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INTRODUCTION

The definition of integrability is simple to state; an autonomous N degree of
freedom Hamiltonian is integrable if N independent global invariants exist and these
are in involution with each other.! However, a failure to find such a set of global
invariants does not exclude the possibility that the Hamiltonian in question is inte-
grable. The detection of integrability is thus a critical issue in non-linear dynamics
and a variety of analytical and numerical procedures has been developed to deter-
mine if a Hamiltonian is integrable. The most obvious approach is to try to establish
if the Hamiltonian is separable, possibly using the Stéckel conditions to guide one to
appropriate coordinate system. It should be noted, however, that finding coordinates
that separate a particular problem can itself be a difficult task. More general and
systematic approaches than simply seeking separability are therefore in order, e.g.,
the Whittaker program. An alternative method is the Painlevé test? in which the
analytic structure of the equations of motion in the complex time plane is examined.
This approach has been used to uncover integrability but must be applied gingerly
because it cannot be guaranteed to succeed in every case. Probably the simplest
numerical method is to generate Poincaré surfaces of section and determine by eye
whether or not the motion is integrable. Of course, no numerical method by itself
can definitively determine integrability.

Deprit and co-workers®> ™7 in their studies of normal forms, and particularly in

an application to the Toda Lattice® have discovered what might constitute a new
symptom of integrability in Hamiltonian systems. They note a correlation between
the persistence of degeneracy in the normal form to high order and integrability of
the pre-normalized Hamiltonian, and conjecture that this might be a symptom of
integrability. However, tests of this conjecture have ultimately uncovered integrable
systems that are also separable. In a recent study of a problem in atomic physics
we have encountered a Hamiltonian possessing a non-separable, integrable limit.”
Surprisingly, in this case the conjecture of Deprit and Miller seems not to hold which
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led us to question whether normalization might sense separability rather than inte-
grability per se. After all, it is well known quantum mechanically that separability
leads to degeneracies and degenerate equilibria are the symptom that the normal
form is supposed to exhibit in the case of integrability. In this paper we examine
normalization of, (i) a class of perturbed isotropic oscillators to high order which
admit various integrable limits, and, (%) the hydrogen atom in a generalized van der
Waals (GVDW) potential. We conclude that under certain circumstances normaliza-
tion can detect separability, but that it may also overlook integrable cases, whether
separable or not.

NORMALIZATION OF ELLIPTIC OSCILLATORS

The normalization of perturbed elliptic oscillators has been studied thoroughly
by Deprit and co-workers.>~7 In fact, our exhibition problem is the same as Miller’s,’
i.e., a perturbed elliptic oscillator of the form H = Hy + H; where

_l 2 1 3 2
Ho = 5(P+ P2)+ o(s% +17) ()
and

Hy = e(az® + Py’ (2)

High order normalizations of (i.e., 1:1 resonant) elliptic oscillators perturbed by
quartic and sextic polynomials have also been investigated recently: for these systems
the integrable limits also turn out to be globally separable.®—2® To start it is useful
to consider the properties of the isotropic oscillator Hg, in particular its integrals of
motion. Including the energy there are four invariants
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The {m;,i = 1,2,3} are called the Hopf variables and are related in a simple fashion
to D, L, K which correspond to the more usual definitions of the invariants of the
isotropic oscillator. The Hopf variables have the useful property of satisfying the
same Poisson bracket relations as angular momentum, namely,

As.u.,.\;v = €511 AAV

where €;¢; is equal to 1 (-1) for even (odd) permutations of its subscripts and to 0
otherwise. Together with the relation

7 =71+ 7 + 73 _ (5)
the {m;,7 = 1,2,3} generate the Lie algebra of the group SU(2). Equation (5) is

that of a sphere, sometimes nominated the Poincaré sphere, and on whose surface
the phase flow of the reduced system can be portrayed.
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Further geometrical insight can be obtained by recognizing that the Hopf vari-
ables may be transformed to action-angle variables j;, jy, ¢z, ¢y as follows,

