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A. This article provides two different, but closely related, moduli prob-
lems, which in characteristic zero provide a type of compactification of the uni-
versal Picard over the moduli of stable curves. Although neither is of finite type,
both are limits of a sequence of stacks, each of which is a separated algebraic
stack of finite type. We discuss relations to previous compactifications and partial
compactifications, give a number of examples related to this compactification, and
work out the structure of its fibres over certain fixed curves. Some applications are
also discussed.

1. I

The goal of this article is to construct a stack that compactifies the universal
Picard over the moduli of stable curves. The universal Picard Pd

Mg
differs from

the relative Picard in that points of the relative Picard that would be identified by
automorphisms of the underlying curve are considered isomorphic in the universal
Picard (see Definition 1.4.6). LetMg be the stack of smooth curves of genus g, and
letMg be the Deligne-Mumford compactification ofMg, namely the stack of stable
curves. We seek a stack Pd of Mg-schemes such that Pd satisfies the valuative
criterion for separatedness and properness, and such that Pd

Mg
, the universal

Picard for smooth curves is an open, dense, sub-functor of the moduli of Pd.

1.1. Previous Work. There are several constructions of schemes that are related
to this problem. Most of these approaches have the benefit of using geometrically
meaningful functors, but they are limited to special families of curves. Among
the examples of work in this direction are the results of C. D’Souza [10], Oda and
Seshadri [21], Ishida [16], and Altman and Kleiman [4, 5].

D’Souza and Altman-Kleiman provide a compactification of the Jacobian of an
integral curve, or the relative Picard of a flat family of integral curves, provided the
family is locally projective. But these constructions are not separated in the case of a
general (reducible) stable curve. In the special case of an integral curve over a field,
the constructions of this paper yield results similar to D’Souza’s compactification.

Oda, Seshadri, and Ishida, on the other hand, proved that even when the curve
is not integral, it is possible to construct many compactifications of the relative Ja-
cobian or Picard scheme, again using torsion-free sheaves of certain multi-degrees,
provided the base of the curve is a field or a pseudo-geometric local ring with
infinite residue field. This construction is not well-behaved over a general base.
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Also, C. Simpson[24] has constructed a functor which compactifies the relative
Picard functor of a general family of semi-stable curves, and which has a projective
coarse moduli. Unfortunately, Simpson’s functor is not separated.

An alternative approach is found in the work of L. Caporaso [8] and R. Pandhari-
pande [22]. Rather than restrict to special families, they compactify the universal
Picard scheme over the moduli space M g. But just as Simpson’s functor, the func-
tors these compactifications coarsely represent are not separated, and these com-
pactifications do not appear to represent any separated, geometrically-meaningful
functor. In particular, there is no universal object that lies over these schemes. One
aim of this paper is to remedy these problems.

E. Esteves [11] has produced a compactification that is similar in spirit to the
constructions of this paper. Esteves provides an algebraic space, which although
not of finite type, has the advantage of corresponding to meaningful geometric
objects, and it behaves like a compactification of the universal Picard scheme in
many ways. This compactification has a universal object, but unfortunately it also
is not separated.

This paper provides two compactifications, both separated over Mgn. And
although the stacks are not of finite type, they meet a form of the valuative criterion
of properness; moreover, they have natural substacks which are of finite type, and,
in many cases, proper. Thus, in these cases, the substacks provide a natural
compactification of the relative Picard. And these substacks suffice for many
applications.

Finally, it is interesting to note that Abramovich and Vistoli [2] have recently
described a technique for compactifying the stack of maps fromMg to a Deligne-
Mumford stack, provided the target stack has a projective coarse moduli space. If
the classifying stack BGm of the group Gm were a Deligne-Mumford stack, their
construction, applied to maps fromMg to BGm, should give the “right” compacti-
fication of the Picard. However, BGm is an Artin stack, and their construction will
not necessarily generalize to Artin stacks.

The stacks constructed in this paper are closely related to the constructions of
Abramovich and Vistoli. Their compactifications correspond to replacing stable
curves with stacks whose coarse moduli are the usual stable curves. These stacky
curves are called twisted stable curves. Line bundles on twisted stable curves cor-
respond to torsion-free sheaves on the coarse moduli curve. And a line bundle
L with a specific isomorphism L ⊗r ∼

−→ M to the rth tensor power M of the bun-
dle, corresponds to the main geometric object of this paper, namely, an rth root of
M . Thus the geometric objects of this paper are essentially coarse moduli for the
twisted objects of Abramovich and Vistoli.

1.2. Main Ideas. In general, there are two obstructions to constructing a mean-
ingful compactification. First, not every line bundle on the smooth generic fibre of
a stable curve can be extended to a line bundle on the whole curve. And second,
line bundles that do extend from the generic fibre to the whole curve do not extend
uniquely.

A numerical criterion for the admissible degrees of line bundles (i.e. the degree
on each irreducible component of the fibres of the curve) will solve the separat-
edness problem as long as torsion-free sheaves are excluded, but unfortunately,
no numerical criterion on the degree of a torsion-free sheaf is sufficiently strong
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to ensure unique extension of the sheaf to reducible special fibres. An example
demonstrating this fact is given in Section 4.3.1. Therefore, another approach is
necessary.

Although a line bundle Lη on the generic fibre of a stable curve over a discrete
valuation ring will not always extend to the entire curve, some tensor power of
the bundle will extend. Moreover, the choice of a suitable N, such that L N

η does
extend to the entire curve, can be made independent of the bundle Lη. Namely, it
only depends on the underlying curve (see Corollary 3.4.3).

The approach we take, therefore, is to develop a notion of an nth root of the
extension of the nth tensor power L ⊗n

η . To do this we use techniques developed in
[17]. In particular, the idea is to put a numerical criterion on the multi-degree of
the extended nth power bundle M , and then define nth roots of this bundle to be
rank-one torsion-free sheaves E , together with a map E ⊗n

→M having sufficient
restrictions to guarantee uniqueness of extension. The numerical criterion is very
similar to the standard (Seshadri) definition of semi-stable. However, it is stricter—
requiring equality where semi-stability requires only an inequality. One of the
surprising results of this paper is the fact that this stricter requirement still permits
enough objects to make a proper stack. And indeed, the weaker requirement of
semi-stability permits too many objects for the associated stack to be separated.

There are actually two different stacks having similar properties that accomplish
this goal. These are the stacks of quasi-roots and roots of line bundles. These stacks
differ only in their definition of families: roots of line bundles are slightly more
restrictive than quasi-roots. We define two inductive systems of stacks {QPd,n}n
and {Pd,n}n such that each of the terms is a separated algebraic stack, and such that
the ind-objects

QPd = lim
→

n
QPd,n!

and
Pd = lim

→

n
Pd,n!

satisfy a form of valuative criterion of properness (in characteristic 0). And for
every n, the universal Picard for smooth curves Pd

Mg
is an open, dense, sub-

functor of the moduli space of QPd,n and Pd,n

1.3. Outline of Paper. In Section 2 we define roots and quasi-roots of line bundles,
and give some necessary background from [17] and [23] regarding torsion-free
sheaves. We then give the numerical criterion that guarantees separatedness of the
stacks, and define the stacksQPd,n andPd,n. In Section 3 the main properties of the
stacks QPd,n and Pd,n are given, including their algebraic nature and properness.
In Section 4 we discuss some of the geometric properties of the fibres ofQPd,n and
Pd,n, and give examples of those fibres, as well as examples that the stacks QPd
and Pd are essentially the best possible. And to conclude, in Section 5 we give an
application to torsion points of the Jacobian and modular curves.

