.)

Now, suppose that ab ≤ 0. Does a topological (possibly nondifferentiable)
conjugacy exist? If ab = 0, then (97) implies that h is constant, which violates
injectivity, so suppose that ab < 0. In this case, substituting x = 0 and t = 1
into (97) implies that h(0) = 0. Fixing x 6= 0 and letting t sgn b ↓ −∞ in
(97), we see that the continuity of h implies that h(x) = 0, also, which again
violates injectivity.

Summarizing, for a 6= b there is a topological conjugacy of (92) and (93)
if and only if ab > 0, and these are not C1-conjugacies.

An Example for Maps

Let’s try a similar analysis for maps. Let a, b ∈ R be distinct constants,
and consider the maps F (x) = ax and G(x) = bx (for x ∈ R). For what
(a, b)-combinations does there exist a homeomorphism h : R → R such that

F (h(x)) = h(G(x)) (98)

for every x ∈ R? Can h and h−1 be chosen to be differentiable?
For these specific maps, the general equation (98) becomes

ah(x) = h(bx). (99)

If a = 0 or b = 0 or a = 1 or b = 1, then injectivity is immediately violated.
Note that, by induction, (99) gives

anh(x) = h(bnx) (100)

for every n ∈ Z. In particular, a2h(x) = h(b2x), so the cases when a = −1
or b = −1 cause the same problems as when a = 1 or b = 1.

So, from now on, assume that a, b /∈ {−1, 0, 1}. Observe that:

• Setting x = 0 in (99) yields h(0) = 0.

• If |b| < 1, then fixing x 6= 0 in (100) and letting n ↑ ∞, we have |a| < 1.

• If |b| > 1, we can, similarly, let n ↓ −∞ to conclude that |a| > 1.
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• If b > 0 and a < 0, then (99) implies that h(1) and h(b) have oppo-
site signs even though 1 and b have the same sign; consequently, the
Intermediate Value Theorem yields a contradiction to injectivity.

• If b < 0 and a > 0, then (99) gives a similar contradiction.

Thus, the only cases where we could possibly have conjugacy is if a and
b are both in the same component of

(−∞,−1) ∪ (−1, 0) ∪ (0, 1) ∪ (1,∞).

When this condition is met, experimentation (or experience) suggests trying
h of the form h(x) = x|x|p−1 for some constant p > 0 (with h(0) = 0). This
is a homeomorphism from R to R, and plugging it into (99) shows that it
provides a conjugacy if a = b|b|p−1 or, in other words, if

p =
log |a|
log |b| .

Since a 6= b, either h or h−1 fails to be differentiable at 0. Is there some other
formula that provides a C1-conjugacy? No, because if there were we could
differentiate both sides of (99) with respect to x and evaluate at x = 0 to
get h′(0) = 0, which would mean that (h−1)′(0) is undefined.

Exercise 16 Define F : R2 → R2 by the formula

F

([
x
y

])
=

[
−x/2

2y + x2

]
,

and let A = DF (0).

(a) Show that the maps F and A are topologically conjugate.

(b) Show that the flows generated by the differential equations

ż = F (z)

and

ż = Az

are topologically conjugate.

(Hint: Try quadratic conjugacy functions.)
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Smooth Conjugacies
Lecture 30
Math 634
11/8/99

The examples we looked at last time showing that topological conjugacies
often cannot be chosen to be differentiable all involved two maps or vector
fields with different linearizations at the origin. What about when, as in
the Hartman-Grobman Theorem, we are looking for a conjugacy between a
map (or flow) and its linearization? An example of Hartman shows that the
conjugacy cannot always be chosen to be C1.

Hartman’s Example

Consider the system 
ẋ = αx

ẏ = (α− γ)y + εxz

ż = −γz,

where α > γ > 0 and ε 6= 0. We will not cut off this vector field but will
instead confine our attention to x, y, z small. A calculation shows that the
time-1 map F = ϕ(1, ·) of this system is given by

F

xy
z

 =

 ax
ac(y + εxz)

cz

 ,
where a = eα and c = e−γ. Note that a > ac > 1 > c > 0. The time-1 map
B of the linearization of the differential equation is given by

B

xy
y

 =

 axacy
cz

 .
A local conjugacy H = (f, g, h) of B with F must satisfy

af(x, y, z) = f(ax, acy, cz)

ac[g(x, y, z) + εf(x, y, z)h(x, y, z)] = g(ax, acy, cz)

ch(x, y, z) = h(ax, acy, cz)
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for every x, y, z near 0. Writing k(x, z) for k(x, 0, z), where k ∈ {f, g, h}, we
have

af(x, z) = f(ax, cz) (101)

ac[g(x, z) + εf(x, z)h(x, z)] = g(ax, cz) (102)

ch(x, z) = h(ax, cz) (103)

for every x, z near 0.
Before proceeding further, we state and prove a lemma.

Lemma Suppose that j is a continuous real-valued function of a real variable,
defined on an open interval U centered at the origin. Suppose that there are
constants α, β ∈ R such that

αj(u) = j(βu) (104)

whenever u, βu ∈ U . Then if |β| < 1 < |α| or |α| < 1 < |β|, j(u) = 0 for
every u ∈ U .

Proof. If |β| < 1 < |α|, fix u ∈ U and apply (104) inductively to get

αnj(u) = j(βnu) (105)

for every n ∈ N . Letting n ↑ ∞ in (105), we see that j(u) must be zero. If
|α| < 1 < |β|, substitute v = βu into (104) to get

αj(β−1v) = j(v) (106)

for every v, β−1v ∈ U . Fix v ∈ U , and iterate (106) to get

αnj(β−nv) = j(v) (107)

for every n ∈ N . Letting n ↑ N in (107), we get j(v) = 0.

Setting x = 0 in (101) and applying the Lemma gives

f(0, z) = 0 (108)

for every z near zero. Setting z = 0 in (103) and applying the Lemma gives

h(x, 0) = 0 (109)
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for every x near zero. Setting x = 0 in (102), using (108), and applying the
Lemma gives

g(0, z) = 0 (110)

for every z near zero. If we set z = 0 in (102), use (109), and then differentiate
both sides with respect to x, we get cgx(x, 0) = gx(ax, 0); applying the
Lemma yields

gx(x, 0) = 0 (111)

for every x near zero. Setting z = 0 in (110) and using (111), we get

g(x, 0) = 0 (112)

for every x near zero.
Now, using (102) and mathematical induction, it can be verified that

ancn[g(x, z) + nεf(x, z)h(x, z)] = g(anx, cnz) (113)

for every n ∈ N . Similarly, mathematical induction applied to (101) gives

f(x, z) = a−nf(anx, cnz) (114)

for every n ∈ N . If we substitute (114) into (113), divide through by c−n,
and replace x by a−nx we get

ang(a−nx, z) + nεf(x, cnz)h(a−nx, z) = c−ng(x, cnz) (115)

for every n ∈ N .
The existence of gx(0, z) and gz(0, x) along with equations (110) and (112)

imply that ang(a−nx, z) and c−ng(x, cnz) stay bounded as n ↑ ∞. Using this
fact, and letting n ↑ ∞ in (115), we get

f(x, 0)h(0, z) = 0,

so f(x, 0) = 0 or h(0, z) = 0. If f(x, 0) = 0, then, in combination with
(109) and (112), this tells us that H is not injective in a neighborhood of the
origin. Similarly, if h(0, z) = 0 then, in combination with (108) and (110),
this implies a violation of injectivity, as well.
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Poincaré’s Linearization Theorem

Suppose that f : Rn → Rn is analytic and satisfies f(0) = 0. It is possible
to establish conditions under which an analytic change of variables will turn
the nonlinear equation

ẋ = f(x) (116)

into its linearization

u̇ = Df(0)u. (117)

Definition Let λ1, λ2, . . . , λn be the eigenvalues of Df(0), listed according to
multiplicity. We say that Df(0) is resonant if there are nonnegative integers
m1, m2, . . . , mn and a number s ∈ {1, 2, . . . , n} such that

n∑
k=1

mk ≥ 2

and

λs =

n∑
k=1

mkλk.

If Df(0) is not resonant, we say that it is nonresonant.

Note that in Hartman’s example there is resonance. As we will see in
Math 635, nonresonance permits us to make changes of variable that remove
nonlinear terms up to any specified order in the right-hand side of the dif-
ferential equation. In order to be able to guarantee that all nonlinear terms
may be removed, some extra condition beyond nonresonance is required.

Definition We say that (λ1, λ2, . . . , λn) ∈ C n satisfy a Siegel condition if there
are constants C > 0 and ν > 1 such that∣∣∣∣∣λs −

n∑
k=1

mkλk

∣∣∣∣∣ ≥ C

(
∑n

k=1mk)ν

for all nonnegative integers m1, m2, . . . , mn satisfying

n∑
k=1

mk ≥ 2.
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Theorem (Poincaré’s Linearization Theorem) Suppose that f is analytic, and
that all the eigenvalues of Df(0) are nonresonant and either all lie in the
open left half-plane, all lie in the open right half-plane, or satisfy a Siegel
condition. Then there is a change of variables u = g(x) that is analytic near
0 and that turns (116) into (117) near 0.
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Stable Manifold Theorem: Part 1
Lecture 31
Math 634
11/10/99

The Hartman-Grobman Theorem states that the flow generated by a
smooth vector field in a neighborhood of a hyperbolic equilibrium point is
topologically conjugate with the flow generated by its linearization. Hart-
man’s counterexample shows that, in general, the conjugacy cannot be taken
to be C1. However, the Stable Manifold Theorem will tell us that there are
important structures for the two flows that can be matched up by smooth
changes of variable. In this lecture, we will discuss the Stable Manifold The-
orem on an informal level and discuss two different approaches to proving
it.

Let f : Ω ⊆ Rn → Rn be C1, and let ϕ : R×Ω → Ω be the flow generated
by the differential equation

ẋ = f(x). (118)

Suppose that x0 is a hyperbolic equilibrium point of (118).