= /2j,8in ¢y, Y= +/2jysing,
P, = +/2jycos¢y, Py=+/2j,cos¢, (6)

After a further transformation
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the {m;} become,
g = .Nu
= Jp

My = z\km — J}cos ¢y
7y =/ JE — J}sin gy (8)

which makes clear that the reduced phase space defined by mp = constant is a two-
dimensional sphere. The action-angle variables just introduced are closely related to
the coordinates of Hopf: transformations between the Hopf variables may be eftected
by a simple rotation on the Poincaré sphere.

Our intuition, which springs from molecular spectroscopy, causes us to think of
the unperturbed Hamiltonian M as describing two modes (e.g., of a molecule) whose
normal coordinates are taken to be z and y.® Working for now with the unperturbed
Hamiltonian it is possible to characterize the invariant tori of the system in terms
of the 7's or the quantities D, K, L. We label D-type dynamics normal mode, L-
type dynamics precessional mode, and K-type dynamics local mode in analogy with
the terminology used in molecular spectroscopy. In light of the Poisson bracket
relations of eq. (4), 7o and any one of D, K, and L (or linear combinations) may be
used to parameterize the invariant tori of Ho. The degeneracy of the unperturbed
system means that any of the various possible representations are acceptable. Under
the influence of a perturbation, however, it becomes critical to select the correct
parametrization of the unperturbed tori. This must be done in such a way that,
as one causes the perturbation to diminish, eventually to zero, the KAM tori of M
transmute smoothly into the invariant tori of Hy. In fact the three Hopf variables
are associated with separability of the isotropic oscillator in Cartesian (7;), polar
(m;) and rotated Cartesian coordinates (73). Importantly, rotations in the phase
space coordinates transform the Hopf variables into each other, as can be proven by
explicit calculation or by SU(2) rotations on the Poincaré sphere.

Normalization of an elliptic oscillator perturbed by a real polynomial in the co-
ordinates (z,y) about the center at the origin is guaranteed to produce an expansion
in which each term is a polynomial in the x’s. In the event that this polynomial
is a function of a single Hopf variable the implication is that the dynamics of the
reduced system is of purely local, normal or precessional mode nature. Does this
imply anything regarding separability or integrability? It is time to normalize the
exhibition problem.
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Normal Form

Normalization of M produces the following expression through order €* in terms
of the Hopf variables
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We now examine the normal form in the three known integrable limits.
(i)p=0

H is clearly separable in the original Cartesian variables and the normal form
in this limit, through 4** order, and using eq. (5) becomes

4 2 4

2 2
Hyr =27 + €2a? “om Bmm 15m v

(10)

et —705 me® 2115 w2 w2115 wym?® 705 m 3
[Se? — - -
16 16 16 16

Notice that the normal form depends on the single Hopf variable 7;. We have
verified that this pattern persists through 20*" order and we label it the normal mode
limit. Importantly, 7; is separable in the original coordinates and it is possible to
express the normal form completely in terms of the two actions J; and Jy of eq.
(10) with no angle appearing. To us, dependence of the normal form on w; is the
liallmark of separability in the original Cartesian coordinate system.

(ii) B = 3a

In this case the normal form depends on a single Hopf generator. this time 3.
through at least 20* order. Through 4%* order we obtain

705 ; ;
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In this limit H is also separable after a rotation

(' =y')/V2, Py = (P~ P)/V2

T

(&' +y')/v2, Py= (P, + P))/V2 (12)

which, incidentally, has the effect of interchanging 7 and =;.

Y

Taken together with results from previous studies of elliptic oscillators perturbed
by quartic and sextic perturbations*®>7:® it might seem that in the various integrable
limits the normal form collapses into an expansion that involves a single Hopf vari-
able. We have, however, discovered a counter example to this trend: H admits a
third, and less well known integrable limit that corresponds to global separability in
parabolic coordinates.