1.4. Conventions and Notation. Throughout this article we will be working over
a fixed base scheme S of finite type over a field or over an excellent Dedekind
domain. This is necessary for most of the standard theorems on algebraic stacks
and is also necessary for many of the results of [17] to hold.
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We will work primarily with semi-stable curves of a fixed genus g, by which we
mean a flat, proper morphism X → T of S-schemes whose geometric fibres Xt are
reduced, connected, one-dimensional schemes, with only ordinary double points,
and with dim H1(Xt,OXt ) = g. A stable curve is a semi-stable curve of genus greater
than one, with the additional property that any rational irreducible component of
a geometric fibre meets the rest of the fibre in at least three points. Irreducible
components of a semi-stable curve which are isomorphic to P1 but meet the curve
in only two points will be called exceptional curves.

By line bundle we mean an invertible (locally free of rank one) coherent sheaf.
And in order to define the main objects of interest, we will need torsion-free
sheaves.

Definition 1.4.1. A relatively torsion-free sheaf (or just torsion-free sheaf) on a semi-
stable curve f : X → T, is a coherent OX -module E that is flat over T, such that on
each fibre Xt =X ×T Spec (k(t)) the induced Et has no associated primes of height
one.

This paper is only concerned with rank-one torsion-free sheaves. Such sheaves
are called admissible by Alexeev [3], sheaves of depth one by Seshadri [23], and sheaves
of pure dimension one by Simpson [24]. Of course, on the open set where f is smooth,
a torsion-free sheaf is locally free.

Definition 1.4.2. The degree of a torsion-free sheaf E is the integer χ(E ) − χ(O) =
χ(E ) − g + 1.

Since the terminology of algebraic stacks is not completely standardized, we
give here the definitions used in this paper.

Definition 1.4.3. An algebraic (Artin) stack over S is a stack X with a smooth atlas
U → X (i.e., U is an algebraic space, and the morphism U → X is smooth and
surjective), and whose diagonal ∆ : X→ X×S X is representable, of finite type, and
separated.

Definition 1.4.4. A Deligne-Mumford Stack is an algebraic stackXwhich has an étale
atlas, or equivalently, [9, Theorem 4.21] has an unramified diagonal∆ : X→ X×SX.

Definition 1.4.5. A coarse moduli space for a stack X is an algebraic space X and
a morphism p : X → X, such that p induces a bijection on (isomorphism classes
of) geometric points, and every morphism from X to an algebraic space factors
through p.

The coarse moduli space X of X, is the algebraic space representing the étale
sheafification of the functor taking any S-scheme T to the set of isomorphism
classes of T-valued points of X.

It is well-known (c.f. [19, Corollary 1.3]) that every Deligne-Mumford stack X
has a coarse moduli space X. And we will follow the usage of Laumon [20] and use
the term coarse moduli to describe the associated étale sheaf, even when working
with Artin stacks, where representability by an algebraic space is not guaranteed.

Useful general references for Artin stacks are [6] and [20], and for Deligne-
Mumford stacks are [9] and [25].

Definition 1.4.6. By universal Picard for smooth curves of genus g, we mean the coarse
moduli space Pd

Mg
of the stackPicdMg

of pairs (X /T,L ), where X /T is a smooth

curve of genus g, and L is a line bundle on X of degree d.
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This universal Picard is the étale sheafification of the functor taking an S-scheme
T to the set of isomorphism classes of smooth curves X /T and line bundles L on
X . And an isomorphism between (X /T,L ) and (X ′/T,L ′) is a pair (σ, τ) with
σ : X

∼
−→X ′ a T-isomorphism and τ : L

∼
−→ σ∗L ′ an isomorphism of line bundles

on X .
In particular, for anyMg-scheme T

X /T
−−−→ Mg, the fibre product T ×Mg

Pd
Mg

is

the relative Picard PX /T modulo automorphisms of the underlying curve.

2. R  Q-R  L B

2.1. Definition of Quasi-roots. The objects of interest in this paper are roots or
quasi-roots of line bundles on stable curves.

Definition 2.1.1. For a fixed integer n ≥ 2, an nth quasi-root or quasi-root of order n
of a line bundle L on a semi-stable curve f : X → T is a pair (E , b) of a rank-one
torsion-free sheaf E and an OX -module homomorphism b : E ⊗n

→ L with the
additional conditions that

(1) n · deg(E ) = deg(L ).
(2) b is an isomorphism on the open set where E is locally free.
(3) For each closed point t of the base T, and for each singular point p of the

fibre Xt where E is not free, the length of the cokernel of b at p is less than
n.

The third condition, although it may seem somewhat technical, is necessary to
ensure that the homomorphism b is well-behaved. In particular, without it, all
the stacks involving quasi-roots would fail to be separated (for more details of the
implications of this condition, see [17]).

Definition 2.1.2. Any homomorphism b : E ⊗n
→ L that meets the third condition

of Definition 2.1.1 will be said to have good cokernel.

It is worth noting that the condition on the cokernel is not always necessary,
and in connection with condition (2) of Definition 2.1.1, it actually implies a much
stronger condition. The proof of this fact is interesting not only for its own sake,
but also because it illustrates the handy trick of restricting to the normalized curve.

Proposition 2.1.3. In the case of n = 2, the condition on the cokernel is redundant; namely,
any pair (E , b) meeting conditions (1) and (2) must necessarily have good cokernel.

And even when n is greater than 2, the condition on the degree of E guarantees that if
the length of the cokernel is less than n, then it is exactly n − 1 at each singularity.

This follows from the description of a quasi-root (E , b) of L on a curve X/k over
a field in terms of a line bundle on the normalization π : X̃→ X of X at each of the
singularities of E , that is, at the singularities of X where E fails to be locally free.

Lemma 2.1.4. Given a curve X/k over a field and a line bundle L on X, there is a
one-to-one correspondence between (isomorphism classes of) nth quasi-roots of L and line
bundles M on partial normalizations π : X̃→ X, such that

M ⊗n � L (−
∑

qi

uipi
+ + vipi

−).

Here the sum is taken over all singularities qi normalized by π, the points pi
+ and pi

−

are the preimages of qi under π, and for each i, the integers ui and vi are positive.
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Proof (of Lemma). If π\E indicates the line bundle π∗E /torsion, then the following
facts are well-known.

(1) Locally on X, at a singularity of E , the completion of the local ring ÔX,x is of
the form k[[x, y]]/xy, and the sheaf E corresponds to a k[[x, y]]/xy-module
E � xk[[x]] ⊕ yk[[y]]. [23, Chapter 11, Proposition 3].