Definition The (global) stable manifold of x0 is the set

W s(x0) :=
{
x ∈ Ω

∣∣∣ lim
t↑∞

ϕ(t, x) = x0

}
.

Definition The (global) unstable manifold of x0 is the set

W u(x0) :=
{
x ∈ Ω

∣∣∣ lim
t↓−∞

ϕ(t, x) = x0

}
.

Definition Given a neighborhood U of x0, the local stable manifold of x0

(relative to U) is the set

W s
loc(x0) :=

{
x ∈ U

∣∣∣ γ+(x) ⊂ U and lim
t↑∞

ϕ(t, x) = x0

}
.

Definition Given a neighborhood U of x0, the local unstable manifold of x0

(relative to U) is the set

W u
loc(x0) :=

{
x ∈ U

∣∣∣ γ−(x) ⊂ U and lim
t↓−∞

ϕ(t, x) = x0

}
.

133



Note that:

• W s
loc(x0) ⊆W s(x0), and W u

loc(x0) ⊆W u(x0).

• W s
loc(x0) and W u

loc(x0) are both nonempty, since they each contain x0.

• W s(x0) and W u(x0) are invariant sets.

• W s
loc(x0) is positively invariant, and W u

loc(x0) is negatively invariant.

• W s
loc(x0) is not necessarily W s(x0) ∩ U , and W u

loc(x0) is not necessarily
W u(x0) ∩ U .

W s
loc(x0) is not necessarily invariant, since it might not be negatively

invariant, and W u
loc(x0) is not necessarily invariant, since it might not be

positively invariant. They do, however, possess what is known as relative
invariance.

Definition A subset A of a set B is positively invariant relative to B if for
every x ∈ A and every t ≥ 0, ϕ(t, x) ∈ A whenever ϕ([0, t], x) ⊆ B.

Definition A subset A of a set B is negatively invariant relative to B if for
every x ∈ A and every t ≤ 0, ϕ(t, x) ∈ A whenever ϕ([t, 0], x) ⊆ B.

Definition A subset A of a set B is invariant relative to B if it is negatively
invariant relative to B and positively invariant relative to B.

W s
loc(x0) is negatively invariant relative to U and is therefore invariant

relative to U . W u
loc(x0) is positively invariant relative to U and is therefore

invariant relative to U .
Recall that a (k-)manifold is a set that is locally homeomorphic to an

open subset of Rk . Although the word “manifold” appeared in the names of
W s

loc(x0), W u
loc(x0), W s(x0), and W u(x0), it is not obvious from the defintions

of these sets that they are, indeed, manifolds. One of the consequences
of the Stable Manifold Theorem is that, if U is sufficiently small, W s

loc(x0)
and W u

loc(x0) are manifolds. (W s(x0) and W u(x0) are what are known as
immersed manifolds.)

For simplicity, let’s now assume that x0 = 0. Let Es be the stable subspace
of Df(0), and let Eu be the unstable subspace of Df(0). If f is linear, then
W s(0) = Es and W u(0) = Eu. The Stable Manifold Theorem says that in
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the nonlinear case not only are the Stable and Unstable Manifolds indeed
manifolds, but they are tangent to Es and Eu, respectively, at the origin.
This is information that the Hartman-Grobman Theorem does not provide.

More precisely there are neighborhoods Us of the origin in Es and Uu of
the origin in Eu and smooth maps hs : Us → Uu and hu : Uu → Us such that
hs(0) = Dhs(0) = hu(0) = Dhu(0) = 0 and the local stable and unstable
manifolds of 0 relative to Us ⊕ Uu satisfy

W s
loc(0) =

{
x+ hs(x)

∣∣ x ∈ Us}
and

W u
loc(0) =

{
x+ hu(x)

∣∣ x ∈ Uu}.
Furthermore, not only do solutions of (118) in the stable manifold converge
to 0 as t ↑ ∞, they do so exponentially quickly. (A similar statement can be
made about the unstable manifold.)

Liapunov-Perron Approach

This approach to proving the Stable Manifold Theorem rewrites (118) as

ẋ = Ax+ g(x), (119)

where A = Df(0). The Variation of Parameters formula gives

x(t2) = e(t2−t1)Ax(t1) +

∫ t2

t1

e(t2−s)Ag(x(s)) ds, (120)

for every t1, t2 ∈ R. Setting t1 = 0 and t2 = t, and projecting (120) onto Es
yields

xs(t) = etAsxs(0) +

∫ t

0

e(t−s)Asgs(x(s)) ds,

where the subscript s attached to a quantity denotes the projection of that
quantity onto Es. If we assume that the solution x(t) lies on W s(0) and we
set t2 = t and let t1 ↑ ∞, and project (120) onto Eu, we get

xu(t) = −
∫ ∞
t

e(t−s)Augu(x(s)) ds.
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Hence, solutions of (119) in W s(0) satisfy the integral equation

x(t) = etAsxs(0) +

∫ t

0

e(t−s)Asgs(x(s)) ds−
∫ ∞
t

e(t−s)Augu(x(s)) ds.

Now, fix as ∈ Es, and define a functional T by

(Tx)(t) = etAsas +

∫ t

0

e(t−s)Asgs(x(s)) ds−
∫ ∞
t

e(t−s)Augu(x(s)) ds.

A fixed point x of this functional will solve (119), will have a range contained
in the stable manifold, and will satisfy xs(0) = as. If we set hs(as) = xu(0)
and define hs similarly for other inputs, the graph of hs will be the stable
manifold.

Hadamard Approach

The Hadamard approach uses what is known as a graph transform. Here we
define a functional not by an integral but by letting the graph of the input
function move with the flow ϕ and selecting the output function to be the
function whose graph is the image of the original graph after, say, 1 unit of
time has elapsed.

More precisely, suppose h is a function from Es to Eu. Define its graph
transform F [h] to be the function whose graph is the set{

ϕ(1, ξ + h(ξ))
∣∣ ξ ∈ Es}. (121)

(That (121) is the graph of a function from Es to Eu—if we identify Es × Eu
with Es ⊕ Eu—is, of course, something that needs to be shown.) Another
way of putting this is that for each ξ ∈ Es,

F [h]((ϕ(1, ξ + h(ξ)))s) = (ϕ(1, ξ + h(ξ)))u;

in other words,

F [h] ◦ πs ◦ ϕ(1, ·) ◦ (id +h) = πu ◦ ϕ(1, ·) ◦ (id +h),

where πs and πu are projections onto Es and Eu, respectively. A fixed point
of the graph transform functional F will be an invariant manifold, and it can
be show that it is, in fact, the stable manifold.
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Stable Manifold Theorem: Part 2
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Math 634
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Statements

Given a normed vector space X and a positive number r, we let X (r) stand
for the closed ball of radius r centered at 0 in X .

The first theorem refers to the differential equation

ẋ = f(x). (122)

Theorem (Stable Manifold Theorem) Suppose that Ω is an open neighborhood
of the origin in Rn , and f : Ω → Rn is a Ck function (k ≥ 1) such that 0
is a hyperbolic equilibrium point of (122). Let Es ⊕ Eu be the decomposition
of Rn corresponding to the matrix Df(0). Then there is a norm ‖ · ‖ on
Rn , a number r > 0, and a Ckfunction h : Es(r) → Eu(r) such that h(0) =
Dh(0) = 0 and such that the local stable manifold W s

loc(0) of 0 relative to
B(r) := Es(r)⊕ Eu(r) is the set{

vs + h(vs)
∣∣ vs ∈ Es(r)}.

Moreover, there is a constant c > 0 such that

W s
loc(0) =

{
v ∈ B(r)

∣∣∣ γ+(v) ⊂ B(r) and lim
t↑∞

ectϕ(t, v) = 0
}
.

Two immediate and obvious corollaries, which we will not state explicitly,
describe the stable manifolds of other equilibrium points (via translation) and
describe unstable manifolds (by time reversal).

We will actually prove this theorem by first proving an analogous theorem
for maps (much as we did with the Hartman-Grobman Theorem). Given a
neighborhood U of a fixed point p of a map F , we can define the local stable
manifold of p (relative to U) as

W s
loc(p) :=

{
x ∈ U

∣∣∣ F j(x) ∈ U for every j ∈ N and lim
j↑∞

F j(x) = p
}
.

Theorem (Stable Manifold Theorem for Maps) Suppose that Ω is an open neigh-
borhood of the origin in Rn , and F : Ω → Ω is an invertible Ck function
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(k ≥ 1) for which F (0) = 0 and the matrix DF (0) is hyperbolic and in-
vertible. Let Es ⊕ Eu(= E− ⊕ E+) be the decomposition of Rn correspond-
ing to the matrix DF (0). Then there is a norm ‖ · ‖ on Rn , a number
r > 0, a number µ̃ ∈ (0, 1), and a Ckfunction h : Es(r) → Eu(r) such that
h(0) = Dh(0) = 0 and such that the local stable manifold W s

loc(0) of 0 relative
to B(r) := Es(r)⊕ Eu(r) satisfies

W s
loc(0) =

{
vs + h(vs)

∣∣ vs ∈ Es(r)}
=
{
v ∈ B(r)

∣∣∣ F j(v) ∈ B(r) for every j ∈ N
}

=
{
v ∈ B(r)

∣∣∣ F j(v) ∈ B(r) and ‖F j(v)‖ ≤ µ̃j‖v‖ for every j ∈ N
}
.

Preliminaries

The proof of the Stable Manifold Theorem for Maps will be broken up into
a series of lemmas. Before stating and proving those lemmas, we need to lay
a foundation by introducing some terminology and notation and by choosing
some constants.

We know that F (0) = 0 and DF (0) is hyperbolic. Then Rn = Es⊕Eu, πs
and πu are the corresponding projection operators, Es and Eu are invariant
under DF (0), and there are constants µ < 1 and λ > 1 such that all of the
eigenvalues of DF (0)|Es have magnitude less than µ and all of the eigenvalues
of DF (0)|Eu have magnitude greater than λ.