(i) a =208
Integrability in this limit was suggested by Chang, Tabor and Weiss® based on
Painlevé analysis and numerical evidence. Motivated by this, J. Greene subsequently

determined an analytic expression for the second invariant. This case is a particular
limit of the more general Hamiltonian

1 1
H = M:UWJF&I mie:w%:c@a:@a (13)
for which the second integral of the motion found by Greene is
I =D(yP,P, - zP}) + y*(D*s* + D*y* /4 4+ DBz) + (B — A/1)(P? + By*) (14)

The Hamilton-Jacobi equation corresponding to eq. (14) is separable in shifted
parabolic coordinates; for A = B =1, and D = € these coordinates are, z = /&7, y =
(§€—n)/2+3/(4¢).10. Examination of the 2*¢ order normal form suggests that o = 23
might correspond to an integrable limit: substitution reduces the normal form at that
order to an expression in terms of m;. However, to higher order the normal form is
the following
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which does not fit the pattern that might be expected, i.e., dependence on a single
Hopf variable. It thus appears that the normal form is only sensitive to separability in
the original Cartesian or polar coordinates in which case the associated separation
constants are directly related to the Hopf generators. We now provide a second
counter example from atomic physics in which normalization fails to uncover a non-
separable integrable limit, but does detect all separable cases.

THE GENERALIZED VAN DER WAALS POTENTIAL

In Cartesian coordinates and atomic units (m, = ¢ = h = 1) the Hamiltonian
for the hydrogen atom in a GVDW potential is,”811
1 2 2 2 T2 2 Nm 1

r
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where E is energy and vy and f are dimensionless physical parameters. Scaling
the coordinates by y~1/* and the momenta by '/6 and converting to cylindrical
coordinates (z = pcos ¢,y = psin ¢, z) gives the Hamiltonian,
1 1 1 m?
= N3 E = 2Py P2y 4 S(p2 2,2y _ L M 17
H=1 3P + P+ 500" +0%2%) - -+ o5 (17)
where r = /p? + z2. In (17) m is the z-component of the angular momentum vector
and is conserved due to axial symmetry.

The integrability of eq. (16) has been analyzed by a variety of methods, including
Lie group and Painlevé methods. In particular, it has been shown that the equations
of motion derived from (17) in semiparabolic coordinates with m = 0 have the
Painlevé property for 8 = &1,+2, and £1/2.!! Global invariants were obtained for
these cases using Noether’s theorem, but only for m = 0. A simpler and more direct
resolution of the issue of the integrability of eq. (16) has recently been proposed;
the invariants when m = 0 have been shown to be connected to separability of eq.
(16) in appropriate coordinates.!?> However, the case 8 = +1/2 and arbitrary m is
integrable but non-separable.

In order to normalize this problem we first pass over to the coordinates of
Kustaanheimo and Stiefel (KS). The KS transformation has been described elsewhere
in this connection” and results in a 4-dimensional 1:1:1:1 resonant Hamiltonian (after
several scalings and rotations in phase space)
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where w = /—8E which restricts eq. (17) to bound states with £ < 0. The
normal form was obtained in these coordinates using Mathematica as implemented
on an IBM RISC 6000.)® The normal form is most simply expressed in terms of
the components of the orbital angular momenta, L(L;, Ly, L) and the Runge-Lenz
vector A(Az, Ay, A,) which generate the Lie algebra of the group SO(4) [isomorphic
to SU(2) ® SU(2)]. Using the usual notation for the generators of SO(4), we write,
L = L(S23, S13,512) and A = A(S14, S24, S34). The generators of SU(2) ® SU(2)
are two angular momenta J and K which are related to the SO(4) generators by,