(2) π∗π\E = E [23, Chapter 11, Proposition 10].
(3) degπ\E = deg E − δ, where δ is the number of singular points normalized

by π : X̃→ X. [23, Chapter 11, Proposition 10].
From these facts it is easy to see that the nth tensor power E⊗n is isomorphic to

xnk[[x]] ⊕ ynk[[y]] ⊕ T, where AnnT = (x, y). So the map b, being an isomorphism
off the singularity, takes xn in E⊗n to some element of k[[x, y]]/xy annihilated by y,
that is, of the form αxu, and b takes yn to some element annihilated by x, that is an
element of the form βyv, where u and v are positive integers, and α and β are units
in k[[x, y]]/xy. The length of the cokernel of b at the singularity is clearly u + v − 1.

From this it is clear that the homomorphism b induces an isomorphism

π\(b) : (π\E )⊗n ∼
−→ π∗L (−

∑
(uip+i + vip−i )).

And, conversely, b is induced from the composition (π\E )n π\(b)
−−−→ π∗L (−

∑
(uip+i +

vip−i )) ↪→ π∗L by adjointness. Here the sum is taken over all the singularities qi of
E , and p+i and p−i are the inverse images of the singularity qi with respect to π. �

Proof of Proposition 2.1.3. The lemma shows that the degree of (π\E )⊗n is nd−
∑

(ui+

vi). But on the other hand, by Property 3 above, the degree of π\E is d − δ, where
δ is the number of singularities of E . Thus we have

∑
(ui + vi) = nδ. In particular,

if n = 2, since every term ui and vi is at least one and
∑δ

i=1(ui + vi) = 2δ, every ui
and vi is exactly one. Similarly, for a general n, since the individual sums of pairs
ui + vi − 1 are bounded above by n− 1 (Condition 3 of Definition 2.1.1), the equality∑δ

i=1(ui + vi) = nδ implies that each pair sums to n, and the length of the cokernel
at each singularity is exactly n − 1. �

Definition 2.1.5. If q = (E , b) and q′ = (E ′, b′) are nth quasi-roots of line bundles
L and L ′, respectively, then an isomorphism of quasi-roots from q to q′ is a pair
(τ, ε) where τ : L

∼
−→ L ′ is an isomorphism of line bundles, and ε : E

∼
−→ E ′ is an

isomorphism of OX -modules that is compatible with b, b′ and τ. In particular, the
following diagram commutes.

E ⊗n b - L

E ′⊗n

ε⊗n

? b′ - L ′

τ

?

2.1.1. Example of nth Roots: Two Irreducible Components and One Node. Consider a
stable curve X, over an algebraically closed field, with two smooth, irreducible
components C and D, of genus k and g − k respectively, meeting in one double
point p. In this case, for any choice of line bundle L , there exists a unique choice
of u and v, with 0 ≤ u < n, 0 ≤ v < n, and u + v ≡ 0 (mod n) that makes the degree
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of π∗L (−up+ − vp−) divisible by n on both components. The corresponding roots
are locally free if and only if L has a usual nth root, which is to say, if and only if u
and v can be chosen to be 0, or degC L ≡ 0 (mod n). If degC L . 0 (mod n) then
the resulting root corresponds to an nth root of L |C(−up+) on C and an nth root of
L |D(−vp−) on D.

2.1.2. Example of nth Roots: One Irreducible Component and One Node. Consider an
irreducible stable curve X with one node. In this case there are n different choices
of u and v that permit roots of L : either u = v = 0, in which case the resulting root
is locally free; or u ∈ {1, . . . ,n − 1} and v = n − u, in which case the resulting root is
not locally free. In this second case, the nth-root on X corresponds to an nth root of
the bundle π∗L (−up+ − vp−).

2.2. Additional Definitions: The Numerical Criterion. The stack of all quasi-
roots of all line bundles is not separated, since the extension of a line bundle from a
smooth generic fibre to a stable special fibre is not unique. But adding the following
numerical criterion for the degrees of the line bundles will produce a separated
stack.

Definition 2.2.1 (Numerical Criterion). Given a non-zero integer n and a line
bundle A on a stable curve X /T, any line bundle L on X /T of degree nd will
be said to meet the numerical criterion, or to be A -admissible, if for every irreducible
component C of every geometric fibre Xt of the curve X /T,

degC L = nd ·
degC A |C

deg A |Xt

where degC A |C is the degree of A restricted to C, and deg A |Xt is the total degree
of the restriction of the bundle A to the fibre Xt. Of course, there are no A -
admissible line bundles unless deg A |Xt divides nd·degC A |C for every component
C. Throughout the rest of this paper, given a fixed A , we will assume that deg A
divides d. This will ensure the existence of A -admissible line bundles on every
semi-stable curve, and it is also necessary for the proof of Theorem 3.4.2.

Taking A to be the canonical (relative dualizing) sheafω of X /T gives a criterion
that is similar to the standard (Seshadri) definition of semi-stable. However, our
definition of ω-admissibility requires equality, where semi-stability permits an
inequality. One surprising result of this paper is that the stricter condition of
equality still permits enough limit objects to compactify the Picard stack. And
in fact the semi-stability conditions permit too many objects—hence constructions
involving such inequalities (e.g. [8, 24]) do not correspond to separated stacks.

Note 2.2.2. One need not use a line bundle to define the numerical criterion. In
fact, all that is needed is a rule assigning a degree to every irreducible component
of every stable curve, provided that the sum of the degrees for any given stable
curve is constant and divides d.

Definition 2.2.3. Given a choice of integers n, and d, and given a choice of a line
bundle A on the universal curve overMg, such that the degree of A divides d, the
first stack of interest is QPA

d,n (or just QPd,n). It is the stack of triples (X /T, q,L ),
where X /T is a stable curve over an S-scheme T, L is a line bundle of degree nd
on X , meeting the numerical criterion, and q is an nth quasi-root of L .
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Note that if n divides N there is a natural inclusion of QPd,n in QPd,N defined
by taking (X /T,E , b,L ) 7→ (X /T,E , b⊗N/n,L ⊗N/n).

2.3. Roots. The other main stack of interest in this paper is a substack Pd,n of
QPd,n. It consists of quasi-roots that have one additional condition, which we will
explain after recalling some background from [17].

2.3.1. Background on Torsion-free Sheaves and Induced Maps. All the results in this
section are proved in [17].

Proposition 2.3.1. [17, Proposition 3.1 and Section 5.2] Any rank-one torsion-free
sheaf E on a stable curve X /T defines a canonical semi-stable curve XE /T which has
X /T as its stable model, and which has exactly one exceptional curve in the fibre over each
singularity of the sheaf E . Moreover, there is a canonical way to construct a line bundle
OXE (1), such that pushing OXE (1) forward along the contraction map π : XE → X
(the obvious morphism, contracting all exceptional curves in XE ) gives back E . Namely,

π∗OXE (1) � E .

In the special case that the sheaf E has a quasi-root map b, so that (E , b) is an nth

quasi-root of a line bundle L , there is additional canonical construction:

Proposition 2.3.2. [17, Proposition 3.1.5] If (E , b) is a quasi-root of the line bundle L ,
then there is a canonical injective map from OXE (n) := OXE (1)⊗n to π∗L . This map
induces another map i by adjointness and push-forward along π; namely, i is the composite
map E ⊗n

→ π∗OXE (n)→ L . Moreover, i actually makes the pair (E , i) into a quasi-root
of L .