When we deal with a matrix representation of DF (q), it will be with
respect to a basis that consists of a basis for Es followed by a basis for Eu.
Thus,

DF (q) =

[
Ass(q) Asu(q)

Aus(q) Auu(q)

]
,

where, for example, Asu(q) is a matrix representation of πsDF (q)|Eu in terms
of the basis for Eu and the basis for Es. Note that, by invariance, Asu(0) =
Aus(0) = 0. Furthermore, we can pick our basis vectors so that, with ‖ · ‖
being the corresponding Euclidean norm of a vector in Es or in Eu,

‖Ass(0)‖ := sup
vs 6=0

‖Ass(0)vs‖
‖vs‖

< µ

and

m(Auu(0)) := inf
vu 6=0

‖Auu(0)vu‖
‖vu‖

> λ.
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(The functional m(·) defined implicitly in the last formula is sometimes called
the minimum norm even though it is not a norm.) For a vector in v ∈ Rn ,
let ‖v‖ = max{‖πsv‖, ‖πuv‖}. This will be the norm on Rn that will be used
throughout the proof. Note that B(r) := Es(r)⊕ Eu(r) is the closed ball of
radius r in Rn by this norm.

Next, we choose r. Fix α > 0. Pick ε > 0 small enough that

µ+ εα+ ε < 1 < λ− ε/α− 2ε.

Pick r > 0 small enough that if q ∈ B(r) then

‖Ass(q)‖ < µ,
m(Auu(q)) > λ,
‖Asu(q)‖ < ε,
‖Aus(q)‖ < ε,

‖DF (q)−DF (0)‖ < ε,

and DF (q) is invertible. (We can do this since F is C1, so DF (·) is contin-
uous.)

Now, define

W s
r :=

∞⋂
j=0

F−j(B(r)),

and note that W s
r is the set of all points in B(r) that produce forward semior-

bits (under the discrete dynamical system generated by F ) that stay in B(r)
for all forward iterates. By definition, W s

loc(0) ⊆W s
r ; we will show that these

two sets are, in fact, equal.
Two other types of geometric sets play vital roles in the proof: cones and

disks. The cones are of two types: stable and unstable. The stable cone (of
“slope” α) is

Cs(α) :=
{
v ∈ Rn

∣∣ ‖πuv‖ ≤ α‖πsv‖
}
,

and the unstable cone (of “slope” α) is

Cu(α) :=
{
v ∈ Rn

∣∣ ‖πuv‖ ≥ α‖πsv‖
}
.

An unstable disk is a set of the form{
vu + ψ(vu)

∣∣ vu ∈ Eu(r)}
for some Lipschitz continuous function ψ : Eu(r) → Es(r) with Lipschitz
constant (less than or equal to) α−1.
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The Action of DF (p) on the Unstable Cone

The first lemma shows that if the derivative of the map is applied to a point
in the unstable cone, the image is also in the unstable cone.

Lemma (Linear Invariance of the Unstable Cone) If p ∈ B(r), then

DF (p)Cu(α) ⊆ Cu(α).

Proof. Let p ∈ B(r) and v ∈ Cu(α). Then, if we let vs = πsv and vu = πuv,
we have ‖vu‖ ≥ α‖vs‖, so

‖πuDF (p)v‖ = ‖Aus(p)vs + Auu(p)vu‖ ≥ ‖Auu(p)vu‖ − ‖Aus(p)vs‖
≥ m(Auu(p))‖vu‖ − ‖Aus(p)‖‖vs‖ ≥ λ‖vu‖ − ε‖vs‖
≥ (λ− ε/α)‖vu‖,

and

‖πsDF (p)v‖ = ‖Ass(p)vs + Asu(p)vu‖ ≤ ‖Ass(p)vs‖+ ‖Asu(p)vu‖
≤ ‖Ass(p)‖‖vs‖+ ‖Asu(p)‖‖vu‖ ≤ µ‖vs‖+ ε‖vu‖
≤ (µ/α+ ε)‖vu‖.

Since λ− ε/α ≥ α(µ/α+ ε),

‖πuDF (p)v‖ ≥ α‖πsDF (p)v‖,

so DF (p)v ∈ Cu(α).

The Action of F on Moving Unstable Cones

The main part of the second lemma is that moving unstable cones are posi-
tively invariant. More precisely, if two points are in B(r) and one of the two
points is in a translate of the unstable cone that is centered at the second
point, then their images under F satisfy the same relationship. The lemma
also provides estimates on the rates at which the stable and unstable parts
of the difference between the two points contract or expand, respectively.
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In this lemma (and later) we use the convention that if X and Y are
subsets of a vector space, then

X + Y :=
{
x+ y

∣∣ x ∈ X and y ∈ Y
}
.

Lemma (Moving Unstable Cones) If p, q ∈ B(r) and q ∈ {p}+ Cu(α), then:

(a) ‖πs(F (q)− F (p))‖ ≤ (µ/α + ε)‖πu(q − p)‖;

(b) ‖πu(F (q)− F (p))‖ ≥ (λ− ε/α− ε)‖πu(q − p)‖;

(c) F (q) ∈ {F (p)}+ Cu(α).

Proof. We will write differences as integrals (using the Fundamental Theorem
of Calculus) and use our estimates on DF (v), for v ∈ B(r), to estimate these
integrals.

Since B(r) is convex,

‖πs(F (q)− F (p))‖ =

∥∥∥∥∫ 1

0

d

dt
πsF (tq + (1− t)p) dt

∥∥∥∥
=

∥∥∥∥∫ 1

0

πsDF (tq + (1− t)p)(q − p) dt
∥∥∥∥

=

∥∥∥∥∫ 1

0

[Ass(tq + (1− t)p)πs(q − p) + Asu(tq + (1− t)p)πu(q − p)] dt
∥∥∥∥

≤
∫ 1

0

[‖Ass(tq + (1− t)p)‖‖πs(q − p)‖+ ‖Asu(tq + (1− t)p)‖‖πu(q − p)‖] dt

≤
∫ 1

0

[µ‖πs(q − p)‖+ ε‖πu(q − p)‖] dt ≤ (µ/α+ ε)‖πu(q − p)‖.

This gives (a).
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Similarly,

‖πu(F (q)− F (p))‖

=

∥∥∥∥∫ 1

0

[Aus(tq + (1− t)p)πs(q − p) + Auu(tq + (1− t)p)πu(q − p)] dt
∥∥∥∥

≥
∥∥∥∥∫ 1

0

Auu(0)πu(q − p) dt
∥∥∥∥− ∥∥∥∥∫ 1

0

[Aus(tq + (1− t)p)πs(q − p) dt
∥∥∥∥

−
∥∥∥∥∫ 1

0

(Auu(tq + (1− t)p)− Auu(0))πu(q − p) dt
∥∥∥∥

≥ m(Auu(0))‖πu(q − p)‖ −
∫ 1

0

‖Aus(tq + (1− t)p)‖‖πs(q − p)‖ dt

−
∫ 1

0

‖Auu(tq + (1− t)p)− Auu(0)‖‖πu(q − p)‖ dt

≥ λ‖πu(q − p)‖ − ε‖πs(q − p)‖ − ε‖πu(q − p)‖ ≥ (λ− ε/α− ε)‖πu(q − p)‖.

This gives (b).
From (a), (b), and the choice of ε, we have

‖πu(F (q)− F (p))‖ ≥ (λ− ε/α− ε)‖πu(q − p)‖ ≥ (µ+ εα)‖πu(q − p)‖
≥ α‖πs(F (q)− F (p))‖,

so F (q)− F (p) ∈ Cu(α), which means that (c) holds.
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Stretching of C1 Unstable Disks

The next lemma shows that if F is applied to a C1 unstable disk (i.e., an
unstable disk that is the graph of a C1 function), then part of the image gets
stretched out of B(r), but the part that remains in is again a C1 unstable
disk.

Lemma (Unstable Disks) Let D0 be a C1 unstable disk, and recursively define

Dj = F (Dj−1) ∩ B(r)

for each j ∈ N . Then each Dj is a C1 unstable disk, and

diam

(
πu

j⋂
i=0

F−i(Di)
)
≤ 2(λ− ε/α− ε)−jr (123)

for each j ∈ N .

Proof. Because of induction, we only need to handle the case j = 1. The
estimate on the diameter of the πu projection of the preimage of D1 under F
is a consequence of part (b) of the lemma on moving invariant cones. That
D1 is the graph of an α−1-Lipschitz function ψ1 from a subset of Eu(r) to
Es(r) is a consequence of part (c) of that same lemma. Thus, all we need to
show is that dom(ψ1) = Eu(r) and that ψ1 is C1.

Let ψ0 : Eu(r) → Es(r) be the C1 function (with Lipschitz constant less
than or equal to α−1) such that

D0 =
{
vu + ψ0(vu)

∣∣ vu ∈ Eu(r)}.
Define g : Eu(r) → Eu by the formula g(vu) = πuF (vu + ψ0(vu)). If we can
show that for each y ∈ Eu(r) there exists x ∈ Eu(r) such that

g(x) = y, (124)

then we will know that dom(ψ1) = Eu(r).
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Let y ∈ Eu(r) be given. Let L = Auu(0). Since m(L) > λ, we know that
L−1 ∈ L(Eu, Eu) exists and that ‖L−1‖ ≤ 1/λ. Define G : Eu(r) → Eu by
the formula G(x) = x − L−1(g(x) − y), and note that fixed points of G are
solutions of (124), and vice versa. We shall show that G is a contraction
and takes the compact set Eu(r) into itself and that, therefore, (124) has a
solution x ∈ Eu(r).

