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Abstract

Building on the work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in
the shock wave case, we study stability of compressive, or shock-like, boundary
layers of the isentropic compressible Navier–Stokes equations with γ -law pressure
by a combination of asymptotic ODE estimates and numerical Evans function
computations. Our analytical results include convergence of the Evans function in
the shock and large-amplitude limits and stability in the large-amplitude limit, the
first rigorous stability result for other than the nearly constant case, for all γ � 1.
Together with these analytical results, our numerical investigations indicate stability
for γ ∈ [1, 3] for all compressive boundary-layers, independent of amplitude,
save for inflow layers in the characteristic limit (not treated). Expansive inflow
boundary-layers have been shown to be stable for all amplitudes by Matsumura and
Nishihara using energy estimates. Besides the parameter of amplitude appearing in
the shock case, the boundary-layer case features an additional parameter measuring
displacement of the background profile, which greatly complicates the resulting
case structure. Inflow boundary layers turn out to have quite delicate stability in both
large-displacement (shock) and large-amplitude limits, necessitating the additional
use of a mod-two stability index studied earlier by Serre and Zumbrun in order to
decide stability.
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1. Introduction

Consider the isentropic compressible Navier–Stokes equations

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + p(ρ)x = uxx
(1.1)

on the quarter-plane x, t � 0, where ρ > 0, u, p denote density, velocity, and
pressure at spatial location x and time t , with γ -law pressure function

p(ρ) = a0ρ
γ , a0 > 0, γ � 1, (1.2)

and noncharacteristic constant inflow or outflow boundary conditions

(ρ, u)(0, t) ≡ (ρ0, u0), u0 > 0 (1.3)

or
u(0, t) ≡ u0, u0 < 0 (1.4)

as discussed in [9,10,26]. The sign of the velocity at x = 0 determines whether
characteristics of the hyperbolic transport equation ρt + uρx = f enter the domain
(considering f := −ρux as a lower-order forcing term), and thus whether ρ(0, t)
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should be prescribed. The variable-coefficient parabolic equation ρut − uxx = g
requires prescription of u(0, t) in either case, with g := −ρ(u2/2)x − p(ρ)x .

By comparison, the purely hyperbolic isentropic Euler equations

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + p(ρ)x = 0
(1.5)

have characteristic speeds a = u ± √
p′(ρ), hence, depending on the values of

(ρ, u)(0, t), may have one, two, or no characteristics entering the domain, hence
require one, two, or no prescribed boundary values, respectively. In particular, there
is a discrepancy between the number of prescribed boundary values for (1.1) and
(1.5) in the case of mild inflow u0 > 0 small [two for (1.1), one for (1.5)] or strong
outflow u0 < 0 large [one for (1.1), none for (1.5)], indicating the possibility of
boundary layers, or asymptotically constant stationary solutions of (1.1):

(ρ, u)(x, t) ≡ (ρ̂, û)(x), lim
z→+∞(ρ̂, û)(z) = (ρ+, u+). (1.6)

Indeed, existence of such solutions is straightforward to verify by direct computa-
tions on the (scalar) stationary-wave ODE; see [9,10,16,19,20,26] or Section 2.3.
These may be either of expansive type, resembling rarefaction wave solutions on
the whole line, or compressive type, resembling viscous shock solutions.

A fundamental question is whether or not such boundary layer solutions are
stable in the sense of PDE. For the expansive inflow case, it has been shown in [19]
that all boundary layers are stable, independent of amplitude, by energy estimates
similar to those used to prove the corresponding result for rarefactions on the whole
line. Here, we concentrate on the complementary, compressive case (though see
Section 1.1).

Linearized and nonlinear stability of general (expansive or compressive) small-
amplitude noncharacteristic boundary layers of (1.1) have been established in
[10,16,19,24]. More generally, it has been shown in [10,21,27] that linearized
and nonlinear stability are equivalent to spectral stability, or nonexistence of nons-
table (nonnegative real part) eigenvalues of the linearized operator about the layer,
for boundary layers of arbitrary amplitude. However, up to now the spectral sta-
bility of large-amplitude compressive boundary layers has remained largely
undetermined.1

We resolve this question in the present paper by carrying out a systematic global
study classifying the stability of all possible compressive boundary-layer solutions
of (1.1). Our method of analysis is by a combination of asymptotic ODE techniques
and numerical Evans function computations, following a basic approach introduced
recently in [3,12] for the study of the closely related shock wave case. Here, there
are interesting complications associated with the richer class of boundary-layer
solutions as compared with possible shock solutions, the delicate stability properties

1 See, however, the investigations of [26] on stability index, or parity of the number of
nonstable eigenvalues of the linearized operator about the layer.
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of the inflow case, and in the outflow case, the nonstandard eigenvalue problem
arising from reduction to Lagrangian coordinates.

As in [12], our strategy is to carry out rigorous analyses of asymptotic limits in
the parameter space, thus truncating the computational domain, then as in [3] carry
out an exhaustive numerical study on the remaining compact parameter regime. In
the course of the first, analytical step, we obtain convergence of the Evans function
in the shock- and large-amplitude limits, and stability in the large-amplitude limit,
for all γ � 1, the first rigorous stability result for other than the nearly constant
case. For a detailed description of our results both analytical and numerical see
Section 3.

Our ultimate conclusions are, for both inflow and outflow conditions, that com-
pressive boundary layers that are uniformly noncharacteristic in a sense to be made
precise later (specifically, v+ bounded away from 1, in the terminology of Sec-
tion 2.3) are unconditionally stable, independent of amplitude, on the physical
range γ ∈ [1, 3] considered in our numerical computations. We show by energy
estimates that outflow boundary layers are stable also in the characteristic limit.
The omitted characteristic limit in the inflow case, analogous to the small-amplitude
limit for the shock case should be treatable by the singular perturbation methods
used in [7,23] to treat the small-amplitude shock case; however, we do not consider
this case here.

In the inflow case, our results, together with those of [19], completely resolve the
question of stability of isentropic (expansive or compressive) uniformly noncharac-
teristic boundary layers for γ ∈ [1, 3], yielding unconditional stability independent
of amplitude or type. In the outflow case, we show stability of all compressive boun-
dary layers without the assumption of uniform noncharacteristicity.

1.1. Discussion and open problems

The small-amplitude results obtained in [10,16,19,24] are of general type,
making little use of the specific structure of the equations. Essentially, they all
require that the difference between the boundary layer solution and its constant limit
at |x | = ∞ be small in L1 (alternatively, as in [19,24], the more or less equivalent
condition that x v̂′(x) be small in L1; for monotone profiles,

∫ +∞
0 |v̂ − v+| dx =

± ∫ +∞
0 (v̂ − v+) dx = ∓ ∫ +∞

0 x v̂′ dx). As pointed out in [10], this is the gap
lemma regime in which standard asymptotic ODE estimates show that behavior
is essentially governed by the limiting constant-coefficient equations at infinity,
and thus stability may be concluded immediately from stability (computable by
exact solution) of the constant layer identically equal to the limiting state. These
methods do not suffice to treat either the (small-amplitude) characteristic limit
or the large-amplitude case, which require more refined analyses. In particular,
up to now there was no analysis considering boundary layers approaching a full
viscous shock profile, not even a profile of vanishingly small amplitude. Our ana-
lysis of this limit indicates why: the appearance of a small eigenvalue near zero
prevents uniform estimates such as would be obtained by usual types of energy
estimates.
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In contrast, the large-amplitude results obtained here and (for expansive layers)
in [19] make use of the specific form of the equations. In particular, both analyses
make use of the advantageous structure in Lagrangian coordinates. The possibi-
lity to work in Lagrangian coordinates was first pointed out by Matsumura and
Nishihara [19] in the inflow case, for which the stationary boundary transforms to
a moving boundary with constant speed. Here we show how to convert the outflow
problem also to Lagrangian coordinates, by converting the resulting variable-speed
boundary problem to a constant-speed one with modified boundary condition. This
trick seems of general use. In particular, it might be possible that the energy methods
of [19] applied in this framework would yield unconditional stability of expansive
boundary-layers, completing the analysis of the outflow case. Alternatively, this
case could be attacked by the methods of the present paper. These are two interes-
ting directions for future investigation.

In the outflow case, a further transformation to the balanced flux form introduced
in [23], in which the equations take the form of the integrated shock equations,
allows us to establish stability in the characteristic limit by energy estimates like
those of [18] in the shock case. The treatment of the characteristic inflow limit by
the methods of [7,23] seems to be another extremely interesting direction for future
study.

Finally, we point to the extension of the present methods to full (nonisentropic)
gas dynamics and multidimensions as the two outstanding open problems in this
area.

New features of the present analysis as compared to the shock case considered
in [3,12] are the presence of two parameters, strength and displacement, indexing
possible boundary layers, versus the single parameter of strength in the shock case,
and the fact that the limiting equations in several asymptotic regimes possess zero
eigenvalues, making the limiting stability analysis much more delicate than in the
shock case. The latter is seen, for example, in the limit as a compressive boundary
layer approaches a full stationary shock solution, which we show to be spectrally
equivalent to the situation of unintegrated shock equations on the whole line. As
the equations on the line possess always a translational eigenvalue at λ = 0, we
may conclude existence of a zero at λ = 0 for the limiting equations and thus a zero
near λ = 0 as we approach this limit, which could be stable or unstable. Similarly,
the Evans function in the inflow case is shown to converge in the large-strength
limit to a function with a zero at λ = 0, with the same conclusions; see Section 3
for further details.

To deal with this latter circumstance, we find it necessary to make use also of
topological information provided by the stability index of [8,22,26], a mod-two
index counting the parity of the number of unstable eigenvalues. Together with the
information that there is at most one unstable zero, the parity information provided
by the stability index is sufficient to determine whether an unstable zero does or
does not occur. Remarkably, in the isentropic case we are able to compute explicitly
the stability index for all parameter values, recovering results obtained by indirect
argument in [26], and thereby completing the stability analysis in the presence of
a single possibly unstable zero.
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2. Preliminaries

We begin by carrying out a number of preliminary steps similar to those carried
out in [3,12] for the shock case, but complicated somewhat by the need to treat the
boundary and its different conditions in the inflow and outflow case.

2.1. Lagrangian formulation

The analyses of [3,12] in the shock wave case were carried out in Lagrangian
coordinates, which proved to be particularly convenient. Our first step, therefore,
is to convert the Eulerian formulation (1.1) into Lagrangian coordinates similar to
those of the shock case. However, standard Lagrangian coordinates in which the spa-
tial variable x̃ is constant on particle paths are not appropriate for the boundary-value
problem with inflow/outflow. We therefore introduce instead pseudo-Lagrangian
coordinates

x̃ :=
∫ x

0
ρ(y, t) dy, t̃ := t, (2.1)

in which the physical boundary x = 0 remains fixed at x̃ = 0.
Straightforward calculation reveals that in these coordinates (1.1) becomes

vt − svx̃ − ux̃ = σ(t)vx̃ ,

ut − sux̃ + p(v)x̃ −
(ux̃

v

)

x̃
= σ(t)ux̃

(2.2)

on x̃ > 0, where

s = −u0

v0
, σ (t) = m(t) − s, m(t) := −ρ(0, t)u(0, t) = −u(0, t)/v(0, t),

(2.3)
so that m(t) is the negative of the momentum at the boundary x = x̃ = 0. From
now on, we drop the tilde, denoting x̃ simply as x .

2.1.1. Inflow case For the inflow case, u0 > 0 so we may prescribe two boundary
conditions on (2.2), namely

v|x=0 = v0 > 0, u|x=0 = u0 > 0, (2.4)

where both u0, v0 are constant.

2.1.2. Outflow case For the outflow case, u0 < 0 so we may prescribe only one
boundary condition on (2.2), namely

u|x=0 = u0 < 0. (2.5)

Thus v(0, t) is an unknown in the problem, which makes the analysis of the outflow
case more subtle than that of the inflow case.
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2.2. Rescaled coordinates

Our next step is to rescale the equations in such a way that coefficients remain
bounded in the strong boundary-layer limit. Consider the change of variables

(x, t, v, u) → (−εsx, εs2t, v/ε,−u/(εs)), (2.6)

where ε is chosen so that
0 < v+ < v− = 1, (2.7)

where v+ is the limit as x → +∞ of the boundary layer (stationary solution) (v̂, û)

under consideration and v− is the limit as x → −∞ of its continuation into x < 0
as a solution of the standing-wave ODE (discussed in more detail just below). Under
the rescaling (2.6), (2.2) becomes

vt + vx − ux = σ(t)vx ,

ut + ux + (av−γ )x = σ(t)ux +
(ux

v

)

x
,

(2.8)

where a = a0ε
−γ−1s−2, σ = −u(0, t)/v(0, t) + 1, on respective domains

x > 0 (inflow case), x < 0 (outflow case).

2.3. Stationary boundary layers

Stationary boundary layers

(v, u)(x, t) = (v̂, û)(x)

of (2.8) satisfy

(a) v̂′ − û′ = 0,

(b) û′ + (av̂−γ )′ =
(

û′

v̂

)′
,

(c) (v̂, û)|x=0 = (v0, u0),

(d) lim
x→±∞(v̂, û) = (v, u)±,

(2.9)

where (d) is imposed at +∞ in the inflow case, −∞ in the outflow case and
(imposing σ = 0) u0 = v0. Using (2.9)(a) we can reduce this to the study of the
scalar ODE,

v̂′ + (av̂−γ )′ =
(

v̂′

v̂

)′
(2.10)

with the same boundary conditions at x = 0 and x = ±∞ as above. Taking the
antiderivative of this equation yields

v̂′ = HC (v̂) = v̂(v̂ + av̂−γ + C), (2.11)

where C is a constant of integration.
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Noting that HC is convex, we find that there are precisely two rest points of
(2.11) whenever boundary-layer profiles exist, except at the single parameter value
on the boundary between the regions of existence and nonexistence of solutions, for
which there is a degenerate rest point (double root of HC ). Ignoring this degenerate
case, we see that boundary layers terminating at rest point v+ as x → +∞ must
either continue backward into x < 0 to terminate at a second rest point v− as
x → −∞, or else blow up to infinity as x → −∞. The first case we shall call
compressive, the second expansive.