This induced quasi-root (E , i) may fail to be isomorphic to (E , b). In many
cases, however, these two quasi-roots are isomorphic. In particular, the difference
between (E , b) and (E , i) is nilpotent on the base.

Proposition 2.3.3. [17, Corollary 5.4.9] If T is reduced, then any quasi-root (E , b) on
any stable X over T is isomorphic to the induced quasi-root (E , i), as described in the
previous proposition.

2.3.2. Definition of Roots.

Definition 2.3.4. An nth root of a line bundle L over a stable curve X /T is an nth

quasi-root (E , b), with the additional condition that the natural, induced quasi-root
(E , i) is isomorphic to (E , b).

It is important to note that the difference between quasi-roots and roots is simply
a difference in which families are permitted; in particular, the obstruction for a
quasi-root to be a root is nilpotent (c.f. Proposition 2.3.3), and thus any quasi-root
over a reduced base is a root.

Definition 2.3.5. Given a choice of integers n ≥ 1 and d, and given a line bundle A

on the universal curve overMg, such that the degree of A divides d, the substack
Pd,n of QPd,n is the stack of triples (X /T, q,L ), where X /T is a stable curve over
an S-scheme T, L is an A -admissible line bundle of degree nd on X , and q is an
nth root of L .

As in the case ofQPd,n, if n divides N, there is a natural inclusion ofPd,n inPd,N,
defined by taking (E , b,L ) 7→ (E , b⊗N/n,L ⊗N/n).
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3. P  R  Q-

The main facts about QPd,n and Pd,n are the following:
(1) They both form separated algebraic stacks of finite type over the stack of

stable curvesMg ×Z Z[1/n]. (See Theorems 3.1.1 and 3.2.1.)
(2) The coarse moduli space of the universal Picard stack is an open dense sub-

space of the moduli spaces of both QPd,n and Pd,n. (See Proposition 3.3.3.)
(3) For a fixed family of stable curves X /B over a smooth base curve B and

with smooth generic fibre, there is an integer N such that for any multiple n
of N, any line bundle and nth quasi-root on the generic fibre will extend to
a line bundle and nth root, meeting the numerical criterion, on the pullback
of the curve to a finite cover of B. (See Corollary 3.4.3.)

(4) The limiting ind-objects

QPd := lim
→

n
(QPd,n! ×Z Q),

and
Pd := lim

→

n
(Pd,n! ×Z Q),

satisfy the valuative criterion of properness in the sense that if the generic
point of a complete discrete valuation ring R maps to a point ofQPd orPd
with a smooth underlying curve, then this point extends to an R-valued
point. (See Corollary 3.4.4.)

In many applications, such as limit linear series, some monodromy problems,
and some aspects of the study of the fundamental group of a curve, one is only
concerned with the degeneration of certain line bundles from the generic fibre of
a family of curves over a smooth curve or even over a discrete valuation ring. The
third property above shows that Pd,n and QPd,n are sufficient for applications of
this sort.

The proof of algebraicity is given in Subsection 3.1. The proof that the stacks
are separated is in Subsection 3.2. The proof that the universal Picard is dense is
in Subsection 3.3, and properness is proved in Subsection 3.4.

3.1. Algebraicity of Roots and Quasi-roots.

Theorem 3.1.1. If n is invertible in the base S, the stacks Pd,n and QPd,n each form an
algebraic (Artin) stack of finite type over the stack of stable curvesMg.

The proof of Theorem 3.1 is a direct consequence of the following theory of
relatively algebraic stacks.

Definition 3.1.2. A morphism of stacks f : F → G is called Artin if for every
morphism X→ G from a representable stack X to G the fibre product F ×G X is an
Artin stack. Alternately, one may say F is relatively Artin over G.

We define relatively Deligne-Mumford in an identical manner.

Clearly, if G is representable and F is relatively Artin over G, then F is Artin.
And if G is representable and F is relatively Deligne-Mumford over G, then F is
Deligne-Mumford.

Proposition 3.1.3. If G is Artin and F is relatively Artin over G, then F is Artin. If
G is Deligne-Mumford and F is relatively Deligne-Mumford over G, then F is Deligne-
Mumford.
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Proof. To prove that F is Artin (respectively Deligne-Mumford) we need to provide
a smooth (respectively, étale) atlas and prove that the diagonal F → F ×S F is
representable, of finite type, and separated [25, 7.14].

If U→ G is a smooth (étale) atlas for G, then the Artin (Deligne-Mumford) stack
U ×G F has an atlas V, which is also an atlas for F. In particular, since U → G is
smooth (étale) and surjective, and V → U ×G F is smooth (étale) and surjective,
then so is the composition V → U ×G F→ F.

Moreover, a straightforward generalization of [25, prop 7.13] shows that the
diagonal F → F ×S F is representable, of finite type, and separable, if and only
if for every pair of morphisms X → F and Y → F from representable stacks, the
canonical morphism X ×F Y → X ×S Y is representable, is of finite type, and is
separable.

Given X → F and Y → F from representable stacks, X → F factors through
F ×G X; and we have the following Cartesian diagram:

Y � Y ×G X � Y ×F X

F
?
� F ×G X

?
� X

?

G
?

� X
?

Here F ×G X is algebraic, and Y ×G X is representable because G is algebraic and X
and Y are representable. Consequently, Y ×F X is also representable.

Furthermore, Y ×G X → Y ×S X is of finite type and separable, so all that
remains is to show that the morphism Y ×F X → Y ×G X is of finite type and
separable. However, F×GX is algebraic, hence the canonical morphismΦ : Y×FX ∼

−→

(Y×GX)×(F×GX)X→ (Y×GX)×SX is of finite type and separable. Since the projection

Y ×F X
π2
−→ X factors through the projection Y ×G X

p2
−→ X, this morphism Φ factors

as Y ×F X → Y ×G X
(1,p2)
−−−→ (Y ×G X) ×S X, so we have the following commutative

diagram, with the horizontal morphisms both separated and of finite type.

Y ×F X - Y ×G X ×S X

Y ×G X
?

-

(1,
p 2)

-

Y ×S X

(p1 × 1)

?

The diagonal morphism is separated because the bottom (horizontal) morphism
is separated. But now the left (vertical) morphism must be both separated and
of finite type because the top morphism is separated and of finite type and the
diagonal is separated [15, 5.3.19(v), and 6.3.4(v)]. �

Proof of Theorem 3.1.1. The fact thatQPd,n andPd,n are algebraic stacks now follows
easily from the fact that they are relatively algebraic over Mg. In particular, the
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stack of triples (X /T,E ,L ) of a stable curve X /T, a line bundle L on X , and a
coherent sheaf E on X , is relatively algebraic overMg because for any fixed stable
curve X /T, the stack of line bundles on X and the stack of coherent sheaves on
X are both algebraic [20, 4.14.2.1], as is their fibre product [20, 3.4.i]. Moreover, the
substack of triples such that E is torsion-free and of rank one is an open substack.
And the substack such that L meets the numerical criterion is an open substack,
and hence algebraic [20, 3.4.ii].