Note that

Dg(x) = πuDF (x+ ψ0(x))(I +Dψ0(x))
= Auu(x+ ψ0(x)) + Aus(x+ ψ0(x))Dψ0(x),

so

‖DG(x)‖ = ‖I − L−1Dg(x)‖ ≤ ‖L−1‖‖L−Dg(x)‖
≤ 1

λ
(‖Auu(x+ ψ0(x))− Auu(0)‖+ ‖Aus(x+ ψ0(x))‖‖Dψ0(x)‖)

≤ ε+ ε/α

λ
< 1.

The Mean Value Theorem then implies that G is a contraction.
Now, suppose that x ∈ Eu(r). Then

‖G(x)‖ ≤ ‖G(0)‖+ ‖G(x)−G(0)‖ ≤ ‖L−1‖(‖g(0)‖+ ‖y‖) +
ε+ ε/α

λ
‖x‖

≤ 1

λ
(‖g(0)‖+ r + (ε+ ε/α)r).

Let ρ : Es(r) → Eu(r) be defined by the formula ρ(vs) = πuF (vs). Since
ρ(0) = 0 and, for any vs ∈ Es(r), ‖Dρ(vs)‖ = ‖Aus(vs)‖ ≤ ε, the Mean Value
Theorem tells us that

‖g(0)‖ = ‖πuF (ψ0(0))‖ = ‖ρ(ψ0(0))‖ ≤ ε‖ψ0(0)‖ ≤ εr. (125)

Plugging (125) into the previous estimate, we see that

‖G(x)‖ ≤ 1

λ
(εr + r + (ε+ ε/α)r) =

1 + ε/α+ 2ε

λ
r < r,

so G(x) ∈ Eu(r).
That completes the verification that (124) has a solution for each y ∈

Eu(r) and, therefore, that dom(ψ1) = Eu(r). To finish the proof, we need to
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show that ψ1 is C1. Let g̃ be the restriction of g to g−1(D1), and observe
that

ψ1 ◦ g̃ = πs ◦ F ◦ (I + ψ0). (126)

We have shown that g̃ is a bijection of g−1(D1) with D1 and, by the Inverse
Function Theorem, g̃−1 is C1. Thus, if we rewrite (126) as

ψ1 = πs ◦ F ◦ (I + ψ0) ◦ g̃−1

we can see that ψ1, as the composition of C1 functions, is indeed C1.

W s
r is a Lipschitz Manifold

Recall that W s
r was defined to be all points in the box B(r) that produced

forward orbits that remain confined within B(r). The next lemma shows that
this set is a manifold.

Lemma (Nature of W s
r ) W s

r is the graph of a function h : Es(r)→ Eu(r) that
satisfies h(0) = 0 and that has a Lipschitz constant less than or equal to α.

Proof. For each vs ∈ Eu(r), consider the set

D := {vs}+ Eu(r).

D is a C1 unstable disk, so by the lemma on unstable disks, the subset Sj of
D that stays in B(r) for at least j iterations of F has a diameter less than
or equal to 2(λ− ε/α − ε)−jr. By the continuity of F , Sj is closed. Hence,
the subset S∞ of D that stays in B(r) for an unlimited number of iterations
of F is the intersection of a nested collection of closed sets whose diameters
approach 0. This means that S∞ is a singleton. Call the single point in S∞
h(vs).

It should be clear that W s
r is the graph of h. That h(0) = 0 follows

from the fact that 0 ∈ W s
r , since F (0) = 0. If h weren’t α-Lipschitz, then

there would be two points p, q ∈ W s
r such that p ∈ {q} + Cu(α). Repeated

application of parts (b) and (c) of the lemma on moving unstable cones
would imply that either F j(p) or F j(q) is outside of B(r) for some j ∈ N ,
contrary to definition.
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W s
loc(0) is a Lipschitz Manifold

Our next lemma shows that W s
loc(0) = W s

r and that, in fact, orbits in this set
converge to 0 exponentially. (The constant µ̃ in the statement of the theorem
can be chosen to be µ+ ε if α ≤ 1.)

Lemma (Exponential Decay) If α ≤ 1, then for each p ∈W s
r ,

‖F j(p)‖ ≤ (µ+ ε)j‖p‖. (127)

In particular, W s
r = W s

loc(0).

Proof. Suppose that α ≤ 1 and p ∈W s
r . By mathematical induction (and the

positive invariance of W s
r ), it suffices to verify (127) for j = 1. Estimating,

we find that

‖F (p)‖ ≤ ‖πsF (p)‖ =

∥∥∥∥∫ 1

0

d

dt
πsF (tp) dt

∥∥∥∥ =

∥∥∥∥∫ 1

0

πsDF (tp)p dt

∥∥∥∥
=

∥∥∥∥∫ 1

0

Ass(tp)πsp+ Asu(tp)πup dt

∥∥∥∥
≤
∫ 1

0

[‖Ass(tp)‖‖πsp‖+ ‖Asu(tp)‖‖πup‖] dt

≤ µ‖πsp‖+ ε‖πup‖ ≤ (µ+ ε)‖p‖.
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W s
loc(0) is C1

Lemma (Differentiability) The function h : Es(r)→ Eu(r) for which

W s
loc(0) =

{
vs + h(vs)

∣∣ vs ∈ Es(r)}
is C1, and Dh(0) = 0.

Proof. Let q ∈ W s
r be given. We will first come up with a candidate for a

plane that is tangent to W s
r at q, and then we will show that it really is.

For each j ∈ N and each p ∈W s
r , define

Cs,j(p) := [D(F j)(p)]−1Cs(α),

and let

Cs,0(p) := Cs(α).

By definition (and by the invertibility of DF (v) for all v ∈ B(r)), Cs,j(p) is
the image of the stable cone under an invertible linear transformation. Note
that

Cs,1(p) = [DF (p)]−1Cs(α) ⊂ Cs(α) = Cs,0(p)

by the (proof of the) lemma on linear invariance of the unstable cone. Simi-
larly,

Cs,2(p) = [D(F 2)(p)]−1Cs(α) = [DF (F (p))DF (p)]−1Cs(α)
= [DF (p)]−1[DF (F (p))]−1Cs(α) = [DF (p)]−1Cs,1(F (p))
⊂ [DF (p)]−1Cs(α) = Cs,1(p)

and

Cs,3(p) = [D(F 3)(p)]−1Cs(α) = [DF (F 2(p))DF (F (p))DF (p)]−1Cs(α)
= [DF (p)]−1[DF (F (p))]−1[DF (F 2(p))]−1Cs(α)
= [DF (p)]−1[DF (F (p))]−1Cs,1(F 2(p))
⊂ [DF (p)]−1[DF (F (p))]−1Cs(α) = Cs,2(p).
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Recursively, we find that, in particular,

Cs,0(q) ⊃ Cs,1(q) ⊃ Cs,2(q) ⊃ Cs,3(q) ⊃ · · · .
The plane that we will show is the tangent plane to W s

r at q is the intersection

Cs,∞(q) :=
∞⋂
j=0

Cs,j(q)

of this nested sequence of “cones”.
First, we need to show that this intersection is a plane. Suppose that

x ∈ Cs,j(q). Then x ∈ Cs(α), so

‖πsDF (q)x‖ = ‖Ass(q)πsx+ Asu(q)πux‖ ≤ ‖Ass(q)‖‖πsx‖ + ‖Asu(q)‖‖πux‖
≤ (µ+ εα)‖πsx‖.

Repeating this sort of estimate, we find that

‖πsD(F j)(q)x‖ = ‖πsDF (F j−1(q))DF (F j−2(q)) · · ·DF (q)x‖
≤ (µ+ εα)j‖πsx‖.

On the other hand, if y is also in Cs,j(q) and πsx = πsy, then repeated
applications of the estimates in the lemma on linear invariance of the unstable
cone yield

‖πuD(F j)(q)x− πuD(F j)(q)y‖ ≥ (λ− ε/α)j‖πux− πuy‖.
Since D(F j)(q)Cs,j(q) = Cs(α), it must, therefore, be the case that

(λ− ε/α)j‖πux− πuy‖
(µ+ εα)j‖πsx‖

≤ 2α.

This implies that

‖πux− πuy‖ ≤ 2α

(
µ+ εα

λ− ε/α

)j
‖πsx‖. (128)

Letting j ↑ ∞ in (128), we see that for each vs ∈ Es there can be no more than
1 point x in Cs,∞(q) satisfying πsx = vs. On the other hand, each Cs,j(q)
contains a plane of dimension dim(Es) (namely, the preimage of Es under
D(F j)(q)), so (since the set of planes of that dimension passing through the
origin is a compact set in the natural topology), Cs,∞(q) contains a plane,
as well. This means that Cs,∞(q) is a plane Pq that is the graph of a linear
function Lq : Es → Eu.

Before we show that Lq = Dh(q), we make a few remarks.
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(a) Because Es ⊂ Cs,j(0) for every j ∈ N , P0 = Es and L0 = 0.

(b) The estimate (128) shows that the size of the largest angle between two
vectors in Cs,j(q) having the same projection onto Es goes to zero as
j ↑ ∞.

(c) Also, the estimates in the proof of the lemma on linear invariance of
the unstable cone show that the size of the minimal angle between a
vector in Cs,1(F j(q)) and a vector outside of Cs,0(F j(q)) is bounded
away from zero. Since

Cs,j(q) = [D(F j)(q)]−1Cs(α) = [D(F j)(q)]−1Cs,0(F j(q))

and

Cs,j+1(q) = [D(F j+1)(q)]−1Cs(α) = [D(F j)(q)]−1[DF (F j(q))]−1Cs(α)

= [D(F j)(q)]−1Cs,1(F j(q)),

this means that the size of the minimal angle between a vector in
Cs,j+1(q) and a vector outside of Cs,j(q) is also bounded away from
zero.

(d) Thus, since Cs,j+1(q) depends continuously on q,

Pq′ ∈ Cs,j+1(q′) ⊂ Cs,j(q)

for a given j if q′ is sufficiently close to q. This means that Pq depends
continuously on q.