In the first case, the extended solution on the whole line may be recognized as
a standing viscous shock wave; that is, for isentropic gas dynamics, compressive
boundary layers are just restrictions to the half-line x � 0 (respectively, x � 0) of
standing shock waves. In the second case, as discussed in [19], the boundary layers
are somewhat analogous to rarefaction waves on the whole line. From here on, we
concentrate exclusively on the compressive case.

With the choice v− = 1, we may carry out the integration of (2.10) once more,
this time as a definite integral from −∞ to x , to obtain

v̂′ = H(v̂) = v̂(v̂ − 1 + a(v̂−γ − 1)), (2.12)

where a is found by letting x → +∞, yielding

a = − v+ − 1

v
−γ
+ − 1

= v
γ
+

1 − v+
1 − v

γ
+

; (2.13)

in particular, a ∼ v
γ
+ in the large boundary layer limit v+ → 0. This is exactly the

equation for viscous shock profiles considered in [12].

2.4. Eigenvalue equations

Linearizing (2.8) about (v̂, û), we obtain

ṽt + ṽx − ũx = ṽ(0, t)

v0
v̂′,

ũt + ũx −
(

h(v̂)

v̂γ+1 ṽ

)

x
−
(

ũx

v̂

)

x
= ṽ(0, t)

v0
û′,

(ṽ, ũ)|x=0 = (ṽ0(t), 0),

lim
x→+∞(ṽ, ũ) = (0, 0),

(2.14)

where v0 = v̂(0),

h(v̂) = −v̂γ+1 + a(γ − 1) + (a + 1)v̂γ (2.15)

and ṽ, ũ denote perturbations of v̂, û.
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2.4.1. Inflow case In the inflow case, ũ(0, t) = ṽ(0, t) ≡ 0, yielding

λv + vx − ux = 0,

λu + ux −
(

h(v̂)

v̂γ+1 v

)

x
=
(ux

v̂

)

x

(2.16)

on x > 0, with full Dirichlet conditions (v, u)|x=0 = (0, 0).

2.4.2. Outflow case Letting Ũ := (ṽ, ũ)T , Û := (v̂, û)T , and denoting by L the
operator associated with the linearization about boundary-layer (v̂, û),

L := −∂x A(x) + ∂x B(x)∂x , (2.17)

where

A(x) =
(

1 −1
−h(v̂)/v̂γ+1 1

)
, B(x) =

(
0 0
0 v̂−1

)
, (2.18)

we have Ũt − LŨ = ṽ0(t)
v0

Û ′(x), with associated eigenvalue equation

λŨ − LŨ = ṽ(0, λ)

v0
Û ′(x), (2.19)

where Û ′ = (v̂′, û′).
To eliminate the nonstandard inhomogeneous term on the right-hand side of

(2.19), we introduce a good unknown (see also [2,6,11,14])

U := Ũ − λ−1 ṽ(0, λ)

v0
Û ′(x). (2.20)

Since LÛ ′ = 0 by differentiation of the boundary-layer equation, the system
expressed in the good unknown becomes simply

λU − LU = 0 in x < 0, (2.21)

or, equivalently, (2.16) with boundary conditions

U |x=0 = ṽ(0, λ)

v0
(1 − λ−1v̂′(0), −λ−1û′(0))T ,

lim
x→+∞ U = 0.

(2.22)

Solving for u|x=0 in terms of v|x=0 and recalling that v̂′ = û′ by (2.12), we obtain
finally

u|x=0 = α(λ)v|x=0, α(λ) := −v̂′(0)

λ − v̂′(0)
. (2.23)

Remark 2.1. Problems (2.19) and (2.21)–(2.16) are evidently equivalent for all
λ �= 0, but are not equivalent for λ = 0 (for which the change of coordinates to
good unknown becomes singular). For, U = Û ′ by inspection is a solution of (2.21),
but is not a solution of (2.19). That is, we have introduced by this transformation
a spurious eigenvalue at λ = 0, which we shall have to account for later.
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2.5. Preliminary estimates

Proposition 2.1. ([3]) For each γ � 1, 0 < v+ � 1/12 < v0 < 1, (2.12) has a
unique (up to translation) monotone decreasing solution v̂ decaying to endstates
v± with a uniform exponential rate for v+ uniformly bounded away from v− = 1.
In particular, for 0 < v+ � 1/12,

|v̂(x) − v+| � Ce− 3(x−δ)
4 x � δ, (2.24a)

|v̂(x) − v−| � Ce
(x−δ)

2 x � δ, (2.24b)

where δ is defined by v̂(δ) = (v− + v+)/2.

Proof. Existence and monotonicity follow trivially by the fact that (2.12) is a scalar
first-order ODE with convex right-hand side. Exponential convergence as x → +∞
follows by H(v, v+) = (v − v+)

(
v −

(
1−v+
1−v

γ
+

)(
1−( v+

v

)γ

1−( v+
v

)

))
, whence v − γ �

H(v,v+)
v−v+ � v−(1−v+) by 1 � 1−xγ

1−x � γ for 0 � x � 1. Exponential convergence
as x → −∞ follows by a similar, but more straightforward calculation, where, in
the centered coordinate x̃ := x − δ, the constants C > 0 are uniform with respect
to v+, v0. See [3] for details. 	


The following estimates are established in Appendices A and B.

Proposition 2.2. Nonstable eigenvalues λ of (2.16), that is, eigenvalues with non-
negative real part, are confined for any 0 < v+ � 1 to the region

Λ :=
{
λ : �e(λ) + |�m(λ)| � 1

2

(
2
√

γ + 1
)2
}

(2.25)

for the inflow case, and to the region

Λ :=
{

λ : �e(λ) + |�m(λ)| � max

{
3
√

2

2
, 3γ + 3

8

}}

(2.26)

for the outflow case.

2.6. Evans function formulation

Setting w := u′
v̂

+ h(v̂)

v̂γ+1 v − u, we may express (2.16) as a first-order system

W ′ = A(x, λ)W, (2.27)

where

A(x, λ) =
⎛

⎝
0 λ λ

0 0 λ

v̂ v̂ f (v̂) − λ

⎞

⎠ , W =
⎛

⎝
w

u − v

v

⎞

⎠ , ′ = d

dx
, (2.28)
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where

f (v̂) = v̂ − v̂−γ h(v̂) = 2v̂ − a(γ − 1)v̂−γ − (a + 1) (2.29)

with h as in (2.15) and a as in (2.13), or, equivalently,

f (v̂) = 2v̂ − (γ − 1)

(
1 − v+
1 − v

γ
+

)
(v+

v̂

)γ −
(

1 − v+
1 − v

γ
+

)

v
γ
+ − 1. (2.30)

Remark 2.2. The coefficient matrix A may be recognized as a rescaled version of
the coefficient matrix A appearing in the shock case [3,12], with

A =
⎛

⎝
1 0 0
0 1 0
0 0 λ

⎞

⎠ A

⎛

⎝
1 0 0
0 1 0
0 0 1/λ

⎞

⎠ .

The choice of variables (w, u −v, v)T may be recognized as the modified flux form
of [23], adapted to the hyperbolic–parabolic case.

Eigenvalues of (2.16) correspond to nontrivial solutions W for which the boun-
dary conditions W (±∞) = 0 are satisfied. Because A(x, λ) as a function of v̂ is
asymptotically constant in x , the behavior near x = ±∞ of solutions of (2.28) is
governed by the limiting constant-coefficient systems

W ′ = A±(λ)W, A±(λ) := A(±∞, λ), (2.31)

from which we readily find on the (nonstable) domain �λ � 0, λ �= 0 of interest
that there is a one-dimensional unstable manifold W −

1 (x) of solutions decaying at
x = −∞ and a two-dimensional stable manifold W +

2 (x) ∧ W +
3 (x) of solutions

decaying at x = +∞, analytic in λ, with asymptotic behavior

W ±
j (x, λ) ∼ eµ±(λ)x V ±

j (λ) (2.32)

as x → ±∞, where µ±(λ) and V ±
j (λ) are eigenvalues and associated analyti-

cally chosen eigenvectors of the limiting coefficient matrices A±(λ). A standard
choice of eigenvectors V ±

j [4,5,8,13], uniquely specifying W ±
j (up to constant

factor) is obtained by Kato’s ODE [15], a linear, analytic ODE whose solution can
be alternatively characterized by the property that there exist corresponding left
eigenvectors Ṽ ±

j such that

(Ṽ j · Vj )
± ≡ constant, (Ṽ j · V̇ j )

± ≡ 0, (2.33)

where “ ˙” denotes d/dλ; for further discussion, see [8,13,15].
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2.6.1. Inflow case In the inflow case, 0 � x � +∞, we define the Evans function
D as the analytic function

Din(λ) := det(W 0
1 , W +

2 , W +
3 )|x=0, (2.34)

where W +
j are as defined above, and W 0

1 is a solution satisfying the boundary
conditions (v, u) = (0, 0) at x = 0, specifically,

W 0
1 |x=0 = (1, 0, 0)T . (2.35)

With this definition, eigenvalues of L correspond to zeroes of D both in location
and multiplicity; moreover, the Evans function extends analytically to λ = 0, that
is, to all of �λ � 0. See [1,8,17,28] for further details.

Equivalently, following [3,22], we may express the Evans function as

Din(λ) =
(

W̃ +
1 · W 0

1

)

|x=0
, (2.36)

where W̃ +
1 (x) spans the one-dimensional unstable manifold of solutions decaying

at x = +∞ (necessarily orthogonal to the span of W +
2 (x) and W +

3 (x)) of the
adjoint eigenvalue ODE

W̃ ′ = −A(x, λ)∗W̃ . (2.37)

The simpler representation (2.36) is the one that we shall use here.

2.6.2. Outflow case In the outflow case, −∞ � x � 0, we define the Evans
function as

Dout(λ) := det(W −
1 , W 0

2 , W 0
3 )|x=0, (2.38)

where W −
1 is as defined above, and W 0

j is a basis of solutions of (2.27) satisfying
the boundary conditions (2.23), specifically,

W 0
2 |x=0 = (1, 0, 0)T , W 0

3 |x=0 =
(

0,− λ

λ − v̂′(0)
, 1

)T

, (2.39)

or, equivalently, as

Dout(λ) =
(

W̃ 0
1 · W −

1

)

|x=0
, (2.40)

where

W̃ 0
1 =

(
0,−1,− λ̄

λ̄ − v̂′(0)

)T

(2.41)

is the solution of the adjoint eigenvalue ODE dual to W 0
2 and W 0

3 .

Remark 2.3. As discussed in Remark 2.1, Dout has a spurious zero at λ = 0
introduced by the coordinate change to a good unknown.



Stability of Boundary Layers 549

3. Main results

We can now state precisely our main results.

3.1. The strong layer limit

Taking a formal limit as v+ → 0 of the rescaled equations (2.8) and recalling
that a ∼ v

γ
+, we obtain a limiting evolution equation

vt + vx − ux = 0,

ut + ux =
(ux

v

)

x

(3.1)

corresponding to a pressureless gas, or γ = 0.
The associated limiting profile equation v′ = v(v − 1) has explicit solution

v̂0(x) = 1 − tanh
( x−δ

2

)

2
, (3.2)

v̂0(0) = 1−tanh(−δ/2)
2 = v0; the limiting eigenvalue system is

W ′ = A0(x, λ)W, A0(x, λ) =
⎛

⎝
0 λ λ

0 0 λ

v̂0 v̂0 f 0(v̂0) − λ

⎞

⎠ , (3.3)

where f 0(v̂0) = 2v̂0 − 1 = − tanh
( x−δ

2

)
.

Convergence of the profile and eigenvalue equations is uniform on any interval
v̂0 � ε > 0, or, equivalently, x − δ � L , for L any positive constant, where the
sequence of coefficient matrices is therefore a regular perturbation of its limit.
Following [12], we call x � L + δ the regular region. For v̂0 → 0 on the other
hand, or x → ∞, the limit is less well-behaved, as may be seen by the fact that
∂ f/∂v̂ ∼ v̂−1 as v̂ → v+, a consequence of the appearance of

( v+
v̂

)
in the expression

(2.30) for f . Similarly, A(x, λ) does not converge to A+(λ) as x → +∞ with
uniform exponential rate independent of v+, γ , but rather as C v̂−1e−x/2. As in the
shock case, this makes the treatment of x � L + δ problematic. Following [12] we
call x � L + δ the singular region.

To put things in another way, the effects of pressure are not lost as v+ → 0, but
rather pushed to x = +∞, where they must be studied by a careful boundary-layer
analysis. (Note: this is not a boundary-layer in the same sense as the background
solution, nor is it a singular perturbation in the usual sense, at least as we have
framed the problem here).

Remark 3.1. A significant difference from the shock case of [12] is the appearance
of the second parameter v0 that survives in the v+ → 0 limit.
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3.1.1. Inflow case Observe that the limiting coefficient matrix

A0+(λ) := A0(+∞, λ) =
⎛

⎝
0 λ λ

0 0 λ

0 0 −1 − λ

⎞

⎠ , (3.4)

is nonhyperbolic (in ODE sense) for all λ, having eigenvalues 0, 0,−1 − λ; in
particular, the stable manifold drops to dimension one in the limit v+ → 0, and so
the prescription of an associated Evans function is underdetermined.

This difficulty is resolved by a careful boundary-layer analysis in [12], deter-
mining a special slow stable mode

V2 := (1, 0, 0)T

augmenting the fast stable mode

V3 := (λ/µ)(λ/µ + 1), λ/µ, 1)T

associated with the single stable eigenvalue µ = −1 − λ of A0+. This determines
a limiting Evans function D0

in(λ) by the prescription (2.34), (2.32) of Section 2.6,
or alternatively via (2.36) as

D0
in(λ) =

(
W̃ 0+

1 · W 00
1

)

|x=0
(3.5)

with W̃ 0+
1 defined analogously as a solution of the adjoint limiting system lying

asymptotically at x = +∞ in direction

Ṽ1 := (0,−1, λ̄/µ̄)T (3.6)

orthogonal to the span of V2 and V3, where¯denotes complex conjugate, and W 00
1

defined as the solution of the limiting eigenvalue equations satisfying boundary
condition (2.35), that is, (W 00

1 )|x=0 = (1, 0, 0)T .