The stack HomX /T(E ⊗n,L ) of quadruples (X /T,E , b,L ) is relatively repre-
sentable over the open substack of rank one torsion-free A -admissible triples
because each X /T is flat and projective [13, no 221 §4]. And finally, the property
that a homomorphism b : E ⊗n

→ L is an isomorphism off the discriminant locus,
and the property of having good cokernel are both open conditions [17, Proposi-
tion 4.1.5]. So the stack QPd,n is an open substack of HomX /T(E ⊗n,L ), and thus is
algebraic.

Proposition 2.3.2 shows that over QPd,n there exists not only the universal
quasi-root (X /T,E , b,L ) = Q, but also an induced root (X /T,E , i,L ) = I. And
the stack Pd,n is exactly the open substack where Q and I agree. That is, for every
Q : T → QPd,n, there is an induced I : T → QPd,n and Pd,n × T = T ×Q,I T.
Since QPd,n is algebraic, this product is representable. Hence Pd,n is relatively
representable over the algebraic stack QPd,n, and so is an algebraic stack. �

3.2. Separatedness.

Theorem 3.2.1. QPd,n and Pd,n are separated overMg ×Z Z[1/n].

Proof. By the valuative criterion [20, 3.19], it suffices to show that given two nth

quasi-roots (E , b,L )/X /R and (E ′, b′,L ′)/X /R, both over X /Spec R, where R is
a complete discrete valuation ring, and given an isomorphism Φη : (E , b,L ) →
(E ′, b′,L ′) defined on the generic fibres, then Φη will always extend to an isomor-
phism Φ over all of Spec R.

In the special case that L � L ′ � ωX /R, the result is proved in [17, Proposition
4.1.16], assuming that n is invertible on the base S; but the proof there uses only the
fact that L � L ′. Thus to prove the result in this more general case, it is enough
to check that for any two line bundles L and L ′ meeting the numerical criterion
on X /R, with an isomorphism φη : Lη

∼
−→ L ′

η defined on the generic fibre, the
isomorphism φη extends to an isomorphism over all of X . To see this, it is enough
to assume that the isomorphism φη is the identity.

It is well known that if X is regular (and hence the generic fibre of X /R is
smooth), then any two line bundles L and L ′ that are the same on the generic
fibre differ only by a line bundle of the form O(

∑
aiCi), where the ai are integers

and the Ci are irreducible components of the special fibre of X /R. That is to say,
L ′ = L ⊗O(

∑
aiCi) = L (

∑
aiCi). In this case, the degree of L ′ on one irreducible

component C differs from the degree of L on C by the integer
∑

i ai(C.Ci); and when
Ci , C, then (C.Ci) is the number of points in the intersection of Ci with C (because
X is semi-stable), and when C = Ci, then −C.Ci is the total number of intersection
points that C has with the rest of the curve.

The numerical criterion guarantees that the degree of both line bundles L and
L ′ is the same on every Ci in the special fibre of X /R. And it is easy to see that
the only way to choose the ai so that the degree of O(

∑
aiCi) equals zero on all
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irreducible components is to choose all the ai equal to each other. But in this case,
O(
∑

aiCi) = O(a
∑

Ci) = O , and L = L ′.
In the more general case that the generic fibre is smooth but the family X is

not regular, resolve the singularities of X by blowing up. Let the resulting semi-
stable curve be ν : X̃ → X . Then over each singularity of X there is a chain of
exceptional curves in X̃ . The pull-backs ν∗L and ν∗L ′ both have degree zero on
the exceptional curves of X̃ , and they again differ by ν∗(L −1

⊗L ′) = OX̃ (
∑

aiC̃i).
The degree of this bundle is zero on all irreducible components of the special fibre.
And again the only way to choose ai to make the bundle ν∗(L −1

⊗L ′) have degree
zero on every irreducible component of the special fibre of X̃ is to choose all the
ai equal, in which case ν∗L = ν∗L ′. And thus L = L ′.

And finally, in the case that the generic fibre is not regular, let π : X̃ → X
be the normalization of X . Then each connected component of X̃ has smooth
generic fibre. Thus by the previous argument, π∗L = π∗L ′, and L = L ′. �

3.3. Relation to the Universal Picard. Although the stacks over smooth curves
Pd,n ×Mg

Mg and PicdMg
are not isomorphic, there is a natural morphism from

Pd,n ×Mg
Mg toPicdMg

which induces an isomorphism on the moduli. That is to say,

Pd,n ×Mg
Mg is an étale gerbe over Pd

Mg
.

Proposition 3.3.1. The étale sheafification Psmooth
d,n of roots of line bundles on smooth curves

is isomorphic to the universal Picard for smooth curves Pd
Mg

.

Proof. Roots of line bundles on smooth curves correspond to isomorphism classes
of triples (X /T,M , b), where X is a smooth curve of genus g, M is a line bundle
of degree d, and b is an automorphism M ⊗n ∼

−→M ⊗n = L .
So there is a natural morphism of sheaves f : Psmooth

d,n → Pd
Mg

, which is given

by forgetting the automorphism: (X /T,M , b) 7→ (X /T,M ). Moreover, the auto-
morphism b corresponds to an element of H0(X ,O∗

X
) = O∗T, and any two choices

of automorphism b, b′ ∈ Aut (M ⊗n) induce isomorphic triples (X /T,M , b) and
(X ,M , b′) if and only if the element b−1

· b′ has an nth root γ : M →M so that the
diagram

M ⊗n b′- M ⊗n

‖

M ⊗n

γ⊗n

? b - M ⊗n

commutes. In particular, over a strictly Henselian local ring R, any two triples
(X /R,M , b) and X /R,M , b′) are isomorphic, and the morphism of sheaves f :
Psmooth

d,n → Pd
Mg

induces an isomorphism of R-valued points. In particular, f

induces an isomorphism on the stalks Psmooth
d,n (Osh

s̄,S) ∼
−→ Pd

Mg
(Osh

s̄,S) and thus is an

isomorphism of étale sheaves [1, VIII.3.5]. �

Theorem 3.3.2. The universal Picard Pd
Mg

is an open, dense subfunctor of the moduli

Pd,n of Pd,n and of the moduli QPd,n of QPd,n.
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The theorem follows immediately from Proposition 3.3.1 and the following
deformation, which shows that triples (X, q,L ) of a smooth curve and an nth

quasi-root of a line bundle L form a dense open substack ofPd,n. And hence their
moduli Pd

Mg
forms an open dense subfunctor of the moduli ofQPd,n. Recall that

any quasi-root over a field is actually a root, so the existence of the deformation
actually proves this stack is dense in both Pd,n and QPd,n.

Proposition 3.3.3. Given any nth root (E , b,L ) on a stable curve X over a field k, there
is a canonical deformation to an nth root (E , b,L ) on X over M where X /M is the
pullback of the universal deformation

X→ Spec ok[[t1, . . . , tδ, tδ+1, . . . , t3g−3]] =M

of the curve X/k along the homomorphism

ok[[t1, . . . , tδ, tδ+1, . . . , t3g−3]]→ ok[[τ1, . . . , τδ, tδ+1, . . . , t3g−3]]

via ti 7→ τn
i for each i ∈ {1, . . . , δ}.