Now, we show that DF (q) = Lq. Let ε > 0 be given. By remark (b)
above, we can choose j ∈ N such that

‖πuv − Lqπsv‖ ≤ ε‖πsv‖ (129)

whenever v ∈ Cs,j(q). By remark (c) above, we know that we can choose
ε′ > 0 such that if w ∈ Cs,j+1(q) and ‖r‖ ≤ ε′‖w‖, then w + r ∈ Cs,j(q).
Because of the differentiability of F−j−1, we can choose η > 0 such that

‖F−j−1(F j+1(q) + v)− q − [D(F−j−1)(F j+1(q))]v‖ ≤ ε′

‖D(F j+1)(q)‖‖v‖

(130)
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whenever ‖v‖ ≤ η. Define the truncated stable cone

Cs(α, η) := Cs(α) ∩ π−1
s Es(η).

From the continuity of F and the α-Lipschitz continuity of h, we know that
we can pick δ > 0 such that

F j+1(vs + h(vs)) ∈ {F j+1(q)}+ Cs(α, η). (131)

whenever ‖vs − πsq‖ < δ.
Now, suppose that v ∈ Cs(α, η). Then (assuming α ≤ 1) we know that

‖v‖ ≤ η, so (130) tells us that

F−j−1(F j+1(q) + v) = q + [D(F−j−1)(F j+1(q))]v + r

= q + [D(F j+1)(q)]−1v + r
(132)

for some r satisfying

‖r‖ ≤ ε′

‖D(F j+1)(q)‖‖v‖.

Let w = [D(F j+1)(q)]−1v. Since v ∈ Cs(α), w ∈ Cs,j+1(q). Also,

‖w‖ = ‖[D(F j+1)(q)]−1v‖ ≥ m([D(F j+1)(q)]−1)‖v‖ =
‖v‖

‖D(F j+1)(q)‖ ,

so ‖r‖ ≤ ε′‖w‖. Thus, by the choice of ε′, w + r ∈ Cs,j(q) . Consequently,
(132) implies that

F−j−1(F j+1(q) + v) ∈ {q}+ Cs,j(q).

Since v was an arbitrary element of Cs(α, η), we have

F−j−1({F j+1(q)}+ Cs(α, η)) ⊆ {q}+ Cs,j(q). (133)

Set qs := πsq, and suppose that vs ∈ Es(r) satisfies ‖vs − qs‖ ≤ δ. By
(131),

F j+1(vs + h(vs)) ∈ {F j+1(q)}+ Cs(α, η).

This, the invertibility of F , and (133) imply

vs + h(vs) ∈ {q}+ Cs,j(q),
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or, in other words,

vs + h(vs)− qs − h(qs) ∈ Cs,j(q).

The estimate (129) then tells us that

‖h(vs)− h(qs)− Lq(vs − qs)‖ ≤ ε‖vs − qs‖,

which proves that Dh(q) = Lq (since ε was arbitrary).
Remark (d) above implies that Dh(q) depends continuously on q, so

h ∈ C1. Remark (a) above implies that Dh(0) = 0.
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Stable Manifold Theorem: Part 6
Lecture 36
Math 634
11/22/99

Higher Differentiability

Lemma (Higher Differentiability) If F is Ck, then h is Ck.

Proof. We’ve already seen that this holds for k = 1. We show that it is true
for all k by induction. Let k ≥ 2, and assume that the lemma works for k−1.
Define a new map H : Rn × Rn → Rn × Rn by the formula

H

([
p
v

])
:=

[
F (p)

DF (p)v

]
.

Since F is Ck, H is Ck−1. Note that

H2

([
p
v

])
=

[
F (F (p))

DF (F (p))DF (p)v

]
=

[
F 2(p)

D(F 2)(p)v

]
,

H3

([
p
v

])
=

[
F (F 2(p))

DF (F 2(p))D(F 2)(p)v

]
=

[
F 3(p)

D(F 3)(p)v

]
,

and, in general,

Hj

([
p
v

])
=

[
F j(p)

D(F j)(p)v

]
.

Also,

DH

([
p
v

])
=

[
DF (p) 0

D2F (p)v DF (p)

]
,

so

DH

([
0
0

])
=

[
DF (0) 0

0 DF (0)

]
,
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which is hyperbolic and invertible, since DF (0) is. Applying the induction
hypothesis, we can conclude that the fixed point of H at the origin (in Rn ×
Rn) has a local stable manifold W that is Ck−1.

Fix q ∈W s
r , and note that F j(q)→ 0 as j ↑ ∞ and

Pq =
{
v ∈ Rn

∣∣∣ lim
j↑∞

D(F j)(q)v = 0
}
.

This means that

Pq =

{
v ∈ Rn

∣∣∣∣∣
[
q
v

]
∈ W

}
.

Since W has a Ck−1 dependence on q, so does Pq. Hence, h is Ck.

Flows

Now we discuss how the Stable Manifold Theorem for maps implies the Stable
Manifold Theorem for flows. Given f : Ω → Rn satisfying f(0) = 0, let
F = ϕ(1, ·), where ϕ is the flow generated by the differential equation

ẋ = f(x). (134)

If f is Ck, so is F . Clearly, F is invertible and F (0) = 0. Our earlier
discussion on differentiation with respect to initial conditions tells us that

d

dt
Dxϕ(t, x) = Df(ϕ(t, x))Dxϕ(t, x)

and Dxϕ(0, x) = I, where Dx represents differentiation with respect to x.
Setting

g(t) = Dxϕ(t, x)|x=0 ,

this implies, in particular, that

d

dt
g(t) = Df(0)g(t)

and g(0) = I, so

g(t) = etDf(0).
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Setting t = 1, we see that

eDf(0) = g(1) = Dxϕ(1, x)|x=0 = DxF (x)|x=0 = DF (0).

Thus, DF (0) is invertible, and if (134) has a hyperbolic equilibrium at the
origin then DF (0) is hyperbolic.

Since F satisfies the hypotheses of the Stable Manifold Theorem for maps,
we know that F has a local stable manifold W s

r on some box B(r). Assume
that α < 1 and that r is small enough that the vector field of (134) points into
B(r) on Cs(α)∩ ∂B(r). (See the estimates in Lecture 21.) The requirements
for a point to be in W s

r are no more restrictive then the requirements to be
in the local stable manifold Ws

r of the origin with respect to the flow, so
Ws

r ⊆W s
r .

We claim that, in fact, these two sets are equal. Suppose they are not.
Then there is a point q ∈ W s

r \Ws
r . Let x(t) be the solution of (134) satisfying

x(0) = q. Since limj↑∞ F
j(q) = 0 and, in a neighborhood of the origin, there

is a bound on the factor by which x(t) can grow in 1 unit of time, we know
that x(t)→ 0 as t ↑ ∞. Among other things, this implies that

(a) x(t) /∈ W s
r for some t > 0, and

(b) x(t) ∈W s
r for all t sufficiently large.

Since W s
r is a closed set and x is continuous, (a) and (b) say that we can

pick t0 to be the earliest time such that x(t) ∈W s
r for every t ≥ t0.

Now, consider the location of x(t) for t in the time interval [t0 − 1, t0).
Since x(0) ∈ W s

r , we know that x(j) ∈ W s
r for every j ∈ N . In particular,

we can choose t1 ∈ [t0 − 1, t0) such that x(t1) ∈ W s
r . By definition of t0, we

can choose t2 ∈ (t1, t0) such that x(t2) /∈ W s
r . By the continuity of x and

the closedness of W s
r , we can pick t3 to the be the last time before t2 such

that x(t3) ∈ W s
r . By definition of W s

r , if t ∈ [t0 − 1, t0) and x(t) /∈ W s
r ,

then x(t) /∈ B(r); hence, x(t) must leave B(r) at time t = t3. But this
contradicts the fact that the vector field points into B(r) at x(t3), since
x(t3) ∈ Cs(α)∩∂B(r). This contradiction implies that no point q ∈W s

r \Ws
r

exists; i.e., W s
r =Ws

r .
The exponential decay of solutions of the flow on the local stable manifold

is a consequence of the similar decay estimate for the map, along with the
observation that, near 0, there is a bound to the factor by which a solution
can grown in 1 unit of time.
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Center Manifolds
Lecture 37
Math 634
11/29/99

Definition

Recall that for the linear differential equation

ẋ = Ax (135)

the corresponding invariant subspaces Eu, Es, and E c had the characteriza-
tions

Eu =
{
x ∈ Rn

∣∣∣ ∃c > 0 s.t. lim
t↓−∞

|e−ctetAx| = 0
}
,

Es =
{
x ∈ Rn

∣∣∣ ∃c > 0 s.t. lim
t↑∞
|ectetAx| = 0

}
,

and

E c =
{
x ∈ Rn

∣∣∣ ∀c > 0, lim
t↓−∞

|ectetAx| = 0 and lim
t↑∞
|e−ctetAx| = 0

}
.

The Stable Manifold Theorem tells us that for the nonlinear differential equa-
tion

ẋ = f(x), (136)

with f(0) = 0, the stable manifold W s(0) and the unstable manifold W u(0)
have characterizations similar to Es and Eu, respectively:

W s(0) =
{
x ∈ Rn

∣∣∣ ∃c > 0 s.t. lim
t↑∞
|ectϕ(t, x)| = 0

}
,

and

W u(0) =
{
x ∈ Rn

∣∣∣ ∃c > 0 s.t. lim
t↓−∞

|e−ctϕ(t, x)| = 0
}
,

where ϕ is the flow generated by (136). (This was only verified when the
equilibrium point at the origin was hyperbolic, but a similar result holds in
general.)

155



Is there a useful way to modify the characterization of E c similarly to
get a characterization of a center manifold W c(0)? Not really. The main
problem is that the characterizations of Es and Eu only depend on the local
behavior of solutions when they are near the origin, but the characterization
of E c depends on the behavior of solutions that are, possibly, far from 0.