3.1.2. Outflow case We have no such difficulties in the outflow case, since
A0− = A0(−∞) remains uniformly hyperbolic, and we may define a limiting Evans
function D0

out directly by (2.38), (2.32), (2.41), at least so long as v0 remains boun-
ded from zero. (As perhaps already hinted by Remark 3.1, there are complications
associated with the double limit (v0, v+) → (0, 0)).

3.2. Analytical results

With the above definitions, we have the following main theorems characterizing
the strong-layer limit v+ → 0 as well as the limits v0 → 0, 1.

Theorem 3.1. For v0 � η > 0 and λ in any compact subset of �λ � 0, Din(λ)

and Dout(λ) converge uniformly to D0
in(λ) and D0

out(λ) as v+ → 0.
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Theorem 3.2. For λ in any compact subset of �λ � 0 and v+ bounded from 1,
Din(λ), appropriately renormalized by a nonvanishing analytic factor, converges
uniformly as v0 → 1 to the Evans function for the (unintegrated) eigenvalue
equations of the associated viscous shock wave connecting v− = 1 to v+; likewise,
Dout(λ), appropriately renormalized, converges uniformly as v0 → 0 to the same
limit for λ uniformly bounded away from zero.

By similar computations, we obtain also the following direct result.

Theorem 3.3. Inflow boundary layers are stable for v0 sufficiently small.

We have also the following parity information, obtained by stability-index com-
putations as in [26].2

Lemma 3.1. (Stability index) For any γ � 1, v0, and v+, Din(0) �= 0, hence
the number of unstable roots of Din is even; on the other hand D0

in(0) = 0 and
limv0→0 D0

in(λ) ≡ 0. Likewise, (D0
in)

′(0), D′
out(0) �= 0, (D0

out)
′(0) �= 0, hence the

number of nonzero unstable roots of D0
in, Dout, D0

out is even.

Finally, we have the following auxiliary results established by energy estimates
in Appendices C, D, E, and F.

Proposition 3.1. The limiting Evans function D0
in is nonzero for λ �= 0 on �eλ � 0,

for all 1 > v0 > 0. The limiting Evans function D0
out is nonzero for λ �= 0 on

�eλ � 0, for 1 > v0 > v∗, where v∗ ≈ 0.0899 is determined by the functional

equation v∗ = e−2/(1−v∗)2
.

Proposition 3.2. Compressive outflow boundary layers are stable for v+ suffi-
ciently close to 1.

Proposition 3.3. ([19]) Expansive inflow boundary layers are stable for all para-
meter values.

Collecting information, we have the following analytical stability results.

Corollary 3.1. For v0 or v+ sufficiently small, compressive inflow boundary layers
are stable. For v0 sufficiently small, v+ sufficiently close to 1, or v0 > v∗ ≈ 0.0899
and v+ sufficiently small, compressive outflow layers are stable. Expansive inflow
boundary layers are stable for all parameter values.

Stability of inflow boundary layers in the characteristic limit v+ → 1 is not
treated here, but should be treatable analytically by the asymptotic ODE methods
used in [7,23] to study the small-amplitude (characteristic) shock limit. This would
be an interesting direction for future investigation. The characteristic limit is not
accessible numerically, since the exponential decay rate of the background profile
decays to zero as |1 − v+|, so that the numerical domain of integration needed to
resolve the eigenvalue ODE becomes infinitely large as v+ → 1.

2 Indeed, these may be deduced from the results of [26], taking account of the difference
between Eulerian and Lagrangian coordinates.
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Remark 3.2. Stability in the noncharacteristic weak layer limit v0 → v+ (respec-
tively, 1) in the inflow (outflow) case, for v+ bounded away from the strong and
characteristic limits 0 and 1 has already been established in [10,24]. Indeed, it is
shown in [10] that the Evans function converges to that for a constant solution, and
this is a regular perturbation.

Remark 3.3. Stability of D0
in, D0

out may also be determined numerically, in parti-
cular in the region v0 � v∗ not covered by Proposition 3.1.

3.3. Numerical results

The asymptotic results of Section 3.2 reduce the problem of (uniformly noncha-
racteristic, v+ bounded away from v− = 1) boundary layer stability to a bounded
parameter range on which the Evans function may be efficiently computed nume-
rically in a way that is uniformly well-conditioned; see [5]. Specifically, we may
map a semicircle

∂
({�λ � 0} ∩ {|λ| � 10})

enclosing Λ for γ ∈ [1, 3] by D0
in, D0

out, Din, Dout and compute the winding
number of its image about the origin to determine the number of zeroes of the
various Evans functions within the semicircle, and thus within Λ. For details of the
numerical algorithm, see [3,5].

In all cases, we obtain results consistent with stability; that is, a winding number
of zero or one, depending on the situation. In the case of a single nonzero root, we
know from our limiting analysis that this root may be quite near λ = 0, making
delicate the direct determination of its stability; however, in this case we do not
attempt to determine the stability numerically, but rely on the analytically computed
stability index to conclude stability. See Section 6 for further details.

3.4. Conclusions

As in the shock case [3,12], our results indicate unconditional stability of uni-
formly noncharacteristic boundary-layers for isentropic Navier–Stokes equations
(and, for outflow layer, in the characteristic limit as well), despite the additional
complexity of the boundary-layer case. However, two additional comments are in
order, perhaps related. First, we point out that the apparent symmetry of Theorem
3.2 in the v0 → 0 outflow and v0 → 1 inflow limits is somewhat misleading. For,
the limiting, shock Evans function possesses a single zero at λ = 0, indicating that
stability of inflow boundary layers is somewhat delicate as v0 → 1: specifically,
they have an eigenvalue near zero, which, though stable, is (since vanishingly small
in the shock limit) not very stable. Likewise, the limiting Evans function D0

in as
v+ → 0 possesses a zero at λ = 0, with the same conclusions.

In contrast, the Evans functions of outflow boundary layers possess a spurious
zero at λ = 0, so that convergence to the shock or strong-layer limit in this case
implies the absence of any eigenvalues near zero, or uniform stability as v+ → 0.
In this sense, strong outflow boundary layers appear to be more stable than inflow
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boundary layers. One may make interesting comparisons to physical attempts to
stabilize laminar flow along an air- or hydro-foil by suction (outflow) along the
boundary. See, for example, the interesting treatise [25].

Second, we point out the result of instability obtained in [26] for inflow boundary-
layers of the full (nonisentropic) ideal-gas equations for appropriate ratio of the
coefficients of viscosity and heat conduction. This suggests that the small eigenva-
lues of the strong inflow-layer limit may in some cases perturb to the unstable side.
It would be very interesting to make these connections more precise, as we hope
to do in future work.

4. Boundary-layer analysis

Since the structure of (2.28) is essentially the same as that of the shock case,
we may follow exactly the treatment in [12] analyzing the flow of (2.28) in the
singular region x → +∞. As we shall need the details for further computations
(specifically, the proof of Theorem 3.3), we repeat the analysis here in full.

Our starting point is the observation that

A(x, λ) =
⎛

⎝
0 λ λ

0 0 λ

v̂ v̂ f (v̂) − λ

⎞

⎠ (4.1)

is approximately block upper-triangular for v̂ sufficiently small, with diagonal

blocks

(
0 λ

0 0

)
and

(
f (v̂)− λ

)
that are uniformly spectrally separated on �eλ � 0,

as follows by
f (v̂) � v̂ − 1 � −3/4. (4.2)

We exploit this structure by a judicious coordinate change converting (2.28) to a
system in exact upper triangular form, for which the decoupled slow upper left-hand
2×2 block undergoes a regular perturbation that can be analyzed by standard tools
introduced in [23]. Meanwhile, the fast, lower right-hand 1 × 1 block, since scalar,
may be solved exactly.

4.1. Preliminary transformation

We first block upper-triangularize by a static (constant) coordinate transforma-
tion the limiting matrix

A+ = A(+∞, λ) =
⎛

⎝
0 λ λ

0 0 λ

v+ v+ f (v+) − λ

⎞

⎠ (4.3)

at x = +∞ using special block lower-triangular transformations

R+ :=
(

I 0
v+θ+ 1

)
, L+ := R−1+ =

(
I 0

−v+θ+ 1

)
, (4.4)

where I denotes the 2 × 2 identity matrix and θ+ ∈ C
1×2 is a 1 × 2 row vector.
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Lemma 4.1. On any compact subset of �eλ � 0, for each v+ > 0 sufficiently
small, there exists a unique θ+ = θ+(v+, λ) such that Â+ := L+ A+ R+ is upper
block-triangular,

Â+ =
(

λ(J + v+11θ+) λ11
0 f (v+) − λ − λv+θ+11

)
, (4.5)

where J =
(

0 1
0 0

)
and 11 =

(
1
1

)
, satisfying a uniform bound

|θ+| � C. (4.6)

Proof. Setting the 2 − 1 block of Â+ to zero, we obtain the matrix equation

θ+(aI − λJ ) = −11T + λv+θ+11θ+,

where a = f (v+) − λ, or, equivalently, the fixed-point equation

θ+ =
(
−11T + λv+θ+11θ+

)
(aI − λJ )−1. (4.7)

By det(aI −λJ ) = a2 �= 0, (aI −λJ )−1 is uniformly bounded on compact subsets
of �eλ � 0 (indeed, it is uniformly bounded on all of �eλ � 0), whence, for |λ|
bounded and v+ sufficiently small, there exists a unique solution by the Contraction
Mapping Theorem, which, moreover, satisfies (4.6). 	


4.2. Dynamic triangularization

Defining now Y := L+W and

Â(x, λ) = L+ A(x, λ)R+

=
⎛

⎝ λ(J + v+11θ+) λ11
(v̂ − v+)11T − v+( f (v̂) − f (v+))θ+ f (v̂) − λ − λv+θ+11

⎞

⎠ ,

we have converted (2.28) to an asymptotically block upper-triangular system

Y ′ = Â(x, λ)Y (4.8)

with Â+ = Â(+∞, λ) as in (4.5). Our next step is to choose a dynamic transfor-
mation of the same form

R̃ :=
(

I 0
Θ̃ 1

)
, L̃ := R̃−1 =

(
I 0

−Θ̃ 1

)
, (4.9)

converting (4.8) to an exact block upper-triangular system, with Θ̃ uniformly expo-
nentially decaying at x = +∞: that is, a regular perturbation of the identity.
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Lemma 4.2. On any compact subset of �eλ � 0, for L sufficiently large and
each v+ > 0 sufficiently small, there exists a unique Θ̃ = Θ̃(x, λ, v+) such that
Ã := L̃ Â(x, λ)R̃ + L̃ ′ R̃ is upper block-triangular,

Ã =
(

λ(J + v+11θ+ + 11Θ̃) λ11
0 f (v̂) − λ − λv+θ+11 − λΘ̃11

)
, (4.10)

and Θ̃(L) = 0, satisfying a uniform bound

|Θ̃(x, λ, v+)| � Ce−ηx , η > 0, x � L , (4.11)

independent of the choice of L, v+.

Proof. Setting the 2 − 1 block of Ã to zero and computing

L̃ ′ R̃ =
(

0 0

−Θ̃ ′ 0

)(
I 0

Θ̃ I

)

=
(

0 0

−Θ̃ ′ 0,

)

we obtain the matrix equation

Θ̃ ′ − Θ̃ (aI − λ(J + v+11θ+)) = ζ + λΘ̃11Θ̃, (4.12)

where a(x) := f (v̂) − λ − λv+θ+11 and the forcing term

ζ := −(v̂ − v+)11T + v+( f (v̂) − f (v+))θ+

by derivative estimate d f/d v̂ � C v̂−1 together with the Mean Value Theorem is
uniformly exponentially decaying:

|ζ | � C |v̂ − v+| � C2e−ηx , η > 0. (4.13)

Initializing Θ̃(L) = 0, we obtain by Duhamel’s Principle/Variation of Constants
the representation (suppressing the argument λ)

Θ̃(x) =
∫ x

L
Sy→x (ζ + λΘ̃11Θ̃)(y) dy, (4.14)

where Sy→x is the solution operator for the homogeneous equation

Θ̃ ′ − Θ̃ (aI − λ(J + v+11θ+)) = 0,

or, explicitly,

Sy→x = e
∫ x

y a(y) dye−λ(J+v+11θ+)(x−y).

For |λ|bounded andv+ sufficiently small, we have by matrix perturbation theory
that the eigenvalues of −λ(J +v+11θ+) are small and the entries are bounded, hence

|e−λ(J+v+11θ+)z | � Ceεz

for z � 0. Recalling the uniform spectral gap �e(a) = f (v̂) − �eλ � −1/2 for
�eλ � 0, we thus have

|Sy→x | � Ce−η(x−y) (4.15)
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for some C , η > 0. Combining (4.13) and (4.15), we obtain
∣
∣
∣
∣

∫ x

L
Sy→xζ(y) dy

∣
∣
∣
∣ �

∫ x

L
C2e−η(x−y)e−(η/2)y dy

= C3e−(η/2)x . (4.16)

Defining Θ̃(x) =: θ̃ (x)e−(η/2)x and recalling (4.14) we thus have

θ̃ (x) = f + e(η/2)x
∫ x

L
Sy→x e−ηyλθ̃11θ̃ (y) dy, (4.17)

where f := e(η/2)x
∫ x

L Sy→xζ(y) dy is uniformly bounded, | f | � C3, and
e(η/2)x

∫ x
L Sy→x e−ηyλθ̃11θ̃ (y) dy is contractive with arbitrarily small contraction

constant ε > 0 in L∞[L ,+∞) for |θ̃ | � 2C3 for L sufficiently large, by the
calculation

∣
∣
∣
∣e

(η/2)x
∫ x

L
Sy→x e−ηyλθ̃111θ̃1(y) − e(η/2)x

∫ x

L
Sy→x e−ηyλθ̃211θ̃2(y)

∣
∣
∣
∣

�
∣
∣
∣
∣e

(η/2)x
∫ x

L
Ce−η(x−y)e−ηy dy

∣
∣
∣
∣ |λ|‖θ̃1 − θ̃2‖∞ max

j
‖θ̃ j‖∞

� e−(η/2)L
∣
∣
∣
∣

∫ x

L
Ce−(η/2)(x−y) dy

∣
∣
∣
∣ |λ|‖θ̃1 − θ̃2‖∞ max

j
‖θ̃ j‖∞

= C3e−(η/2)L |λ|‖θ̃1 − θ̃2‖∞ max
j

‖θ̃ j‖∞.