Proof. In [17, 4.2.1] the result is proved for L � ωX/k. That proof consists of
constructing a semi-stable curve X̃E over X with a line bundle OX̃E

(1) on it
that pushes down to the desired E on X . And it then shows that any such
line bundle has a natural homomorphism from its nth power to ω that induces a
homomorphism from E ⊗n to ω. Moreover, the proof of [17, 4.2.1] depends only on
the fact that the bundle ωX/k has a canonical extension to a line bundle on X . It
suffices, therefore, to show that given any L̄ on X/k, there is an extension L on
X /M of L̄ . But since the curve X is regular, L̄ extends to a line bundle on X/M
[7, 2.1]; and thus the pull-back of the extension to X /M is an extension of L̄ , as
desired. �

3.4. Properness. The following proposition shows that for any fixed line bundle
the stack of roots of that bundle is proper.

Proposition 3.4.1. Given a line bundle L on a curve X /V where V is of dimension one,
n is invertible in OV, and X has smooth generic fibre, any nth (quasi-) root of L defined
on X over an open subset U of V will extend to an nth (quasi-) root of L on the pullback
of X to a finite (degree-n) cover of V.

Proof. This is an easy generalization of the proof of the properness theorem of [17,
Section 4.2] �

Given a fixed n and a stable curve X over the spectrum V of a discrete valuation
ring R, with X having smooth generic fibre Xη, it is not true that every pair (q,L )η
on the generic fibre extends to an nth root on the whole curve. In particular, Lη
will not necessarily extend to a line bundle on all of X , and even if it does, it is not
true that the extension can always be chosen to meet the numerical criterion.

Nevertheless, the following theorem shows that for any fixed curve over a
discrete valuation ring, all nth roots extend from the generic to the special fibre if n
is large enough, or rather, sufficiently divisible.

Theorem 3.4.2. For a fixed stable curve with smooth generic fibre over a discrete valuation
ring R, with field of fractions K, there is an integer N such that for any multiple n of N,
any line bundle Lη and any nth root of Lη on the generic fibre will extend (up to finite
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extension of K) to an nth root of a line bundle L , meeting the numerical criterion on the
whole curve.

Proof. Let R be a discrete valuation ring, and let V = Spec R. Let X /V be the curve
in question; let Xη be the generic fibre, which is smooth; and let ((E , b),L )η be a
root structure on the generic fibre Xη. By Proposition 3.4.1 it suffices to show that
there is an N such that for any positive multiple n of N, the line bundle Lη = E ⊗n

η

can be extended to one meeting the numerical criterion.
Resolving the singularities of X by blowing up produces a semi-stable curve

π : X̃ → X with a chain of exceptional curves over each singularity of X . Eη is
torsion-free on the smooth curve Xη, and hence is locally free. Thus Eη will extend
(not uniquely) to a line bundle Ẽ on all of X̃ , and π∗Ẽ ⊗n is a line bundle on X if
and only if the degree of Ẽ ⊗n on each exceptional curve is zero. As discussed in
Section 3.2, any two line bundles M and N on X /V that agree on the generic fibre
are related by M � N ⊗O(

∑
aiCi), where the Ci are the irreducible components of

the special fibre of X̃ , and ai are integers. In particular, it suffices to show that for
some a = (a1, . . . , ak), the bundle Ẽ ⊗n

⊗O(
∑

aiCi) has degree 0 on every exceptional
curve and on the non-exceptional curves has the degree specified by the numerical
criterion.

Since the degrees specified by the numerical criterion are all divisible by n, it
suffices to show that for any multi-degree (m1,m2, . . . ,mk) = m ∈ Zk, with

∑
mi = 0,

there is a bundle O(
∑

aiCi) such that the multi-degree of O(
∑

aiCi) is n ·m.
Basic intersection theory shows that the intersection matrix ∆ = [Ci · C j] of the

irreducible components is negative semi-definite of rank k − 1, and that the multi-
degree of O(

∑
aiCi) is just ∆a. So if N is any principal, (k − 1) × (k − 1)-minor of

∆, then whenever N divides n, the equation ∆a = m has a solution a in (Z[1/n])k,
provided

∑
mi = 0.And thus∆a = nm will have a solution a inZk, for any multiple

n of N. �

Corollary 3.4.3. For a fixed family of stable curves X /B over a smooth base curve B and
with smooth generic fibre, there is an integer N such that for any multiple n of N, any
line bundle and nth quasi-root on the generic fibre will extend to a line bundle and nth root,
meeting the numerical criterion, on the pullback of the curve to a finite cover of B.

Proof. By Proposition 3.4.1 it suffices to show that there is an N such that for every
positive multiple n of N every line bundle Lη on the generic fibre extends to a line
bundle meeting the numerical criterion on all of X /B.

For each point b ∈ B of the singular locus SL := {b ∈ B|Xb is singular}, Theorem
3.2.1 guarantees the existence of an integer Nb with the property that for any nth

root Eη, defined on the generic fibre of S /B, and for any multiple n of Nb, the nth

power E ⊗n
η extends to a line bundle L(b) meeting the numerical criterion on all of

X ×B Spec OB,b, where OB,b is the local ring of B at b.
Let N be the product N :=

∏
b∈SL

Nb. Since SL is a finite set, this is well-defined, and

by descent this gives a line bundle L , extending Lη , and meeting the numerical
criterion on all of X , (here the cover of B is

(∐
b∈SLSpec OB,b

)
q (B − SL), and the

descent data are the obvious ones). �
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If n divides m, then there is a canonical inclusion QPd,n → QPd,m and Pd,n →

Pd,m defined by taking (E , b,L ) 7→ (E , b⊗m/n,L ⊗m/n). Consider the ind-objects

QPd := lim
→

n
QPd,n! ×Z Q

and
Pd := lim

→

n
Pd,n! ×Z Q.

Although these are not of finite type, they satisfy a form of the valuative criterion
of properness.

Corollary 3.4.4. Let K be the field of fractions of a complete, discrete valuation ring R.
Given any K-valued point of the smooth locus ofQPd (or ofPd), there is a finite extension
field L of K, such that if V is the ring of integers in L, then there is a V-valued point of
QPd (respectively Pd), extending the induced L-valued point.

Proof. This valuative criterion is an immediate consequence of Theorem 3.4.2. Also,
recall that since any quasi-root over a field or a valuation ring is actually a root,
Theorem 3.4.2 shows that this weakened valuative criterion holds for both QPd,n
and Pd,n. �

If the stacks QPd and Pd were of finite type, Corollary 3.4.4 would suffice to
prove properness because the smooth curves with quasi-roots form a dense open
substack, and it is enough to check the valuative criterion in the special case that
the generic point of R is contained in an open dense substack (c.f. [9, pg. 109] or
[14, 7.3.10 ii]).