Still, the idea of a center manifold as some sort of nonlinear analogue of
E c(0) is useful. Here’s one widely-used definition:

Definition Let A = Df(0). A center manifold W c(0) of the equilbrium point
0 of (136) is an invariant manifold whose dimension equals the dimension of
the invariant subspace E c of (135) and which is tangent to E c at the origin.

Nonuniqueness

While the fact that stable and unstable manifolds are really manifolds is
a theorem (namely, the Stable Manifold Theorem), a center manifold is a
manifold by definition. Also, note that we refer to the stable manifold and
the unstable manifold, but we refer to a center manifold. This is because
center manifolds are not necessarily unique. An extremely simple example
of nonuniqueness (commonly credited to Kelley) is the planar system{

ẋ = x2

ẏ = −y.

Clearly, E c is the x-axis, and solving the system explicitly reveals that for
any constant c ∈ R the curve{

(x, y) ∈ R2
∣∣ x < 0 and y = ce1/x

}
∪
{

(x, 0) ∈ R2
∣∣ x ≥ 0

}
is a center manifold.

Existence

There is a Center Manifold Theorem just like there was a Stable Manifold
Theorem. However, the goal of the Center Manifold Theorem is not to
characterize a center manifold; that is done by the definition. The Center
Manifold Theorem asserts the existence of a center manifold.

We will not state this theorem precisely nor prove it, but we can give some
indication how the proof of existence of a center manifold might go. Suppose
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that none of the eigenvalues of Df(0) have real part equal to α, where α is a
given real number. Then we can split the eigenvalues up into two sets: Those
with real part less than α and those with real part greater than α. Let E−
be the vector space spanned by the generalized eigenvectors corresponding
to the first set of eigenvalues, and let E+ be the vector space spanned by the
generalized eigenvectors corresponding to the second set of eigenvalues. If we
cut off f so that it is stays nearly linear throughout Rn , then an analysis very
much like that in the proof of the Stable Manifold Theorem can be done to
conclude that there are invariant manifolds called the pseudo-stable manifold
and the pseudo-unstable manifold that are tangent, respectively, to E− and
E+ at the origin. Solutions x(t) in the first manifold satisfy e−αtx(t)→ 0 as
t ↑ ∞, and solutions in the second manifold satisfy e−αtx(t)→ 0 as t ↓ −∞.

Now, suppose that α is chosen to be negative but larger than the real
part of the eigenvalues with negative real part. The corresponding pseudo-
unstable manifold is called a center-unstable manifold and is written W cu(0).
If, on the other hand, we choose α to be between zero and all the positive
real parts of eigenvalues, then the resulting pseudo-stable manifold is called
a center-stable manifold and is written W cs(0). It turns out that

W c(0) := W cs(0) ∩W cu(0)

is a center manifold.

Center Manifold as a Graph

Since a center manifold W c(0) is tangent to E c at the origin it can, at least
locally, be represented as the graph of a function h : E c → Es⊕Eu. Suppose,
for simplicity, that (136) can be rewritten in the form{

ẋ = Ax+ F (x, y)

ẏ = By +G(x, y),
(137)

where x ∈ E c, y ∈ Es⊕Eu, the eigenvalues of A all have zero real part, all of
the eigenvalues of B have nonzero real part, and F and G are higher order
terms. Then, for points x+ y lying on W c(0), y = h(x). Inserting that into
(137) and using the chain rule, we get

Dh(x)[Ax+ F (x, h(x))] = Dh(x)ẋ = ẏ = Bh(x) +G(x, h(x)).
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Thus, if we define an operator M by the formula

(Mφ)(x) := Dφ(x)[Ax+ F (x, φ(x))]− Bφ(x) +G(x, φ(x)),

the function h whose graph is the center manifold is a solution of the equation
Mh = 0.
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Computing and Using Center Manifolds
Lecture 38
Math 634
12/1/99

Approximation

Recall that we projected our equation onto E c and onto Es ⊕ Eu to get the
system {

ẋ = Ax+ F (x, y)

ẏ = By +G(x, y),
(138)

and that we were looking for a function h : E c → Es⊕Eu satisfying (Mh) ≡ 0,
where

(Mφ)(x) := Dφ(x)[Ax+ F (x, φ(x))]− Bφ(x) +G(x, φ(x)).

Except in the simplest of cases we have no hope of trying to get an
explicit formula for h, but because of the following theorem of Carr we can
approximate h to arbitrarily high orders.

Theorem (Carr) Let φ be a C1 mapping of a neighborhood of the origin in Rn

into Rn that satisfies φ(0) = 0 and Dφ(0) = 0. Suppose that

(Mφ)(x) = O(|x|q)

as x→ 0 for some constant q > 1. Then

|h(x)− φ(x)| = O(|x|q)

as x→ 0.

Stability

If we put y = h(x) in the first equation in (137), we get the reduced equation

ẋ = Ax+ F (x, h(x)), (139)

which describes the evolution of the E c coordinate of solutions on the center
manifold. Another theorem of Carr’s states that if all the eigenvalues of
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Df(0) are in the closed left half-plane, then the stability type of the origin
as an equilibrium solution of (138) (Lyapunov stable, asymptotically stable,
or unstable) matches the stability type of the origin as an equilibrium solution
of (139).

These results of Carr are sometimes useful in computing the stability type
of the origin. Consider, for example, the following system:{

ẋ = xy + ax3 + by2x

ẏ = −y + cx2 + dx2y,

where x and y are real variables and a, b, c, and d are real parameters. We
know that there is a center manifold, tangent to the x-axis at the origin,
that is (locally) of the form y = h(x). The reduced equation on the center
manifold is

ẋ = xh(x) + ax3 + b[h(x)]2x. (140)

To determine the stability of the origin in (140) (and, therefore, in the original
system) we need to approximate h. Therefore, we consider the operator M
defined by

(Mφ)(x) = φ′(x)[xφ(x) + ax3 + b(φ(x))2x] + φ(x)− cx2 − dx2φ(x),

and seek polynomial φ (satisfying φ(0) = φ′(0) = 0) for which (Mφ)(x) is
of high order in x. By inspection, if φ(x) = cx2 then (Mφ)(x) = O(x4), so
h(x) = cx2 +O(x4), and (140) becomes

ẋ = (a + c)x3 +O(x5).

Hence, the origin is asymptotically stable if a+c < 0 and is unstable if a+c >
0. What about the borderline case when a+c = 0? Suppose that a+c = 0 and
let’s go back and try a different φ, namely, one of the form φ(x) = cx2 +kx4.
Plugging this in, we find that (Mφ)(x) = (k− cd)x4 +O(x6), so if we choose
k = cd then (Mφ)(x) = O(x6); thus, h(x) = cx2 + cdx4 + O(x6). Inserting
this in (140), we get

ẋ = (cd+ bc2)x5 +O(x7),

so the origin is asymptotically stable if cd + bc2 < 0 (and a + c = 0) and is
unstable if cd+ bc2 > 0 (and a+ c = 0).
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What if a + c = 0 and cd + bc2 = 0? Suppose that these two conditions
hold, and consider φ of the form φ(x) = cx2+cdx4+kx6 for some k ∈ R yet to
be determined. Calculating, we discover that (Mφ)(x) = (k−b2c3)x6+O(x8),
so by choosing k = b2c3, we see that h(x) = cx2 + cdx4 + b2c3x6 + O(x8).
Inserting this in (140), we see that (if a + c = 0 and cd+ bc2 = 0)

ẋ = −b2c3x7 +O(x9).

Hence, if a + c = cd+ bc2 = 0 and b2c > 0 then the origin is asymptotically
stable, and if a + c = cd+ bc2 = 0 and b2c < 0 then the origin is unstable.

It can be checked that in the remaining borderline case a+ c = cd+ bc2 =
b2c = 0, h(x) ≡ cx2 so the reduced equation is simply ẋ = 0. Hence, in this
case, the origin is Lyapunov stable, but not asymptotically stable.

Bifurcation Theory

Bifurcation theory studies fundamental changes in the structure of the solu-
tions of a differential equation or a dynamical system in response to change
in a parameter. Consider the parametrized equation

ẋ = F (x, ε), (141)

where x ∈ Rn is a variable and ε ∈ Rp is a parameter. Suppose that F (0, ε) =
0 for every ε, that the equilibrium solution at x = 0 is stable when ε = 0,
and that we are interested in the possibility of persistent structures (e.g.,
equilibria or periodic orbits) bifurcating out of the origin as ε is made nonzero.
This means that all the eigenvalues of DxF (0, 0) have nonpositive real part,
so we can project (141) onto complementary subspaces of Rn and get the
equivalent system {

u̇ = Au+ f(u, v, ε)

v̇ = Bv + g(u, v, ε),

with the eigenvalues of A lying on the imaginary axis and the eigenvalues of
B lying in the open right half-plane. Since the parameter ε does not depend
on time, we can append the equation ε̇ = 0 to get the expanded system

u̇ = Au+ f(u, v, ε)

v̇ = Bv + g(u, v, ε)

ε̇ = 0.

(142)
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The Center Manifold Theorem asserts the existence of a center manifold for
the origin that is locally given by points (u, v, ε) satisfying an equation of
the form

v = h(u, ε).

Furthermore, according to a theorem of Carr, every solution (u(t), v(t), ε) of
(142) for which (u(0), v(0), ε) is sufficiently close to zero converges exponen-
tially quickly to a solution on the center manifold as t ↑ ∞. In particular,
no persistent structure near the origin lies off the center manifold of this
expanded system. Hence, it suffices to consider persistent structures for the
lower-dimensional equation

u̇ = Au+ f(u, h(u, ε), ε).
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Poincaré-Bendixson Theorem
Lecture 39
Math 634
12/3/99

Definition A periodic orbit of a continuous dynamical system ϕ is a set of the
form {

ϕ(t, p)
∣∣ t ∈ [0, T ]

}
for some time T and point p satisfying ϕ(T, p) = p. If this set is a singleton,
we say that the periodic orbit is degenerate.