It follows by the Contraction Mapping Principle that there exists a unique solution
θ̃ of fixed point equation (4.17) with |θ̃ (x)| � 2C3 for x � L , or, equivalently
(redefining the unspecified constant η), (4.11). 	


4.3. Fast/slow dynamics

Making now the further change of coordinates

Z = L̃Y

and computing

(L̃Y )′ = L̃Y ′ + L̃ ′Y = (L̃ A+ + L̃ ′)Y,

= (L̃ A+ R̃ + L̃ ′ R̃)Z ,

we find that we have converted (4.8) to a block-triangular system

Z ′ = ÃZ =
(

λ(J + v+11θ+ + 11Θ̃) λ11
0 f (v̂) − λ − λv+θ+11 − λΘ̃11

)
Z ,

(4.18)
related to the original eigenvalue system (2.28) by

W = L Z , R := R+ R =
(

I 0

Θ 1

)

, L := R−1 =
(

I 0

−Θ 1

)

, (4.19)
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where

Θ = Θ̃ + v+θ+. (4.20)

Since it is triangular, (4.18) may be solved completely if we can solve the
component systems associated with its diagonal blocks. The fast system

z′ = (
f (v̂) − λ − λv+θ+11 − λΘ̃11

)
z

associated to the lower right-hand block features rapidly varying coefficients.
However, because it is scalar, it can be solved explicitly by exponentiation.

The slow system

z′ = λ(J + v+11θ+ + 11Θ̃)z (4.21)

associated with the upper left-hand block, on the other hand, by (4.11), is an expo-
nentially decaying perturbation of a constant-coefficient system

z′ = λ(J + v+11θ+)z (4.22)

that can be explicitly solved by exponentiation, and thus can be well-estimated
by comparison with (4.22). A rigorous version of this statement is given by the
conjugation lemma of [20]:

Proposition 4.1. ([20]) Let M(x, λ) = M+(λ)+Θ(x, λ), with M+ continuous in λ

and |Θ(x, λ)| � Ce−ηx , for λ in some compact set Λ. Then, there exists a globally
invertible matrix P(x, λ) = I + Q(x, λ) such that the coordinate change z = Pv

converts the variable-coefficient ODE z′ = M(x, λ)z to a constant-coefficient
equation

v′ = M+(λ)v,

satisfying for any L, 0 < η̂ < η a uniform bound

|Q(x, λ)| � C(L , η̂, η, max |(M+)i j |, dim M+)e−η̂x for x � L. (4.23)

Proof. See [20,28], or Appendix C, [12]. 	

By Proposition 4.1, the solution operator for (4.21) is given by

P(y, λ)eλ(J+v+11θ+(λ,v+))(x−y) P(x, λ)−1, (4.24)

where P is a uniformly small perturbation of the identity for x � L and L > 0
sufficiently large.

5. Proof of the main theorems

With these preparations, we turn now to the proofs of the main theorems.
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5.1. Boundary estimate

We begin by recalling the following estimates established in [12] on W̃ +
1 (L+δ),

that is, the value of the dual mode W̃ +
1 appearing in (2.36) at the boundary x = L+δ

between regular and singular regions. For completeness, and because we shall need
the details in further computations, we repeat the proof in full.

Lemma 5.1. ([12]) For λ on any compact subset of �eλ � 0, and L > 0 sufficiently
large, with W̃ +

1 normalized as in [3,8,23],

|W̃ +
1 (L + δ) − Ṽ1| � Ce−ηL (5.1)

as v+ → 0, uniformly in λ, where C, η > 0 are independent of L and

Ṽ1 := (0,−1, λ̄/µ̄)T

is the limiting direction vector (3.6) appearing in the definition of D0
in.

Corollary 5.1. ([12]) Under the hypotheses of Lemma 5.1,

|W̃ 0+
1 (L + δ) − Ṽ1| � Ce−ηL (5.2)

and
|W̃ +

1 (L + δ) − W̃ 0+
1 (L + δ)| � Ce−ηL (5.3)

as v+ → 0, uniformly in λ, where C, η > 0 are independent of L and W̃ 0+
1 is the

solution of the limiting adjoint eigenvalue system appearing in definition (3.5)
of D0.

Proof of Lemma 5.1. First, make the independent coordinate change x → x −
δ normalizing the background wave to match the shock-wave case. Making the
dependent coordinate-change

Z̃ := R∗W̃ , (5.4)

R as in (4.19), reduces the adjoint equation W̃ ′ = −A∗W̃ to block lower-triangular
form,

Z̃ ′ = − Ã∗ Z̃

=
(−λ̄(J T + v+11θ+ + 11Θ̃)∗ 0

−λ̄11T − f (v̂) + λ̄ + λ̄(v+θ+11 + Θ̃11)∗
)

Z

(5.5)
with “¯” denoting the complex conjugate.

Denoting by Ṽ +
1 a suitably normalized element of the one-dimensional (slow)

stable subspace of − Ã∗, we find readily (see [12] for further discussion) that,
without loss of generality,

Ṽ +
1 → (0, 1, λ̄(γ + λ̄)−1)T (5.6)

as v+ → 0, while the associated eigenvalue µ̃+
1 → 0, uniformly for λ on an

compact subset of �eλ � 0. The dual mode Z̃+
1 = R∗W̃ +

1 is uniquely determined
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by the property that it is asymptotic as x → +∞ to the corresponding constant-
coefficient solution eµ̃+

1 x Ṽ +
1 (the standard normalization of [3,8,23]).

By lower block-triangular form (5.5), the equations for the slow variable z̃T :=
(Z̃1, Z̃2) decouples as a slow system

z̃′ = − (λ(J + v+11θ+ + 11Θ̃)
)∗

z̃ (5.7)

dual to (4.21), with solution operator

P∗(x, λ)−1e−λ̄(J+v+11θ+)∗)(x−y) P(y, λ)∗ (5.8)

dual to (4.24), that is (fixing y = L , say), solutions of general form

z̃(λ, x) = P∗(x, λ)−1e−λ̄(J+v+11θ+)∗)(x−y)ṽ, (5.9)

ṽ ∈ C
2 arbitrary.

Denoting by

Z̃+
1 (L) := R∗W̃ +

1 (L),

therefore, the unique (up to constant factor) decaying solution at +∞, and ṽ+
1 :=

((Ṽ +
1 )1, (Ṽ +

1 )2)
T , we thus have evidently

z̃+
1 (x, λ) = P∗(x, λ)−1e−λ̄(J+v+11θ+)∗)x ṽ+

1 ,

which, as v+ → 0, is uniformly bounded by

|z̃+
1 (x, λ)| � Ceεx (5.10)

for arbitrarily small ε > 0 and, by (5.6), converges for x less than or equal to X − δ

for any fixed X simply to

lim
v+→0

z̃+
1 (x, λ) = P∗(x, λ)−1(0, 1)T . (5.11)

Defining by q̃ := (Z̃+
1 )3 the fast coordinate of Z̃+

1 , we have, by (5.5),

q̃ ′ + (
f (v̂) − λ̄ − (λv+θ+11 + λΘ̃11)∗

)
q̃ = λ̄11T z̃+

1 ,

whence, by Duhamel’s principle, any decaying solution is given by

q̃(x, λ) =
∫ +∞

x
e
∫ x

y a(z,λ,v+) dz
λ̄11T z+

1 (y) dy,

where

a(y, λ, v+) := − ( f (v̂) − λ̄ − (λv+θ+11 + λΘ̃11)∗
)
.

Recalling, for �eλ � 0, that �ea � 1/2, combining (5.10) and (5.11), and noting
that a converges uniformly on y � Y as v+ → 0 for any Y > 0 to

a0(y, λ) := − f0(v̂) + λ̄ + (λΘ̃011)∗

= (1 + λ̄) + O(e−ηy)
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we obtain by the Lebesgue Dominated Convergence Theorem that

q̃(L , λ) →
∫ +∞

L
e
∫ L

y a0(z,λ) dz
λ̄11T (0, 1)T dy

= λ̄

∫ +∞

L
e(1+λ̄)(L−y)+∫ L

y O(e−ηz) dz dy

= λ̄(1 + λ̄)−1(1 + O(e−ηL)).

Recalling, finally, (5.11), and the fact that

|P − I d|(L , λ), |R − I d|(L , λ) � Ce−ηL

for v+ sufficiently small, we obtain (5.1) as claimed. 	

Proof of Corollary 5.1. Again, make the coordinate change x → x−δ normalizing
the background wave to match the shock-wave case. Applying Proposition 4.1 to
the limiting adjoint system

W̃ ′ = −(A0)∗W̃ =

⎛

⎜
⎜
⎝

0 0 0

−λ̄ 0 0

−λ̄ −λ̄ 1 + λ̄

⎞

⎟
⎟
⎠ W̃ + O(e−ηx )W̃ ,

we find that, up to an I d + O(e−ηx ) coordinate change, W̃ 0+
1 (x) is given by the

exact solution W̃ ≡ Ṽ1 of the limiting, constant-coefficient system

W̃ ′ = −(A0+)∗W̃ =

⎛

⎜
⎜
⎝

0 0 0

−λ̄ 0 0

−λ̄ −λ̄ 1 + λ̄

⎞

⎟
⎟
⎠ W̃ .

This yields immediately (5.2), which, together with (5.1), yields (5.3). 	


5.2. Convergence to D0

The rest of our analysis is standard.

Lemma 5.2. On x � L − δ for any fixed L > 0, there exists a coordinate-change
W = T Z conjugating (2.28) to the limiting equations (3.3), T = T (x, λ, v+),
satisfying a uniform bound

|T − I d| � C(L)v+ (5.12)

for all v+ > 0 sufficiently small.

Proof. Make the coordinate change x → x−δ normalizing the background profile.
For x ∈ (−∞, 0], this is a consequence of the Convergence Lemma of [23], a
variation on Proposition 4.1, together with uniform convergence of the profile and
eigenvalue equations. For x ∈ [0, L], it is essentially continuous dependence; more
precisely, observing that |A − A0| � C1(L)v+ for x ∈ [0, L], setting S := T − I d,
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and writing the homological equation expressing conjugacy of (2.28) and (3.3), we
obtain

S′ − (AS − S A0) = (A − A0),

which, considered as an inhomogeneous linear matrix-valued equation, yields an
exponential growth bound

S(x) � eCx (S(0) + C−1C1(L)v+)

for some C > 0, giving the result. 	

Proof of Theorem 3.1: inflow case. Make the coordinate change x → x−δ norma-
lizing the background profile. Lemma 5.2, together with convergence as v+ → 0 of
the unstable subspace of A− to the unstable subspace of A0− at the same rate O(v+)

(as follows by spectral separation of the unstable eigenvalue of A0 and standard
matrix perturbation theory) yields

|W 0
1 (0, λ) − W 00

1 (0, λ)| � C(L)v+. (5.13)

Likewise, Lemma 5.2 gives

|W̃ +
1 (0, λ) − W̃ 0+

1 (0, λ)| � C(L)v+|W̃ +
1 (0, λ)|

+|SL→0
0 ||W̃ +

1 (L , λ) − W̃ 0+
1 (L , λ)|, (5.14)

where Sy→x
0 denotes the solution operator of the limiting adjoint eigenvalue equa-

tion W̃ ′ = −(A0+)∗W̃ . Applying Proposition 4.1 to the limiting system, we obtain

|SL→0
0 | � C2|e−A0+L | � C2L|λ|

by direct computation of e−A0+L , where C2 is independent of L > 0. Together with
(5.3) and (5.14), this gives

|W̃ +
1 (0, λ) − W̃ 0+

1 (0, λ)| � C(L)v+|W̃ +
1 (0, λ)| + L|λ|C2Ce−ηL ,

hence, for |λ| bounded and v+ sufficiently small relative to C(L),

|W̃ +
1 (0, λ) − W̃ 0+

1 (0, λ)| � C3(L)v+|W̃ 0+
1 (0, λ)| + LC4e−ηL

� C5(L)v+ + LC4e−ηL . (5.15)

Taking first L → ∞ and then v+ → 0, we obtain therefore convergence of
W 0

1 (0, λ) and W̃ +
1 (0, λ) to W 00

1 (0, λ) and W̃ 0+
1 (0, λ), yielding convergence by

definitions (2.36) and (3.5).
This convergence, however, is between Evans functions with profiles shifted

by δ = δ(v+). This shift changes the initializing asymptotic behavior at +∞ of
W̃ +

1 , modifying the value of the Evans function by a nonvanishing factor e−δµ̃1(λ),
where µ̃1(λ) is the decay rate associated with mode W̃ +

1 ; for similar computations,
see the proof of Theorem 3.2. In particular, the value of D0 is unaffected by a
shift, since µ̃1 ≡ 0. Noting that δ(v+) is uniformly bounded as v+ → 0 (indeed,
it approaches a limit δ0 as v+ → 0, determined by v̂0(δ0) = v−/2 = 1/2, as
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follows by continuous dependence of solutions of ODE), while µ̃1(λ) → 0 uni-
formly on compact subsets of �λ � 0, we thus find that both shifted and unshifted
versions of D(λ) approach D0(λ) as v+ → 0, uniformly on compact subsets of
�λ � 0. 	

Proof of Theorem 3.1: outflow case. Straightforward, following the previous
argument in the regular region only. 	


5.3. Convergence to the shock case

Proof of Theorem 3.2: inflow case. First make the coordinate change x → x − δ

normalizing the background profile location to that of the shock wave case, where
δ → +∞ as v0 → 1. By standard duality properties,

Din = W̃ +
1 · W 0

1 |x=x0

is independent of x0, so we may evaluate at x = 0 as in the shock case. Denote by
W−

1 , W̃+
1 the corresponding modes in the shock case, and

D = W̃+
1 · W−

1 |x=0

the resulting Evans function.
Noting that W̃1+ and W̃ 1+ are asymptotic to the unique stable mode at +∞

of the (same) adjoint eigenvalue equation, but with translated decay rates, we see
immediately that W̃+

1 = W̃ 1+e−δµ̃+
1 . On the other hand, W 0

1 is initialized at x = −δ

(in the new coordinates x̃ = x − δ) as

W 0
1 (−δ) = (1, 0, 0)T ,

whereas W−
1 is the unique unstable mode at −∞ decaying as eµ−

1 x V −
1 , where V −

1
is the unstable right eigenvector of

A− =

⎛

⎜
⎜
⎝

0 λ λ

0 0 λ

1 1 f (1) − λ

⎞

⎟
⎟
⎠ .