4. F  O E

4.1. Structure of the Fibres Over a Fixed Curve. Let PX,n be the fibre of the moduli
space of Pd,n (and also of QPd,n) lying over the point of Mg corresponding to the
curve X. That is to say, PX,n is the set of isomorphism classes of roots (q,L ) on
a fixed stable curve X/k, with q an nth root of L , and L meeting the numerical
criterion. In this section we develop a combinatorial description of these fibres and
give some specific examples.

Proposition 4.1.1. For any integers n and d, and any semi-stable curve X/k over a
field, there is a one-to-one correspondence between (isomorphism classes of) A -admissible
bundles and roots (q,L ), and the set of triples (ν,M ,L ), where ν ∈ H1(Γ,Z/nZ) is
a Z/nZ one-cycle for the dual graph Γ of X, and M is a line bundle on the partial
normalization π : Xν → X of X at the support of ν, and L is a line bundle on X, such that
M ⊗n � π∗(L )(−ν) := π∗L (−

∑
uip+i + vip−i ), as explained below.

Proof. As described in Lemma 2.1.4, each (q,L ) = ((E , b),L ) induces a line bundle
π\E := π∗E /(torsion) on the partial normalization X̃ π

→ X of X at the singular points
of E . The map b induces an isomorphism (π\E )⊗n ∼

−→ π∗L (−
∑

uip+i + vip−i ), where
each pair {p+i , p

−

i } is the inverse image of a singular point qi of E , i.e., {p+i , p
−

i } =

π−1
{qi}. And the conditions on the cokernel guarantee that ui + vi = n for all i.

Let Γ be the dual graph of X (every irreducible component of X corresponds to a
vertex ofΓ, and every singular point of X corresponds to an edge joining the vertices
associated to the components containing the singularity), and fix an orientation of
Γ. A choice of ui and vi corresponds uniquely to a Z/nZ one-chain ν on Γ. Denote
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the line bundle O(−
∑

uip+i + vip−i ) by O(−ν) and the bundle π∗L (−
∑

uip+i + vip−i )
by π∗L (−ν).

The multi-degree function defines a map from line bundles on X to 0-chains
in C0(Γ,Z); namely, if [D] denotes the vertex of Γ associated to the irreducible
component D of X, and if degD L denotes the degree of L on D, then the 0-chain
associated to L is

mdegL :=
∑

D

degD L · [D].

And since deg A divides d,

a :=
nd

deg A
·mdegA

is also a 0-chain in C0(Γ,Z).
It is easy to see that the function ∂ : C1(Γ,Z/nZ) → C0(Γ,Z/n,Z), defined as

∂(ν) := mdegO(ν) (mod n), is the usual boundary map of graph homology.
And a line bundle L is A -admissible if and only if mdegL = a in C0(Γ,Z). By

Lemma 2.1.4 L is part of an nth root structure if and only if there is a ν ∈ C1(Γ,Z/nZ)
such that if π : Xν → X is the partial normalization of X on the support of ν, then
π∗L (−ν) is an nth power of some bundle M on Xν. And since the Picard group of
Xν is n-divisible, this occurs if and only if the multidegree of L (−ν) is divisible by
n; that is to say, if and only if

a − ∂ν ≡ 0 in C1(Γ,Z/nZ).

Since a is congruent to zero in C0(Γ,Z/nZ), this occurs if and only if −∂ν = 0;
that is, if and only if ν is an element of H1(Γ,Z/nZ). Thus every quasi-root (E , b,L )
induces a unique choice of (ν,M ,L ) with ν ∈ H1(Γ,Z/nZ), and M = π\E . And
conversely, every triple (ν,M ,L ) with ν ∈ H1(Γ,Z/nZ) and M ⊗n � L induces
E = π∗M , and b is induced by adjointness from M ⊗n ∼

−→ π∗L (−ν) ↪→ π∗L , as in
Lemma 2.1.4.

�

Let Pic aX indicate the line bundles on X with multi-degree equal to a, and
Pic dνXν indicate the line bundles of multi-degree dν := (a−∂ν)/n on the normalized
curve Xν.

We see from the previous proposition that nth roots over a fixed curve X are
parametrized by an element L in Pic aX, a choice of ν in H1(Γ,Z/nZ), and a line-
bundle nth root of the normalization of L . This means that for each νwe have the
following diagram:

Pic dνXν

Pic aX
O(−ν) ⊗ π∗(·)- Pic ndνXν

[⊗n]

?

Here the horizontal arrow is the map taking L to π∗L (−ν), and the vertical arrow
is the map taking M to M ⊗n, and the space of nth roots corresponding to a given
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ν is just the fibre product of these two maps. The fibre PX,n is

PX,n =
∐

ν∈H1(Γ,Z/nZ)

Pic aX ×Pic ndνXν Pic dνXν.

In particular, since the vertical map is finite, the fibre PX,n has dimension g, just as
in the case when X is smooth.

4.2. Examples of Fibres.

4.2.1. Fibres Over a Curve of Compact Type. If the curve X is of compact type, i.e., if
Γ is a tree, then H1(Γ) = 0. In this case, the horizontal map in the above diagram
is an isomorphism. Thus PX,n is simply the set of all line bundles M on X of
multi-degree a/n, that is PX,n = Pic a/nX.

4.2.2. Fibres Over an Integral Curve. If X is an integral curve with δ double points,
then rank H1(Γ) = δ. Moreover, Γ(X) is a bouquet of circles with only one vertex, so
every one-chain is a one-cycle. Therefore, given any choice of a normalization X%

of X and any line bundle M of degree d−|%| on that normalization (|%| is the number
of points normalized by %) there are (n− 1)|%| choices of a one-chain ν supported on
%, and all are one-cycles. For each of these choices of ν and M , the possible choices
for L on X are parameterized byG|%|m . However, this is non-canonical, as it requires
a choice of trivialization of π∗L =M ⊗n in order to produce a line bundle L on X.
Note also that although the dimension of PX,n is g, the number of components that
it has depends on n.

If X is integral, there exists a natural forgetful map from PX,n onto D’Souza’s
compactification (the moduli of rank-one, torsion-free sheaves of degree d on an
integral curve); namely, the structure map (E , b,L ) 7→ E . The fibres of this map
are isomorphic to G|%|m .

4.2.3. Fibres Over a Curve With Two Smooth, Irreducible Components, Intersecting in Two
Points. If X is a curve with two irreducible components, intersecting in exactly two
points, both components without self-intersections, then rank H1(Γ) = 1 and there
are n one-cycles. The fibre PX,n consists of two components—one corresponding to
locally free root structures (i.e., where ν = 0, and E is a line bundle), and the other
corresponding to root structures that are singular at both intersection points (i.e.,
E is not locally free at the intersection points). Forgetting the additional structure
of the map b and the target bundle L , the first component consists of line bundles
of degree d (corresponding to the cycle ν = 0) and multi-degree d = a/n. And the
second component is made up of rank-one torsion-free sheaves of total degree d
and multi-degree d− 1 = (d1 − 1, d2 − 1) that are singular at both of the intersection
points.

4.3. QPd and Pd are the Best Possible. A natural question to ask about the con-
struction of Pd,n, QPd,n, Pd, and QPd, is whether something simpler might suffice
for the compactification. The answer is unfortunately no, as the following two
examples show.