Theorem (Poincaré-Bendixson) Every nonempty, compact ω-limit set of a C1

planar flow that does not contain an equilibrium point is a (nondegenerate)
periodic orbit.

We will prove this theorem by means of 4 lemmas. Throughout our
discussion, we will be referring to a C1 planar flow ϕ and the corresponding
vector field f .

Definition If S is a line segment in R2 and p1, p2, . . . is a (possibly finite)
sequence of points lying on S, then we say that this sequence is monotone
on S if (pj − pj−1) · (p2 − p1) ≥ 0 for every j ≥ 2.

Definition A (possibly finite) sequence p1, p2, . . . of points on a trajectory T
of ϕ is said to be monotone on T if we can choose a point p and times
t1 ≤ t2 ≤ · · · such that ϕ(tj, p) = pj for each j.

Definition A transversal of ϕ is a line segment S such that f is not tangent
to S at any point of S.

Lemma If a (possibly finite) sequence of points p1, p2, . . . lies on the intersec-
tion of a transversal S and a trajectory T , and the sequence is monotone on
T , then it is monotone on S.

Proof. Let p be a point on T . Since S is closed and f is nowhere tangent
to S, the times t at which ϕ(t, p) ∈ S form an increasing sequence (possibly
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biinfinite). Consequently, if the lemma fails then there are times t1 < t2 < t3
and distinct points pi = ϕ(ti, p) ∈ S, i ∈ {1, 2, 3}, such that

{p1, p2, p3} = ϕ([t1, t3], p) ∩ S

and p3 is between p1 and p2. Note that the union of the line segment p1p2

from p1 to p2 with the curve ϕ([t1, t2], p) is a simple closed curve in the plane,
so by the Jordan Curve Theorem it has an “inside” I and an “outside”
O. Assuming, without loss of generality, that f points into I all along the
“interior” of p1p2, we get a picture something like:

p1

p2

I

O

b

b

Note that

I ∪ p1p2 ∪ ϕ([t1, t2], p)

is a positively invariant set, so, in particular, it contains ϕ([t2, t3], p). But
the fact that p3 is between p1 and p2 implies that f(p3) points into I, so
ϕ(t3− ε, p) ∈ O for ε small and positive. This contradiction implies that the
lemma holds.

The proof of the next lemma uses something called a flow box. A flow
box is a (topological) box such that f points into the box along one side,
points out of the box along the opposite side, and is tangent to the other
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two sides, and the restriction of ϕ to the box is conjugate to unidirectional,
constant-velocity flow. The existence of a flow box around any regular point
of ϕ is a consequence of the Cr-rectification Theorem.

Lemma No ω-limit set intersects a transversal in more than one point.

Proof. Suppose that for some point x and some transversal S, ω(x) intersects
S at two distinct points p1 and p2. Since p1 and p2 are on a transversal, they
are regular points, so we can choose disjoint subintervals S1 and S2 of S
containing, respectively, p1 and p2, and, for some ε > 0, define flow boxes B1

and B2 by

Bi :=
{
ϕ(t, x)

∣∣ t ∈ [−ε, ε], x ∈ Si
}
.

Now, the fact that p1, p2 ∈ ω(x) means that we can pick an increasing se-
quence of times t1, t2, . . . such that ϕ(tj , x) ∈ B1 if j is odd and ϕ(tj , x) ∈ B2

if j is even. In fact, because of the nature of the flow in B1 and B2, we can as-
sume that ϕ(tj , x) ∈ S for each j. Although the sequence ϕ(t1, x), ϕ(t2, x), . . .
is monotone on the trajectory T := γ(x), it is not monotone on S, contra-
dicting the previous lemma.

Definition An ω-limit point of a point p is an element of ω(p).

Lemma Every ω-limit point of an ω-limit point lies on a periodic orbit.

Proof. Suppose that p ∈ ω(q) and q ∈ ω(r). If p is a singular point, then it
obviously lies on a (degenerate) periodic orbit, so suppose that p is a regular
point. Pick S to be a transversal containing p in its “interior”. By putting a
suitable flow box around p, we see that, since p ∈ ω(q), the solution beginning
at q must repeatedly cross S. But q ∈ ω(r) and ω-limit sets are invariant,
so the solution beginning at q remains confined within ω(r). Since ω(r) ∩ S
contains at most one point, the solution beginning at q must repeatedly cross
S at the same point; i.e., q lies on a periodic orbit. Since p ∈ ω(q), p must
lie on this same periodic orbit.

Lemma If an ω-limit set ω(x) contains a nondegenerate periodic orbit P, then
ω(x) = P.
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Proof. Fix q ∈ P. Pick T > 0 such that ϕ(T, q) = q. Let ε > 0 be given. By
continuous dependence, we can pick δ > 0 such that |ϕ(t, y) − ϕ(t, q)| < ε
whenever t ∈ [0, 3T/2] and |y − q| < δ. Pick a transversal S of length less
than δ with q in its “interior”, and create a flow box

B :=
{
ϕ(t, x)

∣∣ x ∈ S, t ∈ [−ρ, ρ]
}

for some ρ ∈ (0, T/4]. By continuity of ϕ(T, ·), we know that we can pick a
subinterval S ′ of S that contains q and that satisfies ϕ(T,S ′) ⊂ B. Let tj be
the jth smallest element of{

t ≥ 0
∣∣ ϕ(t, x) ∈ S ′

}
.

Because S ′ is a transversal and q ∈ ω(x), the tj are well-defined and increase
to infinity as j ↑ ∞. Also, by the lemma on monotonicity, |ϕ(tj, x)− q| is a
decreasing function of j.

Note that for each j ∈ N , ϕ(T, ϕ(tj, x)) ∈ B, so, by construction of S
and B, ϕ(t, ϕ(T, ϕ(tj , x))) ∈ S for some t ∈ [−T/2, T/2]. Pick such a t. The
lemma on monotonicity implies that

ϕ(t, ϕ(T, ϕ(tj, x))) ∈ S ′.
This, in turn, implies that t+ T + tj ∈ {t1, t2, . . . }, so

tj+1 − tj ≤ 3T/2. (143)

Now, suppose that t ≥ t1. Then t ∈ [tj, tj+1) for some j ≥ 1. For this j,

|ϕ(t, x)− ϕ(t− tj, p)| = |ϕ(t− tj , ϕ(tj , x))− ϕ(t− tj , p)| < ε,

since, by (143), |t − tj | < |tj+1 − tj | < 3T/2 and since, because ϕ(tj , x) ∈
S ′ ⊆ S, |p− ϕ(tj, x)| < δ.

Since ε was arbitrary, we have shown that

lim
t↑∞

d(ϕ(t, x),P) = 0.

Thus, P = ω(x), as was claimed.

Now, we get to the proof of the Poincaré-Bendixson Theorem itself. Sup-
pose ω(x) is compact and nonempty. Pick p ∈ ω(x). Since γ+(p) is contained
in the compact set ω(x), we know ω(p) is nonempty, so we can pick q ∈ ω(p).
Note that q is an ω-limit point of an ω-limit point, so, by the third lemma, q
lies on a periodic orbit P. Since ω(p) is invariant, P ⊆ ω(p) ⊆ ω(x). If ω(x)
contains no equilibrium point, then P is nondegenerate, so, by the fourth
lemma, ω(x) = P.
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Lienard’s Equation
Lecture 40
Math 634
12/6/99

Suppose we have a simple electrical circuit with a resistor, an inductor,
and a capacitor as shown.

b b

b

C

RL

iC

iRiL

Kirchhoff’s current law tells us that

iL = iR = −iC , (144)

and Kirchhoff’s voltage law tells us that the corresponding voltage drops
satisfy

VC = VL + VR. (145)

By definition of the capacitance C,

C
dVC
dt

= iC , (146)

and by Faraday’s Law

L
diL
dt

= VL, (147)
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where L is the inductance of the inductor. We assume that the resistor
behaves nonlinearly and satisfies the generalized form of Ohm’s Law:

VR = F (iR). (148)

Let x = iL and f(u) := F ′(u). By (147),

ẋ =
1

L
VL,

so by (145), (146), (148), and (144)

ẍ =
1

L

dVL
dt

=
1

L
(V̇C − V̇R) =

1

L

(
1

C
iC − F ′(iR)

diR
dt

)
=

1

L

(
1

C
(−x)− f(x)ẋ

)
Hence,

ẍ+
1

L
f(x)ẋ+

1

LC
x = 0.

By rescaling f and t (or, equivalently, by choosing units judiciously), we get
Lienard’s Equation:

ẍ+ f(x)ẋ+ x = 0.

We will study Lienard’s Equation under the following assumptions on F
and f :

(i) F (0) = 0;

(ii) f is Lipschitz continuous;

(iii) F is odd;

(iv) F (x)→∞ as x ↑ ∞;

(v) for some β > 0, F (β) = 0 and F is positive and increasing on (β,∞);

(vi) for some α > 0, F (α) = 0 and F is negative on (0, α).
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Assumption (vi) corresponds to the existence of a region of negative
resistance. Apparently, there are semiconductors called “tunnel diodes” that
behave this way.

By setting y = ẋ+ F (x), we can rewrite Lienard’s Equation as the first-
order system {

ẋ = y − F (x)

ẏ = −x.
(149)

Definition A limit cycle for a flow is a nondegenerate periodic orbit P that is
the ω-limit set or the α-limit set of some point q /∈ P.

Theorem (Lienard’s Theorem) The flow generated by (149) has at least one
limit cycle. If α = β then this limit cycle is the only nondegenerate periodic
orbit, and it is the ω-limit set of all points other than the origin.

The significance of Lienard’s Theorem can be seen by comparing Lien-
ard’s Equation with the linear equation that would have resulted if we had
assumed a linear resistor. Such linear RCL circuits can have oscillations with
arbitrary amplitude. Lienard’s Theorem says that, under suitable hypothe-
ses, a nonlinear resistor selects oscillations of one particular amplitude.