Denote by Ṽ −
1 the associated dual unstable left eigenvector and

Π−
1 := V −

1 (Ṽ −
1 )T

the eigenprojection onto the stable vector V −
1 . By direct computation,

Ṽ −
1 = c(λ)(1, 1 + λ/µ−

1 , µ−
1 )T , c(λ) �= 0,

yielding
Π−

1 W 0
1 =: β(λ) = c(λ) �= 0 (5.16)

for �λ � 0, on which �µ−
1 > 0.
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Once we know (5.16), we may finish by a standard argument, concluding by
exponential attraction in the positive x-direction of the unstable mode that other
modes decay exponentially as x → 0, leaving the contribution from β(λ)V −

1 plus
a negligible O(e−ηδ) error, η > 0, from which we may conclude that W−

1 |x=0 ∼
β−1e−δµ−

1 W 0
1 |x=0. Collecting information, we find that

D(λ) = β(λ)−1e−δ(µ̄−
1 +µ̃+

1 )(λ)Din(λ) + O(e−ηδ),

η > 0, yielding the claimed convergence C(λ, δ)Din(λ) → D(λ) as v0 → 1,
δ → +∞, with C(λ, δ) := β(λ)−1e−δ(µ̄−

1 +µ̃+
1 )(λ) �= 0. 	


Proof of Theorem 3.2: outflow case. For λ uniformly bounded from zero, W̃ 0
1 =

(0,−1,−λ̄/(λ̄ − v̂′(0)))T converges uniformly as v0 → 0 to

(0,−1,−1)T ,

whereas the shock Evans function D is initiated by W̃+
1 proportional to

Ṽ+
1 = (0,−1,−1 − λ̄)T

agreeing in the first two coordinates with W̃ 0
1 . By the boundary-layer analysis of

Section 5.1, the backward (that is, decreasing x) evolution of the adjoint eigenvalue
ODE reduces in the asymptotic limit v+ → 0 (forced by v0 → 0) to a decoupled
slow flow

w̃′ =
(

0 0

−λ̄ 0

)

w̃, w̃ ∈ C
2

in the first two coordinates, driving an exponentially slaved fast flow in the third
coordinate. From this, we may conclude that solutions agreeing in the first two
coordinates converge exponentially as x decreases. Performing an appropriate nor-
malization, as in the inflow case just treated, we thus obtain the result. We omit the
details, which follow what has already been done in previous cases. 	


5.4. The stability index

Following [10,26], we note that Din(λ) is real for real λ, and nonvanishing for
real λ sufficiently large, hence sgnDin(+∞) is well-defined and constant on the
entire (connected) parameter range. The number of roots of Din on �λ � 0 is
therefore even or odd depending on the stability index

sgn[Din(0)Din(+∞)].
Similarly, recalling that Dout(0) ≡ 0, we find that the number of roots of Dout on
�λ � 0 is even or odd depending on

sgn[D′
out(0)Dout(+∞)].
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Proof of Lemma 3.1: inflow case. Examining the adjoint equation at λ = 0,

W̃ ′ = −A∗W̃ , −A∗(x, 0) =
⎛

⎜
⎝

0 0 −v̂

0 0 −v̂

0 0 − f (v̂)

⎞

⎟
⎠ ,

− f (v+) > 0, we find by explicit computation that the only solutions that are
bounded as x → +∞ are the constant solutions W̃ ≡ (a, b, 0)T . Taking the limit
Ṽ +

1 (0) as λ → 0+ along the real axis of the unique stable eigenvector of −A∗+(λ),
we find (see, for example, [28]) that it lies in the direction (1, 2 + a+

j , 0)T , where

a+
j > 0 is the positive characteristic speed of the hyperbolic convection matrix
(

1 −1
−h(v+)/v

γ+1
+ 1

)
, that is, Ṽ +

1 = c(v0, v+)(1, 2 + a+
j , 0)T , c(v0, v+) �= 0.

Thus, Din(0) = Ṽ +
1 · (1, 0, 0)T = c̄(v0, v+) �= 0 as claimed. On the other hand,

the same computation carried out for D0
in(0) yields D0

in(0) ≡ 0. (Note: a j ∼
v

−1/2
+ → +∞ as v+ → 0). Similarly, as v0 → 0,

D0
in(λ) → (0,−1, ∗)T · (1, 0, 0)T ≡ 0.

Finally, note Din(0) �= 0 implies that the stability index, since continuously varying
so long as it doesn’t vanish and taking discrete values ±1, must be constant on the
connected set of parameter values. Since inflow boundary layers are known to be
stable on some part of the parameter regime by energy estimates (Theorem 3.3),
we may conclude that the stability index is identically one and therefore there are
an even number of unstable roots for all 1 > v0 � v+ > 0.

To establish that (D0
in)

′(0) �= 0, we compute

D0
in

′(0) = W̃ 0+
1 · (∂λW 00

1 ) + (∂λ̄W̃ 0+
1 ) · W 00

1 . (5.17)

Since W 00
1 ≡ (1, 0, 0) is independent of λ, this reduces to

D0
in

′(0) = ∂λ̄W̃ 0+
1,1 |x=0, (5.18)

so we need only show that the first component of ∂λ̄W̃ 0+
1 is nonzero. Note that

∂λ̄W̃ 0+
1 solves the limiting adjoint variational equations

(∂λ̄W̃ 0+
1 )′(0) + (A0)∗(x, 0)∂λ̄W̃ 0+

1 = b(x) (5.19)

with b(x) := −∂λ̄(A0)∗(x, 0)W̃ 0+
1 (x, 0), W̃ 0+

1 (x, 0) = (0,−1, 0)T ,

(A0)∗(x, 0) =
⎛

⎜
⎝

0 0 v̂0

0 0 v̂0

0 0 f 0(v̂0)

⎞

⎟
⎠ , ∂λ̄(A0)∗(x, 0) =

⎛

⎜
⎝

0 0 0

1 0 0

1 1 −1

⎞

⎟
⎠ .

Thus b(x) = (0, 0, 1)T . By (3.6), and the fact that ∂λ̄µ̃
0+
1 ≡ 0, ∂λ̄W̃ 0+

1 (x) is chosen
so that asymptotically at x = +∞ it lies in the direction of ∂λ̄Ṽ1 = (0, 0, 1). Set
∂λ̄W̃ 0+

1 = (∂λ̄W̃ 0+
1, 1, ∂λ̄W̃ 0+

1, 2, ∂λ̄W̃ 0+
1, 3)

T . Then the third component solves

(∂λ̄W̃ 0+
1, 3)

′ + f 0(v̂0)∂λ̄W̃ 0+
1, 3 = 1,
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where f 0(v̂0) = 2v̂0 − 1. Define Z(x) := e−x∂λ̄W̃ 0+
1, 3(x, 0). Then Z solves

Z ′ + 2v̂0 Z = e−x , Z(+∞) = 0,

which has solution

Z(x) = −
∫ ∞

x
Sy→x

Z e−y dy,

where

Sy→x
Z = e2

∫ y
x v̂0(z) dz

denotes the solution operator of Z ′ + 2v̂0 Z = 0. Integrating Equation (5.19) for
the first component of ∂λ̄W̃ 0+

1 with ∂λ̄W̃ 0+
1, 1(+∞) = 0 yields

∂λ̄W̃ 0+
1, 1(x) = ∂λ̄W̃ 0+

1, 1(+∞) +
∫ ∞

x
v̂0(y)∂λ̄W̃ 0+

1, 3(y) dy

= −
∫ ∞

x
v̂0(y)ey

∫ ∞

y
Sz→y

Z e−z dz dy

and thus

∂λ̄W̃ 0+
1, 1|x=0 = −

∫ ∞

0
v̂0(y)ey

∫ ∞

y
Sz→y

Z e−z dz dy.

Finally, note that for all y, v̂0(y), Sz→y
Z � 0. Therefore by (5.18),

D0
in

′(0) = ∂λ̄W̃ 0+
1, 1|x=0 �= 0.

	

Remark 5.1. The result Din(0) �= 0 at first sight appears to contradict that of
Theorem 3.2, since D(0) = 0 for the shock wave case. This apparent contradiction
is explained by the fact that the normalizing factor e−δ(µ̄−

1 +µ̃+
1 ) is exponentially

decaying in δ for λ = 0, since µ̃+
1 (0) = 0, while �µ−

1 > 0. Recalling that
δ → +∞ as v0 → 1, we recover the result of Theorem 3.2.

Proof of Lemma 3.1: outflow case. Similarly, we compute

D′
out(0) = W̃ 0

1 · ∂λW −
1 + ∂λ̄W̃ 0

1 · W −
1 ,

where ∂λW −
1 |λ=0 satisfies the variational equation L∂λU−

1 (0) = ∂λ A(x, 0)U−
1 , or,

written as a first-order system,

(∂λW −
1 )′ − A(x, 0)∂λW −

1 =

⎛

⎜
⎜
⎝

ûx

v̂x

−v̂x

⎞

⎟
⎟
⎠ , A(x, 0) =

⎛

⎜
⎜
⎝

0 0 0

0 0 0

v̂ v̂ f (v̂)

⎞

⎟
⎟
⎠ ,
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which may be solved exactly for the unique solution decaying at −∞ of

W −
1 (0) =

⎛

⎜
⎜
⎝

0

0

v̂′

⎞

⎟
⎟
⎠ , (∂λW −

1 )(0) =

⎛

⎜
⎜
⎝

û − u−
v̂ − v−

∗

⎞

⎟
⎟
⎠ .

Recalling from (2.41) that W̃ 0
1 (λ) = (0,−1,−λ̄/(λ̄ − v̂′(0)))T , hence

W̃ 0
1 (0) = (0,−1, 0)T , ∂λ̄W̃ 0

1 (0) = (0, 0, 1/v̂′(0))T ,

we thus find that

D′
out(0) = W̃ 0

1 (0) · ∂λW −
1 (0) + ∂λ̄W̃ 0

1 (0) · W −
1 (0)

= −(v̂(0) − 1) + 1 = 2 − v0 �= 0

as claimed. The proof that (D0
out)

′(0) �= 0 goes similarly.
Finally, as in the proof of the inflow case, we note that nonvanishing of

(D0
out)

′(0) implies that the stability index is constant across the entire (connected)
parameter range, hence we may conclude that it is identically one by existence of a
stable case (Corollary 3.1), and therefore that the number of nonzero unstable roots
is even, as claimed. 	


5.5. Stability in the shock limit

Proof of Corollary 3.1: inflow case. By Proposition 3.1 we find that Din has at
most a single zero in �λ � 0. However, by our stability index results, Theorem
3.1, the number of eigenvalues in �λ � 0 is even. Thus, it must be zero, giving the
result. 	

Proof of Corollary 3.1: outflow case. By Theorem 3.2, Dout, suitably renormali-
zed, converges as v0 → 0 to the Evans function for the (unintegrated) shock wave
case. But, the shock Evans function by the results of [3,12] has just a single zero
at λ = 0 on �λ � 0, already accounted for in Dout by the spurious root at λ = 0
introduced by recoordinatization to a good unknown. 	


5.6. Stability for small v0

Finally, we treat the remaining, corner case as v+, v0 simultaneously approach
zero. The fact (Lemma 3.1) that

lim
v0→0

lim
v+→0

Din(λ) ≡ 0

shows that this limit is quite delicate; indeed, this is the most delicate part of our
analysis.
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Proof of Theorem 3.3: inflow case. Consider again the adjoint system

W̃ ′ = −A∗(x, λ)W̃ , A∗(x, λ) =
⎛

⎜
⎝

0 0 v̂

λ̄ 0 v̂

λ̄ λ̄ f (v̂) − λ̄

⎞

⎟
⎠ .

By the boundary analysis of Section 5.1,

W̃ =
(

α, 1,
αµ̃ − λ̄(α + 1)

− f (v̂) + λ̄

)T

+ O(e−η|x−δ|),

where α := µ̃+
µ̃++λ̄

, and µ̃ is the unique stable eigenvalue of A∗+, satisfying (by

matrix perturbation calculation)

µ̃ = λ̄(v
1/2
+ + O(v+))

and thus α = v
1/2
+ + O(v+) as v0 → 0 (hence v+ → 0) on bounded subsets of

�λ � 0. Combining these expansions, we have

W̃1(+∞) = v
1/2
+ (1 + o(1)), W̃3 = −λ̄

− f (v̂) + λ̄
(1 + o(1))

for v0 sufficiently small.
From the W̃1 equation W̃ ′

1 = v̂W̃3, we thus obtain

W̃1(0) = W̃1(+∞) −
∫ +∞

0
v̂W̃3(y) dy

= (1 + o(1)) ×
(

v
1/2
+ +

∫ +∞

0

λ̄v̂

− f (v̂) + λ̄
(y) dy

)
.

Observing, finally, that, for�λ � 0, the ratio of real to imaginary parts of λ̄v̂

− f (v̂)+λ̄
(y)

is uniformly positive, we find that �W̃1(0) �= 0 for v0 sufficiently small, which
yields nonvanishing of Din(λ) on �λ � 0 as claimed. 	


6. Numerical computations

In this section, we show, through a systematic numerical Evans function study,
that there are no unstable eigenvalues for

(γ, v+) ∈ [1, 3] × (0, 1],
in either inflow or outflow cases. As defined in Section 2.6, the Evans function is
analytic in the right-half plane and reports a value of zero precisely at the eigenvalues
of the linearized operator (2.14). Hence we can use the argument principle to
determine if there are any unstable eigenvalues for this system. Our approach closely
follows that of [3,12] for the shock case with only two major differences. First, our
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shooting algorithm is only one sided as we have the boundary conditions (2.35)
and (2.41) for the inflow and outflow cases, respectfully. Second, we correct for the
displacement in the boundary layer when v0 ≈ 1 in the inflow case and v0 ≈ 0 in
the outflow case so that the Evans function converges to the shock case as studied
in [3,12] (see discussion in Section 6.3).