In particular, the first example shows that any stack that depends alone on a
numerical criterion on the degrees of torsion-free sheaves cannot be separated.
Thus additional structure, such as that provided by the quasi-root structure, is
necessary to produce a separated stack.
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The second example shows that, in general, no finite n is sufficient to produce
a proper stack. Thus the limit objects QPd and Pd must be used instead of QPd,n
and Pd,n. However, in many cases QPd,n and Pd,n are sufficient for applications.

4.3.1. Example: No Numerical Criterion Guarantees Separatedness. Consider a regular,
semi-stable curve X , over a discrete valuation ring Spec R, such that the generic
fibre of X is smooth. Moreover, assume that the special fibre of X is the union
of two irreducible, non-exceptional curves C and D, joined by a single chain of
exceptional curves {Ei} of length n ≥ 2. In other words, the dual graph of the
special fibre is of type An+1, with the vertices representing C and D on the ends.

Let L0 be a line bundle on the special fibre with degree 0 on each irreducible
component, except on Ei for some i, with 2 ≤ i < n. On Ei assume that L0 has
degree 1. Such a line bundle extends to L on all of X (c.f. [7, 2.1]). And if X

is the stable model of X , and π : X → X is the natural contraction map, then
π∗L is a rank-one torsion-free sheaf of degree zero on all irreducible components
of the special fibre (namely, on both C and D) [17, Section 3.1.2 ]. However, the
bundle L ′ = L ⊗ O(C +

∑
j≤i E j) has the same generic fibre as L , and its degree

on each irreducible component of the special fibre is zero except on Ei+1, where it
has degree 1. The push-forward π∗L ′ is a torsion-free sheaf which also has degree
zero on all of the irreducible components of the special fibre. On the generic fibre
the two are isomorphic,

π∗Lη � π∗L
′
η,

but π∗L is not isomorphic to π∗L ′ on all of X . Thus the degree of the torsion-
free sheaf alone is not enough to guarantee uniqueness of the extensions from the
generic fibre.

In the special case that the underlying curve is geometrically irreducible, D’Souza
[10] shows that there are numerical criteria that suffice to guarantee uniqueness
of extension, but the above example shows that this cannot hold in the case of a
general stable curve.

4.3.2. Example: QPd,n and Pd,n Are Not Proper for Any Finite n. As in the previous
example, consider X /Spec (R) a regular, semi-stable curve over a discrete valuation
ring R, with smooth generic fibre. And assume that the special fibre consists of a
single, non-exceptional curve C, joined to itself by a chain of n exceptional curves.
The intersection matrix for the irreducible components of the special fibre is of the
form

∆ =



−2 1 1
1 −2 1 0

1 −2 1
. . .

. . .
. . .

0 1 −2 1
1 1 −2


.

Let L be the extension to all of X of a line bundle on the special fibre that has
degree ei on the exceptional curves Ei, and degree (d−

∑
ei) on the non-exceptional

curve C. Such an L exists for every choice of {ei} [7, 2.1]. Lη has an extension to
the stable model of X if and only if there is a choice of integers a ∈ Zn+1 such that
∆aT = [d −

∑
ei, e1, e2, . . . , en]. And this is equivalent to saying that there is a choice
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of integers α ∈ Zn such that

∆′αT = [e1, . . . , en] ,

where ∆′ = [Ei.E j]. However, ∆′ has determinant −(n + 1), and thus for a general
choice of {ei} there is no integer solution. And the only way to ensure that such a
line bundle has an extension to the stable model of X is to take, instead, its n+ 1st

tensor power, or some integer multiple of that. Finally, because there exist curves
as described for arbitrary n, the stacks QPd,n and Pd,n are not complete for any
finite n.

5. A: D  T P   J

One application of this compactification is that it gives a compactification over
Z[1/n] of the moduli of pairs (X,L ), where L is a line bundle on X corresponding
to an n-torsion point of the Jacobian of X; that is, L ⊗n � OX.

In this case, since OX always extends from the generic to the special fibres,
Proposition 3.4.1 and Theorem 3.1.1 show that the P0,n-substack Mg(n,O) of nth

roots (X /T,E , b,OX /T) of the trivial bundle is a proper algebraic stack of finite
type over Z[1/n], and it is finite overMg.

It is straightforward to check that the diagonalMg(n,O)→Mg(n,O)×
Mg
Mg(n,O)

is unramified (c.f. [17, Proposition 4.1.15]), and hence the stack Mg(n,O) is a
Deligne-Mumford stack [9, Theorem 4.21].

By Proposition 3.3.1, the geometric points of the open substackMg(n,O) of nth

roots of O over smooth curves, correspond (up to isomorphism) to pairs (X,M ),
with M ⊗n � O . And the coarse moduli space of Mg(n,O) is the algebraic space
representing the étale sheafification of the functor taking an S-scheme T to the set
of isomorphism classes of pairs (X/T,M ) with M ⊗n isomorphic to O .

In the special case that the genus g is 1, the moduli space M1,1(n,O) ofM1,1(n,O) is
the union of the modular curves Y1(d), where d runs through all divisors of n. Recall
that Y1(d) is the moduli of elliptic curves with points of exact order d. Consequently,
M1,1(n,O) gives a compactification of

∐
d|n Y1(n) whose normalization agrees with

the “normalization near infinity”—the modular curves
∐

d|n X1(n) (c.f. [18]).
The points at infinity correspond to roots of O on the (one-pointed) nodal curve

C of arithmetic genus 1 and geometric genus 0. There are n locally-free roots of OC,
corresponding to the n roots of unity that could be used to patch OP1 into an nth root
of OC. And there are n − 1 non-trivial cycles ν in H1(Γ(C),Z/nZ), corresponding
to torsion-free but not locally-free roots. By Proposition 4.1.1 these correspond to
the unique nth root of π∗OC(−ν) = OP1 (−ν). Although the bundle E � π ∗ O(−1) is
the same for each choice of (non-zero) ν, the homomorphism b distinguishes the
different values of ν.

The curve C has a unique involution fixing the marked point and the node,
and this corresponds to interchanging the normalized points p+ and p−, and in
particular, identifies ν to −ν. Similarly, the involution identifies the locally free root
defined by an nth root of unity ζ to the root defined by ζ−1. Thus there are

n = 1 + 1/2(n − 1 + n − 1)

total points at infinity. In the special case of n prime, this corresponds exactly to
the one cusp of X(1) � P1 and the n − 1 cusps of X1(n).
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6. C

We have provided two related moduli problems QPd and Pd, which in char-
acteristic zero provide a type of compactification of the universal Picard scheme
over the moduli of stable curves. Although neither stack is of finite type, both
are inductive limits of a sequence of stacks, each of which is a separated algebraic
stack of finite type. Each of the terms of the sequence contains the relative Picard
functor for the universal smooth curve over the stack Mg as an open dense sub-
stack. Moreover, both QPd and Pd meet the valuative criterion for properness,
which, if the stacks were of finite type, would suffice to prove properness. Finally,
in light of the examples given in Section 4.3, these two stacks are essentially the
best possible, since any weakening of the conditions would give a stack that was
either not separated or not proper.
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