We will prove the first half of Lienard’s Theorem by finding a compact,
positively invariant region that does not contain an equilibrium point and
then using the Poincaré-Bendixson Theorem. Note that the origin is the
only equilibrium point of (149). Since

d

dt
(x2 + y2) = 2(xẋ+ yẏ) = −2xF (x),

assumption (vi) implies that for ε small, R2 \ B(0, ε) is positively invariant.
The nullclines x = 0 and y = F (x) of (149) separate the plane into four

regions A, B, C, and D, and the general direction of flow in those regions
is as show below. Note that away from the origin, the speed of trajectories
is bounded below, so every solution of (149) (except (x, y) = (0, 0) passes
through A, B, C, and D in succession an infinite number of times as it circles
around the origin in a clockwise direction.
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A

BC

D

We claim that if a solution starts at a point (0, y0) that is high enough
up on the positive y-axis, then the first point (0, ỹ0) it hits on the negative
y-axis is closer to the origin then (0, y0) was. Assume, for the moment, that
this claim is true. Let S1 be the orbit segment connecting (0, y0) to (0, ỹ0).
Because of the symmetry in (149), the set

S2 :=
{

(x, y) ∈ R2
∣∣ (−x,−y) ∈ S1

}
is also an orbit segment. Let

S3 :=
{

(0, y) ∈ R2
∣∣ −ỹ0 < y < y0

}
,

S4 :=
{

(0, y) ∈ R2
∣∣ −y0 < y < ỹ0

}
,

and let

S5 :=
{

(x, y) ∈ R2
∣∣ x2 + y2 = ε2

}
,

for some small ε. Then it is not hard to see that ∪5
i=1Si is the boundary of

a compact, positively invariant region that does not cotain an equilibrium
point.
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y0

−ỹ0

ỹ0

−y0

To verify the claim, we will use the function R(x, y) := (x2 + y2)/2, and
show that if y0 is large enough (and ỹ0 is as defined above) then

R(0, y0) > R(0, ỹ0).
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Lienard’s Theorem
Lecture 41
Math 634
12/7/99

Recall, that we’re going to estimate the change of R(x, y) := (x2 + y2)/2
along the orbit segment connecting (0, y0) to (0, ỹ0). Notice that if the point
(a, b) and the point (c, d) lie on the same trajectory then

R(c, d)−R(a, b) =

∫ (c,d)

(a,b)

dR.

(The integral is a line integral.) Since Ṙ = −xF (x), if y is a function of x
along the orbit segment connecting (a, b) to (c, d), then

R(c, d)− R(a, b) =

∫ c

a

Ṙ

ẋ
dx =

∫ c

a

−xF (x)

y(x)− F (x)
dx. (150)

If, on the other hand, x is a function of y along the orbit segment connecting
(a, b) to (c, d), then

R(c, d)− R(a, b) =

∫ d

b

Ṙ

ẏ
dy =

∫ d

b

−x(y)F (x(y))

−x(y)
dy =

∫ d

b

F (x(y)) dy.

(151)

We will chop the orbit segment connecting (0, y0) to (0, ỹ0) up into pieces
and use (150) and (151) to estimate the change ∆R in R along each piece
and, therefore, along the whole orbit segment.

Let σ = β + 1, and let

B = sup
0≤x≤σ

|F (x)|.

Consider the region

R :=
{

(x, y) ∈ R2
∣∣ x ∈ [0, σ], y ∈ [B + σ,∞)

}
.

In R, ∣∣∣∣dydx
∣∣∣∣ =

x

y − F (x)
≤ σ

σ
= 1;
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hence, if y0 > B+2σ, then the corresponding trajectory must exit R through
its right boundary, say, at the point (σ, yσ). Similarly, if ỹ0 < −B− 2σ, then
the trajectory it lies on must have first hit the line x = σ at a point (σ, ỹσ).
Now, assume that as y0 → ∞, ỹ0 → −∞. (If not, then the claim clearly
holds.) Based on this assumption we know that we can pick a value for
y0 and a corresponding value for ỹ0 that are both larger than B + 2σ in
absolute value, and conclude that the orbit segment connecting them looks
qualitatively like:

(0, y0)

(0, ỹ0)

(σ, yσ)

(σ, ỹσ)

We will estimate ∆R on the entire orbit segment from (0, y0) to (0, ỹ0) by
considering separately, the orbit segment from (0, y0) to (σ, yσ), the segment
from (σ, yσ) to (σ, ỹσ), and the segment from (σ, ỹσ) to (0, ỹ0).

First, consider the first segment. On this segment, the y-coordinate is a
function y(x) of the x-coordinate. Thus,

|R(σ, yσ)− R(0, y0)| =
∣∣∣∣∫ σ

0

−xF (x)

y(x)− F (x)
dx

∣∣∣∣ ≤ ∫ σ

0

∣∣∣∣ −xF (x)

y(x)− F (x)

∣∣∣∣ dx
≤
∫ σ

0

σB

y0 − B − σ
dx =

σ2B

y0 −B − σ
→ 0

as y0 → ∞. A similar estimate shows that |R(0, ỹ0) − R(σ, ỹσ)| → 0 as
y0 →∞.
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On the middle segment, the x-coordinate is a function x(y) of the y-
coordinate y. Hence,

R(σ, ỹσ)− R(σ, yσ) =

∫ ỹσ

yσ

F (x(y)) dy ≤ −|yσ − ỹσ|F (σ)→ −∞

as y0 →∞.
Putting these three estimates together, we see that

R(0, ỹ0)− R(0, y0)→ −∞

as y0 → ∞, so |ỹ0| < |y0| if y0 is sufficiently large. This shows that the
orbit connecting these two points forms part of the boundary of a com-
pact, positively invariant set that surrounds (but omits) the origin. By the
Poincaré-Bendixson Theorem, there must be a limit cycle in this set.

Now for the second half of Lienard’s Theorem. We need to show that
if α = β (i.e., if F has a unique positive zero) then the limit cycle whose
existence we’ve deduced is the only nondegenerate periodic orbit and it at-
tracts all points other than the origin. If we can show the uniqueness of the
limit cycle, then the fact that we can make our compact, positively invariant
set as large as we want and make the hole cut out of its center as small
as we want will imply that it attracts all points other than the origin. Note
also, that our observations on the general direction of the flow imply that any
nondegenerate periodic orbit must circle the origin in the clockwise direction.

So, suppose that α = β and consider, as before, orbit segments that start
on the positive y-axis at a point (0, y0) and end on the negative y-axis at a
point (0, ỹ0). Such orbit segments are “nested” and fill up the (open) right
half-plane. We need to show that only one of them satisfies ỹ0 = −y0. In
other words, we claim that there is only one segment that gives

R(0, ỹ0)− R(0, y0) = 0.

Now, if such a segment hits the x-axis on [0, β], then x ≤ β all along that
segment, and F (x) ≤ 0 with equality only if (x, y) = (β, 0). Let x(y) be the
x-coordinate as a function of y and observe that

R(0, ỹ0)− R(0, y0) =

∫ ỹ0

y0

F (x(y)) dy > 0. (152)
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We claim that for values of y0 generating orbits intersecting the x-axis in
(β,∞), R(0, ỹ0)−R(0, y0) is a strictly decreasing function of y0. In combina-
tion with (152) (and the fact that R(0, ỹ0)−R(0, y0) < 0 if y0 is sufficiently
large), this will finish the proof.

Consider 2 orbits (whose coordinates we denote (x, y) and (X, Y )) that
intersect the x-axis in (β,∞) and contain selected points as shown in the
following diagram.

(0, Y0)

(0, y0)

(0, ỹ0)

(0, Ỹ0)

(β, yβ)

(β, ỹβ)

(β, Yβ)

(β, Ỹβ)

(λ, yβ)

(µ, ỹβ)

b

b

b

b

b

b

b

b

b

b

Note that

R(0, Ỹ0)− R(0, Y0) = R(0, Ỹ0)− R(β, Ỹβ)

+R(β, Ỹβ)− R(µ, ỹβ)

+R(µ, ỹβ)− R(λ, yβ)

+R(λ, yβ)− R(β, Yβ)

+R(β, Yβ)− R(0, Y0)

=: ∆1 + ∆2 + ∆3 + ∆4 + ∆5.

(153)

Let X(Y ) and x(y) give, respectively, the first coordinate of a point on
the outer and inner orbit segments as a function of the second coordinate.
Similarly, let Y (X) and y(x) give the second coordinates as functions of the
first coordinates (on the segments where that’s possible). Estimating, we
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find that

∆1 =

∫ 0

β

−XF (X)

Y (X)− F (X)
dX <

∫ 0

β

−xF (x)

y(x)− F (x)
dx = R(0, ỹ0)−R(β, ỹβ),

(154)

∆2 =

∫ Ỹβ

ỹβ

F (X(Y )) dY < 0, (155)

∆3 =

∫ ỹβ

yβ

F (X(Y )) dY <

∫ ỹβ

yβ

F (x(y)) dy = R(β, ỹβ)− R(β, yβ), (156)

∆4 =

∫ yβ

Yβ

F (X(Y )) dY < 0, (157)

and

∆5 =

∫ β

0

−XF (X)

Y (X)− F (X)
dX <

∫ β

0

−xF (x)

y(x)− F (x)
dx = R(β, yβ)− R(0, y0).

(158)

By plugging, (154), (155), (156), (157), and (158) into (153), we see that

R(0, Ỹ0)− R(0, Y0) < [R(0, ỹ0)− R(β, ỹβ)] + 0 + [R(β, ỹβ)− R(β, yβ)] + 0
+ [R(β, yβ)− R(0, y0)] = R(0, ỹ0)− R(0, y0).

This gives the claimed monotonicity and completes the proof.

176