The profiles were generated using Matlab’sbvp4c routine, which is an adaptive
Lobatto quadrature scheme. The shooting portion of the Evans function computa-
tion was performed using Matlab’s ode45 package, which is the standard fourth
order adaptive Runge–Kutta–Fehlberg method (RKF45). The error tolerances for
both the profiles and the shooting were set toAbsTol=1e-6 andRelTol=1e-8.
We remark that Kato’s ODE (see Section 2.6 and [13,15] for details) is used to
analytically choose the initial eigenbasis for the stable/unstable manifolds at the
numerical values of infinity at L = ±18. Finally in Section 6.4, we carry out a
numerical convergence study similar to that in [3].

6.1. Winding number computations

The high-frequency estimates in Proposition 2.2 restrict the set of admissible
unstable eigenvalues to a fixed compact triangle Λ in the right-half plane (see
(2.25) and (2.26) for the inflow and outflow cases, respectively). We reiterate the
remarkable property that Λ does not depend on the choice of v+ or v0. Hence, to
demonstrate stability for a given γ , v+ and v0, it suffices to show that the winding
number of the Evans function along a contour containing Λ is zero. Note that in
our region of interest, γ ∈ [1, 3], the semi-circular contour given by

φ := ∂({λ | �eλ � 0} ∩ {λ | |λ| � 10}),
contains Λ in both the inflow and outflow cases. Hence, for consistency we use this
same semicircle for all of our winding number computations.

A remarkable feature of the Evans function for this system, and one that is shared
with the shock case in [3,12], is that the Evans function has limiting behavior as the
amplitude increases, Section 3.2. For the inflow case, we see in Fig. 1, the mapping
of the contour φ for the monatomic case (γ = 5/3), for several different choices
of v0, as v+ → 0. We remark that the winding numbers for 0 � v+ � 1 are all
zero, and the limiting contour touches zero due to the emergence of a zero root in
the limit. Note that the limiting case contains the contours of all other amplitudes.
Hence, we have spectral stability for all amplitudes.

The outflow case likewise has a limiting behavior, however, all contours cross
through zero due to the eigenvalue at the origin. Nonetheless, since the contours
only wind around once, we can likewise conclude that these profiles are spectrally
stable. We remark that the outflow case converges to the limiting case faster than
the inflow case as is clear from Fig. 2. Indeed, v+ = 1e−2 and the limiting case
v+ = 0, as well as all of the values of v+ in between, are virtually indistinguishable.

In our study, we systematically varied v0 in the interval [0.01, 0.99] and took
the v+ → 0 limit at each step, starting from a v+ = 0.9 (or some other appropriate
value, for example when v0 < 0.9) on the small-amplitude end and decreased v+
steadily to 10−k for k = 1, 2, 3, . . . , 6, followed by evaluation at v+ = 0. For both
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Fig. 1. Typical examples of the inflow case, showing convergence to the limiting Evans
function as v+ → 0 for a monatomic gas, γ = 5/3, with a v0 = 0.1, b v0 = 0.2,
c v0 = 0.4, and d v0 = 0.7. The contours depicted, going from inner to outer, are images of
the semicircle φ under D for v+ = 1e−2, 1e−3, 1e−4, 1e−5, 1e−6, with the outer-most
contour given by the image of φ under D0, that is, when v+ = 0. Each contour consists of
60 points in λ

inflow and outflow cases, over 2000 contours were computed. We remark that in
the v+ → 0 limit, the system becomes pressureless, and thus all of the contours in
the large-amplitude limit look the same regardless of the value of γ chosen.

6.2. Nonexistence of unstable real eigenvalues

As an additional verification of stability, we computed the Evans function along
the unstable real axis on the interval [0, 15] for varying parameters to show that there
are no real unstable eigenvalues. Since the Evans function has a root at the origin
in the limiting system for the inflow case, and for all values of v+ in the outflow
case, we can perform in these cases a sort of numerical stability index analysis to
verify that the Evans function cuts transversely through the origin and is otherwise
nonzero, indicating that there are no unstable real eigenvalues as expected. In Fig. 3,
we see a typical example of (a) the inflow and (b) outflow cases. Note that in both
images, the Evans function cuts transversally through the origin and is otherwise
nonzero as λ increases.
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Fig. 2. Typical examples of the outflow case, showing convergence to the limiting Evans
function as v+ → 0 for a monatomic gas, γ = 5/3, with a v0 = 0.2, b v0 = 0.4,
c v0 = 0.6, and d v0 = 0.8. The contours depicted are images of the semicircle φ under D
for v+ = 1e−2, 1e−3, 1e−4, 1e−5, 1e−6, and the limiting case v+ = 0. Interestingly the
contours are essentially (visually) indistinguishable in this parameter range. Each contour
consists of 60 points in λ
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Fig. 3. Typical examples of the Evans function evaluated along the positive real axis. The
a inflow case is computed for v0 = 0.7 and v0 = 0 and b the outflow case is computed for
v0 = 0.3 and v+ = 0.001. Not the transversality at the origin in both cases. Both graphs
consist of 50 points in λ
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Fig. 4. Shock limit for a inflow and b outflow cases, both for γ = 5/3. Note that the images
look very similar to those of [3,12]

6.3. The shock limit

When v0 is far from the midpoint (1 − v+)/2 of the end states, the Evans
function of the boundary layer is similar to the Evans function of the shock case
evaluated at the displacement point x0. Hence, when we compute the boundary
layer Evans function near the shock limits, v0 ≈ 1 for the inflow case and v0 ≈ 0
for the outflow case, we multiply for the correction factor c(λ) so that our output
looks close to that of the shock case studied in [3,12]. The correction factors are

c(λ) = e(−µ+−µ̄−)x0

for the inflow case and

c(λ) = e(−µ̄+−µ−)x0 ,

for the outflow case, where µ− is the growth mode of A−(λ) and µ+ is the decay
mode of A+(λ). In Fig. 4, we see that these highly displaced profiles appear to be
very similar to the shock cases with one notable difference. These images have a
small dimple near λ = 0 to account for the eigenvalue there, whereas those in the
shock case [3,12] were computed in integrated coordinates and thus have no root
at the origin.

6.4. Numerical convergence study

As in [3], we carry out a numerical convergence study to show that our results
are accurate. We varied the absolute and relative error tolerances, as well as the
length of the numerical domain [−L , L]. In Tables 1 and 2, we demonstrate that
our choices of L = 18, AbsTol=1e-6 and RelTol=1e-8 provide accurate
results.

Appendix A. Proof of preliminary estimate: inflow case

Our starting point is Remark 2.2, in which we observed that the first-order
eigensystem (2.28) in variable W = (w, u − v, v)T may be converted by the
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Table 1. Relative errors in D(λ) for the inflow and outflow cases are computed by taking
the maximum relative error for 60 contour points evaluated along the semicircle φ

L γ = 1.2 γ = 1.4 γ = 1.666 γ = 2.0 γ = 2.5 γ = 3.0

Inflow case
8 7.8(−1) 8.4(−1) 9.2(−1) 1.0(0) 1.2(0) 1.3(0)

10 1.4(−1) 1.2(−1) 9.2(−2) 6.8(−2) 4.4(−2) 2.8(−2)
12 1.4(−2) 7.9(−3) 3.6(−3) 1.3(−3) 3.1(−4) 7.3(−5)
14 1.3(−3) 4.9(−4) 1.3(−4) 2.4(−5) 8.7(−6) 8.2(−6)
16 1.2(−4) 3.0(−5) 4.7(−6) 2.8(−6) 2.7(−6) 2.6(−6)
18 1.1(−5) 5.8(−6) 8.0(−6) 8.1(−6) 8.0(−6) 8.0(−6)

Outflow case
8 5.4(−3) 5.4(−3) 5.4(−3) 5.4(−3) 5.4(−3) 5.4(−3)

10 9.2(−4) 9.1(−4) 9.1(−4) 9.1(−4) 9.1(−4) 9.1(−4)
12 1.5(−4) 1.5(−4) 1.5(−4) 1.5(−4) 1.5(−4) 1.5(−4)
14 2.5(−5) 2.7(−5) 2.0(−5) 2.0(−5) 2.0(−5) 2.0(−5)
16 2.3(−6) 2.6(−6) 2.6(−6) 2.5(−6) 2.5(−6) 2.5(−6)
18 6.6(−6) 3.6(−6) 8.7(−6) 8.7(−6) 8.7(−6) 8.7(−6)

Samples were taken for varying L and γ , leaving v+ fixed at v+ = 10−4 and v0 = 0.6.
We used L = 8, 10, 12, 14, 16, 18, 20 and γ = 1.2, 1.4, 1.666, 2.0. Relative errors were
computed using the next value of L as the baseline

Table 2. Relative errors in D(λ) for the inflow and outflow cases are computed by taking
the maximum relative error for 60 contour points evaluated along the semicircle φ

Abs/Rel γ = 1.2 γ = 1.4 γ = 1.666 γ = 2.0 γ = 2.5 γ = 3.0

Inflow case
10−3/10−5 5.4(−4) 4.1(−4) 4.0(−4) 5.0(−4) 3.4(−4) 8.6(−4)

10−4/10−6 3.1(−5) 4.6(−5) 3.4(−5) 3.3(−5) 3.3(−5) 3.2(−5)

10−5/10−7 2.9(−6) 3.6(−6) 3.9(−6) 6.8(−6) 2.7(−6) 2.5(−6)

10−6/10−8 4.6(−7) 9.9(−7) 1.1(−6) 6.0(−7) 2.9(−7) 3.2(−7)

Outflow case
10−3/10−5 9.2(−4) 9.2(−4) 9.1(−4) 9.1(−4) 9.1(−4) 9.2(−4)

10−4/10−6 5.3(−5) 4.9(−5) 5.3(−5) 5.3(−5) 5.3(−5) 5.3(−5)

10−5/10−7 6.7(−5) 6.7(−5) 6.7(−5) 6.7(−5) 6.7(−5) 6.7(−5)

10−6/10−8 2.9(−6) 2.9(−6) 2.9(−6) 2.9(−6) 2.9(−6) 2.9(−6)

Samples were taken for varying the absolute and relative error tolerances and γ in the ODE
solver, leaving L = 18 and γ = 1.666, v+ = 10−4, and v0 = 0.6 fixed. Relative errors
were computed using the next run as the baseline

rescaling W → W̃ := (w, u −v, λv)T to a system identical to that of the integrated
equations in the shock case; see [23]. Artificially defining (ũ, ṽ, ṽ′)T := W̃ , we
obtain a system

λṽ + ṽ′ − ũ′ = 0, (A.1a)

λũ + ũ′ − h(v̂)

v̂γ+1 ṽ′ = ũ′′

v̂
. (A.1b)
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identical to that in the integrated shock case [3], but with boundary conditions

ṽ(0) = ṽ′(0) = ũ′(0) = 0 (A.2)

imposed at x = 0. This new eigenvalue problem differs spectrally from (2.16) only
at λ = 0, hence spectral stability of (2.16) is implied by spectral stability of (A.1).
Hereafter, we drop the tildes, and refer simply to u, v.

With these coordinates, we may establish (2.25) by exactly the same argument
used in the shock case in [3,12], for completeness reproduced here.

Lemma A.1. The following inequality holds for �eλ � 0:

(�e(λ) + |�m(λ)|)
∫

R+
v̂|u|2 +

∫

R+
|u′|2

�
√

2
∫

R+
h(v̂)

v̂γ
|v′||u| + √

2
∫

R+
v̂|u′||u|. (A.3)

Proof. We multiply (A.1b) by v̂ū and integrate along x . This yields

λ

∫

R+
v̂|u|2 +

∫

R+
v̂u′ū +

∫

R+
|u′|2 =

∫

R+
h(v̂)

v̂γ
v′ū.

We get (A.3) by taking the real and imaginary parts and adding them together, and
noting that |�e(z)| + |�m(z)| �

√
2|z|. 	


Lemma A.2. The following identity holds for �eλ � 0:

∫

R+
|u′|2 = 2�e(λ)2

∫

R+
|v|2 + �e(λ)

∫

R+
|v′|2
v̂

+ 1

2

∫

R+

[
h(v̂)

v̂γ+1 + aγ

v̂γ+1

]
|v′|2.
(A.4)

Proof. We multiply (A.1b) by v̄′ and integrate along x . This yields

λ

∫

R+
uv̄′ +

∫

R+
u′v̄′ −

∫

R+
h(v̂)

v̂γ+1 |v′|2 =
∫

R+
1

v̂
u′′v̄′ =

∫

R+
1

v̂
(λv′ + v′′)v̄′.

Using (A.1a) on the right-hand side, integrating by parts, and taking the real part
gives

�e

[
λ

∫

R+
uv̄′ +

∫

R+
u′v̄′

]
=
∫

R+

[
h(v̂)

v̂γ+1 + v̂x

2v̂2

]
|v′|2 + �e(λ)

∫

R+
|v′|2
v̂

.

The right-hand side can be rewritten as

�e

[
λ

∫

R+
uv̄′ +

∫

R+
u′v̄′

]
= 1

2

∫

R+

[
h(v̂)

v̂γ+1 + aγ

v̂γ+1

]
|v′|2 + �e(λ)

∫

R+
|v′|2
v̂

.

(A.5)
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Now we manipulate the left-hand side. Note that

λ

∫

R+
uv̄′ +

∫

R+
u′v̄′ = (λ + λ̄)

∫

R+
uv̄′ −

∫

R+
u(λ̄v̄′ + v̄′′)

= −2�e(λ)

∫

R+
u′v̄ −

∫

R+
uū′′

= −2�e(λ)

∫

R+
(λv + v′)v̄ +

∫

R+
|u′|2.

Hence, by taking the real part we get

�e

[
λ

∫

R+
uv̄′ +

∫

R+
u′v̄′

]
=
∫

R+
|u′|2 − 2�e(λ)2

∫

R+
|v|2.

This combines with (A.5) to give (A.4). 	

Lemma A.3. ([3]) For h(v̂) as in (2.15), we have

sup
v̂

∣
∣
∣
∣
h(v̂)

v̂γ

∣
∣
∣
∣ = γ

1 − v+
1 − v

γ
+

� γ, (A.6)

where v̂ is the profile solution to (2.12).

Proof. Defining

g(v̂) := h(v̂)v̂−γ = −v̂ + a(γ − 1)v̂−γ + (a + 1), (A.7)

we have g′(v̂) = −1 − aγ (γ − 1)v̂−γ−1 < 0 for 0 < v+ � v̂ � v− = 1, hence
the maximum of g on v̂ ∈ [v+, v−] is achieved at v̂ = v+. Substituting (2.13) into
(A.7) and simplifying yields (A.6). 	

Proof of Proposition 2.2. Using Young’s inequality twice on right-hand side of
(A.3) together with (A.6), we get

(�e(λ) + |�m(λ)|)
∫

R+
v̂|u|2 +

∫

R+
|u′|2

�
√

2
∫

R+
h(v̂)

v̂γ
|v′||u| + √

2
∫

R+
v̂|u′||u|

� θ

∫

R+
h(v̂)

v̂γ+1 |v′|2 + (
√

2)2

4θ

∫

R+
h(v̂)

v̂γ
v̂|u|2 + ε

∫

R+
v̂|u′|2 + 1

4ε

∫

R+
v̂|u|2

< θ

∫

R+
h(v̂)

v̂γ+1 |v′|2 + ε

∫

R+
|u′|2 +

[
γ

2θ
+ 1

2ε

] ∫

R+
v̂|u|2.

Assuming that 0 < ε < 1 and θ = (1 − ε)/2, this simplifies to

(�e(λ) + |�m(λ)|)
∫

R+
v̂|u|2 + (1 − ε)

∫

R+
|u′|2

<
1 − ε

2

∫

R+
h(v̂)

v̂γ+1 |v′|2 +
[

γ

2θ
+ 1

2ε

] ∫

R+
v̂|u|2.
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Applying (A.4) yields

(�e(λ) + |�m(λ)|)
∫

R+
v̂|u|2 <

[
γ

1 − ε
+ 1

2ε

] ∫

R+
v̂|u|2,

or equivalently,

(�e(λ) + |�m(λ)|) <
(2γ − 1)ε + 1

2ε(1 − ε)
.

Setting ε = 1/(2
√

γ + 1) gives (2.25). 	


Appendix B. Proof of preliminary estimate: outflow case

Similarly as in the inflow case, we can convert the eigenvalue equations into the
integrated equations as in the shock case; see [23]. Artificially defining (ũ, ṽ, ṽ′)T :=
W̃ , we obtain a system

λṽ + ṽ′ − ũ′ = 0, (B.1a)

λũ + ũ′ − h(v̂)

v̂γ+1 ṽ′ = ũ′′

v̂
. (B.1b)

identical to that in the integrated shock case [3], but with boundary conditions

ṽ′(0) = λ

α − 1
ṽ(0), ũ′(0) = αṽ′(0) (B.2)

imposed at x = 0. We shall write w0 for w(0), for any function w. This new
eigenvalue problem differs spectrally from (2.16) only at λ = 0, hence spectral
stability of (2.16) is implied by spectral stability of (B.1). Hereafter, we drop the
tildes, and refer simply to u, v.

Lemma B.1. The following inequality holds for �eλ � 0:

(�e(λ) + |�m(λ)|)
∫

R−
v̂|u|2 − 1

2

∫

R−
v̂x |u|2 +

∫

R−
|u′|2 + 1

2
v̂0|u0|2

�
√

2
∫

R−
h(v̂)

v̂γ
|v′||u| +

∫

R−
v̂|u′||u| + √

2|α||v′
0||u0|.

(B.3)

Proof. We multiply (B.1b) by v̂ū and integrate along x . This yields

λ

∫

R−
v̂|u|2 +

∫

R−
v̂u′ū +

∫

R−
|u′|2 =

∫

R−
h(v̂)

v̂γ
v′ū + u′

0ū0.

We get (B.3) by taking the real and imaginary parts and adding them together, and
noting that |�e(z)| + |�m(z)| �

√
2|z|. 	
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Lemma B.2. The following inequality holds for �eλ � 0:

1

2

∫

R−

[
h(v̂)

v̂γ+1 + aγ

v̂γ+1

]
|v′|2 + �e(λ)

∫

R−
|v′|2
v̂

+ |v′
0|2

4v̂0
+ 2�e(λ)2

∫

R−
|v|2

�
∫

R−
|u′|2 + v̂0|u0|2. (B.4)

Proof. We multiply (B.1b) by v̄′ and integrate along x . This yields

λ

∫

R−
uv̄′ +

∫

R−
u′v̄′ −

∫

R−
h(v̂)

v̂γ+1 |v′|2 =
∫

R−
1

v̂
u′′v̄′ =

∫

R−
1

v̂
(λv′ + v′′)v̄′.

Using (B.1a) on the right-hand side, integrating by parts, and taking the real part
gives

�e

[
λ

∫

R−
uv̄′ +

∫

R−
u′v̄′
]

=
∫

R−

[
h(v̂)

v̂γ+1 + v̂x

2v̂2

]
|v′|2 + �e(λ)

∫

R−
|v′|2
v̂

+ |v′
0|2

2v̂0
.

The right-hand side can be rewritten as

�e

[
λ

∫

R−
uv̄′ +

∫

R−
u′v̄′

]

= 1

2

∫

R−

[
h(v̂)

v̂γ+1 + aγ

v̂γ+1

]
|v′|2 + �e(λ)

∫

R−
|v′|2
v̂

+ |v′
0|2

2v̂0
. (B.5)

Now we manipulate the left-hand side. Note that

λ

∫

R−
uv̄′ +

∫

R−
u′v̄′ = (λ + λ̄)

∫

R−
uv̄′ +

∫

R−
(u′v̄′ − λ̄uv̄′)

= −2�e(λ)

∫

R−
u′v̄ + 2�eλu0v̄0 +

∫

R−
u′(v̄′ + λ̄v̄) − λ̄u0v̄0

= −2�e(λ)

∫

R−
(λv + v′)v̄ +

∫

R−
|u′|2 + 2�eλu0v̄0 − λ̄u0v̄0.

Hence, by taking the real part and noting that

�e(2�eλu0v̄0 − λ̄u0v̄0) = �eλ�e(u0v̄0) − �mλ�m(u0v̄0) = �e(λu0v̄0)

we get

�e

[
λ

∫

R−
uv̄′+

∫

R−
u′v̄′
]
=
∫

R−
|u′|2−2�e(λ)2

∫

R−
|v|2−�eλ|v0|2 + �e(λu0v̄0).

This combines with (B.5) to give

1

2

∫

R−

[
h(v̂)

v̂γ+1 + aγ

v̂γ+1

]
|v′|2 + �e(λ)

∫

R−
|v′|2
v̂

+ |v′
0|2

2v̂0
+ 2�e(λ)2

×
∫

R−
|v|2 + �eλ|v0|2 =

∫

R−
|u′|2 + �e(λu0v̄0).
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We get (B.4) by observing that (B.2) and Young’s inequality yield

|�e(λu0v̄0)| � |α − 1||v′
0v0| � |v′

0v0| � |v′
0|2

4v̂0
+ v̂0|u0|2.

Here we used |α − 1| = |λ|
|λ−v̂′

0| � 1. Note that �eλ � 0 and v̂′
0 � 0.

Proof of Proposition 2.2. Using Young’s inequality twice on right-hand side of
(B.3) together with (A.6), and denoting the boundary term on the right by Ib, we
get

(�e(λ) + |�m(λ)|)
∫

R−
v̂|u|2 − 1

2

∫

R−
v̂x |u|2 +

∫

R−
|u′|2 + 1

2
v̂0|u0|2

�
√

2
∫

R−
h(v̂)

v̂γ
|v′||u| +

∫

R−
v̂|u′||u| + Ib

� θ

∫

R−
h(v̂)

v̂γ+1 |v′|2 + 1

2θ

∫

R−
h(v̂)

v̂γ
v̂|u|2 + ε

∫

R−
v̂|u′|2 + 1

4ε

∫

R−
v̂|u|2+ Ib

< θ

∫

R−
h(v̂)

v̂γ+1 |v′|2 + ε

∫

R−
|u′|2 +

[
γ

2θ
+ 1

4ε

] ∫

R−
v̂|u|2 + Ib.

Here we treat the boundary term by

Ib �
√

2|α||v′
0||u0| � θ

2

|v′
0|2
v̂0

+ 1

θ
|α|2v̂0|u0|2.

Therefore using (B.4), we simply obtain from the above estimates

(�e(λ) + |�m(λ)|)
∫

R−
v̂|u|2 + (1 − ε)

∫

R−
|u′|2 + 1

2
v̂0|u0|2

< θ

∫

R−
h(v̂)

v̂γ+1 |v′|2 + θ

2

|v′
0|2
v̂0

+
[

γ

2θ
+ 1

4ε

] ∫

R−
v̂|u|2 + 1

θ
|α|2v̂0|u0|2

< 2θ

∫

R−
|u′|2 +

[
γ

2θ
+ 1

4ε

] ∫

R−
v̂|u|2 + Jb,

where Jb := ( 1
θ
|α|2 + 2θ)v̂0|u0|2. Assuming that ε + 2θ � 1, this simplifies to

(�e(λ) + |�m(λ)|)
∫

R−
v̂|u|2 + 1

2
v̂0|u0|2 <

[
γ

2θ
+ 1

4ε

] ∫

R−
v̂|u|2 + Jb.

Note that |α| � −v̂′
0|λ| � 1

4|λ| . Therefore for |λ| � 1
4θ

, we get |α| � θ and

Jb � 3θv̂0|u0|2. For sake of simplicity, choose θ = 1/6 and ε = 2/3. This shows
that Jb can be absorbed into the left by the term 1

2 v̂0|u0|2 and thus we get

(�e(λ) + |�m(λ)|)
∫

R−
v̂|u|2 <

[
γ

2θ
+ 1

4ε

] ∫

R−
v̂|u|2 =

[
3γ + 3

8

] ∫

R−
v̂|u|2,

provided that |λ| � 1/(4θ) = 3/2.
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This shows

(�e(λ) + |�m(λ)|) < max

{
3
√

2

2
, 3γ + 3

8

}

.

	


Appendix C. Nonvanishing of D0
in

Working in (ṽ, ũ) variables as in (A.1), the limiting eigenvalue system and
boundary conditions take the form

λṽ + ṽ′ − ũ′ = 0, (C.1a)

λũ + ũ′ − 1 − v̂

v̂
ṽ′ = ũ′′

v̂
(C.1b)

corresponding to a pressureless gas, γ = 0, with

(ũ, ũ′, ṽ, ṽ′)(0) = (d, 0, 0, 0), (ũ, ũ′, ṽ, ṽ′)(+∞) = (c, 0, 0, 0). (C.2)

Hereafter, we drop the tildes.

Proof of Proposition 3.1. Multiplying (C.1b) by v̂ū/(1 − v̂) and integrating on
[0, b] ⊂ R

+, we obtain

λ

∫ b

0

v̂

1 − v̂
|u|2 dx +

∫ b

0

v̂

1 − v̂
u′ū dx −

∫ b

0
v′ū dx =

∫ b

0

u′′ū
1 − v̂

dx .

Integrating the third and fourth terms by parts yields

λ

∫ b

0

v̂

1 − v̂
|u|2 dx +

∫ b

0

[
v̂

1 − v̂
+
(

1

1 − v̂

)′]
u′ū dx

+
∫ b

0

|u′|2
1 − v̂

dx +
∫ b

0
v(λv + v′) dx

=
[
vū + u′ū

1 − v̂

] ∣
∣
∣
b

0
.

Integrating the second term by parts and taking the real part, we have

�e(λ)

∫ b

0

(
v̂

1 − v̂
|u|2 + |v|2

)
dx +

∫ b

0
g(v̂)|u|2 dx +

∫ b

0

|u′|2
1 − v̂

dx

= �e

[
vū + u′ū

1 − v̂
− 1

2

[
v̂

1 − v̂
+
(

1

1 − v̂

)′]
|u|2 − |v|2

2

] ∣
∣
∣
b

0
, (C.3)

where

g(v̂) = −1

2

[(
v̂

1 − v̂

)′
+
(

1

1 − v̂

)′′]
.
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Note that

d

dx

(
1

1 − v̂

)
= − (1 − v̂)′

(1 − v̂)2 = v̂x

(1 − v̂)2 = v̂(v̂ − 1)

(1 − v̂)2 = − v̂

1 − v̂
.

Thus, g(v̂) ≡ 0 and the third term on the right-hand side vanishes, leaving

�e(λ)

∫ b

0

(
v̂

1 − v̂
|u|2 + |v|2

)
dx +

∫ b

0

|u′|2
1 − v̂

dx

=
[
�e(vū) + �e(u′ū)

1 − v̂
− |v|2

2

] ∣
∣
∣
b

0

=
[
�e(vū) + �e(u′ū)

1 − v̂
− |v|2

2

]
(b).

We show finally that the right-hand side goes to zero in the limit as b → ∞.
By Proposition 4.1, the behavior of u, v near ±∞ is governed by the limiting
constant–coefficient systems W ′ = A0±(λ)W , where W = (u, v, v′)T and A0± =
A0(±∞, λ). In particular, solutions W asymptotic to (1, 0, 0) at x = +∞ decay
exponentially in (u′, v, v′) and are bounded in coordinate u as x → +∞. Observing
that 1−v̂ → 1 as x → +∞, we thus see immediately that the boundary contribution
at b vanishes as b → +∞.

Thus, in the limit as b → +∞,

�e(λ)

∫ +∞

0

(
v̂

1 − v̂
|u|2 + |v|2

)
dx +

∫ +∞

0

|u′|2
1 − v̂

dx = 0. (C.4)

But, for �eλ � 0, this implies u′ ≡ 0, or u ≡ constant, which, by u(0) = 1, implies
u ≡ 1. This reduces (C.1a) to v′ = λv, yielding the explicit solution v = Ceλx .
By v(0) = 0, therefore, v ≡ 0 for �eλ � 0. Substituting into (C.1b), we obtain
λ = 0. It follows that there are no nontrivial solutions of (C.1), (C.2) for �eλ � 0
except at λ = 0. 	

Remark C.1. The above energy estimate is essentially identical to that used in [12]
to treat the limiting shock case.

Appendix D. Nonvanishing of D0
out

Working in (ṽ, ũ) variables as in (A.1), the limiting eigenvalue system and
boundary conditions take the form

λṽ + ṽ′ − ũ′ = 0, (D.1a)

λũ + ũ′ − 1 − v̂

v̂
ṽ′ = ũ′′

v̂
(D.1b)

corresponding to a pressureless gas, γ = 0, with

(ũ, ũ′, ṽ, ṽ′)(−∞) = (0, 0, 0, 0), (D.2)
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ṽ′(0) = λ

α − 1
ṽ(0), ũ′(0) = αṽ′(0). (D.3)

In particular,

ũ′(0) = λα

α − 1
ṽ(0) = v̂′(0)ṽ(0) = (v0 − 1)v̂0ṽ(0). (D.4)

Hereafter, we drop the tildes.

Proof of Proposition 3.1. Multiplying (D.1b) by v̂ū/(1 − v̂) and integrating on
[a, 0] ⊂ R

−, we obtain

λ

∫ 0

a

v̂

1 − v̂
|u|2 dx +

∫ 0

a

v̂

1 − v̂
u′ū dx −

∫ 0

a
v′ū dx =

∫ 0

a

u′′ū
1 − v̂

dx .

Integrating the third and fourth terms by parts yields

λ

∫ 0

a

v̂

1 − v̂
|u|2 dx +

∫ 0

a

[
v̂

1 − v̂
+
(

1

1 − v̂

)′]
u′ū dx

+
∫ 0

a

|u′|2
1 − v̂

dx +
∫ 0

a
v(λv + v′) dx

=
[
vū + u′ū

1 − v̂

] ∣
∣
∣
0

a
.

Taking the real part, we have

�e(λ)

∫ 0

a

(
v̂

1 − v̂
|u|2 + |v|2

)
dx +

∫ 0

a
g(v̂)|u|2 dx +

∫ 0

a

|u′|2
1 − v̂

dx

= �e

[
vū + u′ū

1 − v̂
− 1

2

[
v̂

1 − v̂
+
(

1

1 − v̂

)′]
|u|2 − |v|2

2

] ∣
∣
∣
0

a
, (D.5)

where

g(v̂) = −1

2

[(
v̂

1 − v̂

)′
+
(

1

1 − v̂

)′′]
≡ 0

and the third term on the righthand side vanishes, as shown in Section C, leaving

�e(λ)

∫ 0

a

(
v̂

1 − v̂
|u|2 + |v|2

)
dx +

∫ 0

a

|u′|2
1 − v̂

dx

=
[
�e(vū) + �e(u′ū)

1 − v̂
− |v|2

2

] ∣
∣
∣
0

a
.
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A boundary analysis similar to that of Section C shows that the contribution at
a on the right-hand side vanishes as a → −∞; see [12] for details. Thus, in the
limit as a → −∞ we obtain

�e(λ)

∫ 0

−∞

(
v̂

1 − v̂
|u|2 + |v|2

)
dx +

∫ 0

−∞
|u′|2
1 − v̂

dx

=
[
�e(vū) + �e(u′ū)

1 − v̂
− |v|2

2

]
(0)

=
[
(1 − v0)�e(vū) − |v|2

2

]
(0)

�
[
(1 − v0)|v||u| − |v|2

2

]
(0)

� (1 − v0)
2 |u(0)|2

2
,

where the second equality follows by (D.4) and the final line by Young’s inequality.
Next, observe the Sobolev-type bound

|u(0)|2 �
(∫ 0

−∞
|u′(x)| dx

)2

�
∫ 0

−∞
|u′|2
1 − v̂

(x) dx
∫ 0

−∞
(1 − v̂)(x) dx,

together with

∫ 0

−∞
(1 − v̂)(x) dx =

∫ 0

−∞
− v̂′

v̂
(x) dx =

∫ 0

−∞
(log v̂−1)′(x) dx = log v−1

0 ,

hence
∫ 0
−∞(1 − v̂)(x) dx < 2

(1−v0)2 for v0 > v∗, where v∗ < e−2 is the unique
solution of

v∗ = e−2/(1−v∗)2
. (D.6)

Thus, for v0 > v∗,

�e(λ)

∫ 0

−∞

(
v̂

1 − v̂
|u|2 + |v|2

)
dx + ε

∫ 0

−∞
|u′|2
1 − v̂

dx � 0, (D.7)

for ε := 1 − (1−v0)
2

2

∫ 0
−∞(1 − v̂)(x) dx > 0. For �eλ � 0, this implies u′ ≡ 0,

or u ≡ constant, which, by u(−∞) = 0, implies u ≡ 0. This reduces (D.1a) to
v′ = λv, yielding the explicit solution v = Ceλx . By v(0) = 0, therefore, v ≡ 0
for �eλ � 0. It follows that there are no nontrivial solutions of (D.1), (D.2) for
�eλ � 0 except at λ = 0.

By iteration, starting with v∗ ≈ 0, we obtain first v∗ < e−2 ≈ 0.14 then v∗ >

e2/(1−0.14)2 ≈ 0.067, then v∗ < e2/(1−0.067)2 ≈ 0.10, then v∗ > e2/(1−0.10)2 ≈
0.085, then v∗ < e2/(1−0.085) ≈ 0.091 and v∗ > e2/(1−0.091) ≈ 0.0889, terminating
with v∗ ≈ 0.0899. 	
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Remark D.1. Our Evans function results show that the case v0 small not treated
corresponds to the shock limit for which stability is already known by [12]. This
suggests that a more sophisticated energy estimate combining the above with a
boundary-layer analysis from x = 0 back to x = L + δ might yield nonvanishing
for all 1 > v0 > 0.

Appendix E. The characteristic limit: outflow case

We now show stability of compressive outflow boundary layers in the charac-
teristic limit v+ → 1, by essentially the same energy estimate used in [18] to show
stability of small-amplitude shock waves.

As in the above section on the outflow case, we obtain a system

λṽ + ṽ′ − ũ′ = 0, (E.1a)

λũ + ũ′ − h(v̂)

v̂γ+1 ṽ′ = ũ′′

v̂
(E.1b)

identical to that in the integrated shock case [3], but with boundary conditions

ṽ′(0) = λ

α − 1
ṽ(0), ũ′(0) = αṽ′(0). (E.2)

In particular,

ũ′(0) = λα

α − 1
ṽ(0) = v̂′(0)ṽ(0). (E.3)

This new eigenvalue problem differs spectrally from (2.16) only at λ = 0, hence
spectral stability of (2.16) is implied by spectral stability of (E.1). Hereafter, we
drop the tildes, and refer simply to u, v.

Proof of Proposition 3.2. We note that h(v̂) > 0. By multiplying (E.1b) by both
the conjugate ū and v̂γ+1/h(v̂) and integrating along x from −∞ to 0, we have
∫ 0

−∞
λuūv̂γ+1

h(v̂)
dx +

∫ 0

−∞
u′ūv̂γ+1

h(v̂)
dx −

∫ 0

−∞
v′ū dx =

∫ 0

−∞
u′′ūv̂γ

h(v̂)
dx .

Integrating the last two terms by parts and appropriately using (E.1a) to substitute
for u′ in the third term gives us
∫ 0

−∞
λ|u|2v̂γ+1

h(v̂)
dx +

∫ 0

−∞
u′ūv̂γ+1

h(v̂)
dx +

∫ 0

−∞
v(λv + v′) dx +

∫ 0

−∞
v̂γ |u′|2

h(v̂)
dx

= −
∫ 0

−∞

(
v̂γ

h(v̂)

)′
u′ū dx +

[
vū + vγ u′ū

h(v̂)

] ∣
∣
∣
x=0

.

We take the real part and appropriately integrate by parts to get

�e(λ)

∫ 0

−∞

[
v̂γ+1

h(v̂)
|u|2 + |v|2

]
dx+

∫ 0

−∞
g(v̂)|u|2 dx+

∫ 0

−∞
v̂γ

h(v̂)
|u′|2 dx =G(0),

(E.4)
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where

g(v̂) = −1

2

[(
v̂γ+1

h(v̂)

)′
+
(

v̂γ

h(v̂)

)′′]

and

G(0) = −1

2

[
v̂γ+1

h(v̂)
+
(

v̂γ

h(v̂)

)′]
|u|2 + �e

[
vū + vγ u′ū

h(v̂)

]
− |v|2

2

evaluated at x = 0. Here, the boundary term appearing on the right-hand side is
the only difference from the corresponding estimate appearing in the treatment of
the shock case in [3,18]. We shall show that as v+ → 1, the boundary term G(0)

is nonpositive. Observe that boundary conditions yield
[
vū + vγ u′ū

h(v̂)

] ∣
∣
∣
x=0

= �e(v(0)ū(0))

[
1 + v̂γ v̂′

h(v̂)

] ∣
∣
∣
x=0

.

We first note, as established in [3,18], that g(v̂) � 0 on [v+, 1], under cer-
tain conditions including the case v+ → 1. Straightforward computation gives
identities:

γ h(v̂) − v̂h′(v̂) = aγ (γ − 1) + v̂γ+1 and (E.5)

v̂γ−1v̂x = aγ − h(v̂). (E.6)

Using (E.5) and (E.6), we abbreviate a few intermediate steps below:

g(v̂) = − v̂x

2

[
(γ + 1)v̂γ h(v̂) − v̂γ+1h′(v̂)

h(v̂)2 + d

dv̂

[
γ v̂γ−1h(v̂) − v̂γ h′(v̂)

h(v̂)2 v̂x

]]

= − v̂x

2

[
v̂γ
(
(γ +1)h(v̂) − v̂h′(v̂)

)

h(v̂)2 + d

dv̂

[
γ h(v̂) − v̂h′(v̂)

h(v̂)2 (aγ − h(v̂))

]]

= −av̂x v̂
γ−1

2h(v̂)3

×
[
γ 2(γ + 1)v̂γ+2 − 2(a + 1)γ (γ 2 − 1)v̂γ+1 + (a + 1)2γ 2(γ − 1)v̂γ

+ aγ (γ + 2)(γ 2 − 1)v̂ − a(a + 1)γ 2(γ 2 − 1)
]

= −av̂x v̂
γ−1

2h(v̂)3

[
(γ + 1)v̂γ+2 + v̂γ (γ − 1)

(
(γ + 1)v̂ − (a + 1)γ

)2 (E.7)

+aγ (γ 2 − 1)(γ + 2)v̂ − a(a + 1)γ 2(γ 2 − 1)
]

� −av̂x v̂
γ−1

2h(v̂)3

[
(γ +1)v̂γ+2 + aγ (γ 2−1)(γ +2)v̂ − a(a + 1)γ 2(γ 2 − 1)

]

� −γ 2a3v̂x (γ + 1)

2h(v̂)3v+

⎡

⎣

(
v

γ+1
+
aγ

)2

+ 2(γ − 1)

(
v

γ+1
+
aγ

)

− (γ − 1)

⎤

⎦ . (E.8)

This verifies g(v̂) � 0 as v+ → 1.
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Second, examine

G(0) = −1

2

[
v̂γ+1

h(v̂)
+
(

v̂γ

h(v̂)

)′]
|u(0)|2 +

[
1 + v̂γ v̂′

h(v̂)

]
�e(v(0)ū(0)) − |v(0)|2

2
.

Applying Young’s inequality to the middle term, we easily get

G(0) � −1

2

[
v̂γ+1

h(v̂)
+
(

v̂γ

h(v̂)

)′
−
(

1 + v̂γ v̂′

h(v̂)

)2
]

|u(0)|2 =: −1

2
I |u(0)|2.

Now observe that I can be written as

I = v̂γ+1

h(v̂)
− 1 +

[
γ v̂γ−1

h(v̂)
− 2v̂γ

h(v̂)
− v̂2γ v̂′

h2(v̂)

]
v̂′ − v̂γ h′(v̂)

h2(v̂)
.

Using (E.5) and (E.6), we get

v̂γ+1

h(v̂)
− 1 = − (γ − 1)v̂γ−1v̂′ + v̂h′(v̂)

h(v̂)

and thus

I = − (γ − 1)v̂γ−1v̂′ + v̂h′(v̂)

h(v̂)
+
[
γ v̂γ−1

h(v̂)
− 2

v̂γ

h(v̂)
− v̂2γ v̂′

h2(v̂)

]
v̂′ − v̂γ h′(v̂)

h2(v̂)
.

Now since h′(v̂) = −(γ +1)v̂γ v̂′+(a+1)γ v̂γ−1v̂′, as v+ → 1, I ∼ −v̂′ � 0.
Therefore, as v+ is close to 1, G(0) � 1

4 v̂′(0)|u(0)|2 � 0. This, g(v̂) � 0, and
(E.4) give, as v+ is close enough to 1,

�e(λ)

∫ 0

−∞

[
v̂γ+1

h(v̂)
|u|2 + |v|2

]
dx +

∫ 0

−∞
v̂γ

h(v̂)
|u′|2 dx � 0, (E.9)

which evidently gives stability as claimed. 	


Appendix F. Nonvanishing of Din: expansive inflow case

For completeness, we recall the argument of [19] in the expansive inflow case.
Profile equation. Note that, in the expansive inflow case, we assume v0 < v+.

Therefore we can still follow the scaling (2.6) to get

0 < v0 < v+ = 1.

Then the stationary boundary layer (v̂, û) satisfies (2.9) with v0 < v+ = 1. Now
by integrating (2.10) from x to +∞ with noting that v̂(+∞) = 1 and v̂′(+∞) = 0,
we get the profile equation

v̂′ = v̂(v̂ − 1 + a(v̂−γ − 1)).
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Note that v̂′ > 0. We now follow the same method for compressive inflow case
to get the following eigenvalue system

λv + v′ − u′ = 0, (F.1a)

λu + u′ − ( f v)′ =
(

u′

v̂

)′
(F.1b)

with boundary conditions

u(0) = v(0) = 0, (F.2)

where f (v̂) = h(v̂)

v̂γ+1 .

Proof of Proposition 3.3. Multiply the equation (F.1b) by ū and integrate along x .
By integration by parts, we get

λ

∫ ∞

0
|u|2 dx +

∫ ∞

0
u′ū + f vū′ + |u′|2

v̂
dx = 0.

Using (F.1a) and taking the real part of the above yield

�eλ
∫ ∞

0
|u|2 + f |v|2 dx − 1

2

∫ ∞

0
f ′|v|2 dx +

∫ ∞

0

|u′|2
v̂

dx = 0 (F.3)

Note that

f ′ =
(

1 + a + a(γ 2 − 1)

v̂γ

) −v̂′

v̂2 � 0,

which together with (F.3) gives �eλ < 0, the proposition is proved. 	
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