(L+A) (L-A)
= = 18
1= 02N k- s (1)
where,
{J;5,dk} = €uadt,  {Kj, Ki} = €Ki (19)
and (4,j,k) = (z,¥,2). The normal form through 4** order is (where n = wi&
4
Hyr =2n+16 =% (0 + 20 + 512’ - B Sia” +4 Sus” = 6 Su.?)
e'n 2 2 2 2 2 2
+16 — (4 S24% = B* S24° — S34® +48° S347) (20)

and the resulting equations of motion for the generators are

S12=0
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Degenerate equilibria arise whenever the right hand sides of two or more of these
equations vanish simultaneously. In fact, degenerate equilibria exist only in the three
integrable limits. Further, this is true for all m except if § = £1/2 when degenerate
equilibria exist only if m = 0. Hence, the cases producing degenerate equilibria
coincide with the separable limits. Evidently, normalization has failed to detect the
integrable limit § = £1/2, |m| > 0. Additional light is shed on the matter by
examining the normal form itself in each integrable limit through higher order.

(i) B = %2

S13=(1-5%) S12523 — (4 = B%) 514836 + (487 = 1) S14 S
IQNV

.WNA

il

¢t (807 — 487 S127 + 2401 S34?)

Hyr=2n+ vy

2%

8
4+ 5(=12576n° + 12480 1% 157 — 22081 §10*
Ew

8
+5(~125760 13 S342 + 374401 S12° S34? — 62880 1 S34%) (22)

)
w
In this limit, through all computed orders, the normal form is found to depend only
on the squares of the two generators {S12,S34} alias {L,, A,} whose Poisson brackets
mutually vanish.

(i) B = %1

This limit corresponds to rotational symmetry and the normal form becomes,

32¢*tnd  48etn
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In view of the constraint L.A = 0, pure dependence on A? is equivalent to pure
dependence on LZ. This is expected, given the initial rotational invariance. Thus
the reduced phase space is the sphere SU(2) and the energies are degenerate with
respect to m.

(i) B = +1/2
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Significantly, (S14, S24, S12) generate an SU(2) Lie algebra. Thus, through order e*
eq. (24) represents a dynamical symmetry limit of the original Hamiltonian because
the normal form can be expressed entirely in terms of the dynamical quantities A2
and Agz.. Therefore, the reduced phase space is the sphere SU(2) defined by the
components of A and a degenerate equilibrium exists. At orders higher than 4%,
terms in $%, appear, but vanish in the limit m = 0. It is these terms that destroy
any hope of finding degenerate equilibria when m # 0. Unlike the previous two
examples, when 8 = %1/2, for non-zero m the original Hamiltonian (16), while
integrable, is non-separable and this correlates with the appearance of terms that
break the dynamical symmetry. Incidentally, this result differs from Alhassid'* who
indicated that 8 = 1/2 is a dynamical symmetry limit for all m.

Normalization has a role to play in the detection of integrability. However, we
have found two examples that clearly violate the conjecture that the normal form
exhibits particular patterns that signify integrability or separability. We conclude
that further study of the relationship of normal form theory to integrability would
be profitable.
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Abstract

In this work we present a method to bound the diffusion near an elliptic
equilibrium point of a periodically time-dependent Hamiltonian system. The
method is based on the computation of the normal form (up to a certain degree)
of that Hamiltonian, in order to obtain an adequate number of (approximate)
first integrals of the motion. Then, bounding the variation of those integrals with
respect to time provides estimates of the diffusion of the motion.

The example used to illustrate the method is the Elliptic Spatial Restricted
Three Body Problem, in a neighbourhood of the points Lys. The mass parameter
and the eccentricity are the ones corresponding to the Sun-Jupiter case.

1 Introduction

The study of the nonlinear stability of an elliptic equilibrium point of a Hamiltonian
system is a classical and difficult topic. There are mainly two kind of results concerning
this: results of KAM type (perpetual stability on a Cantor set of initial conditions) and
results of Nekhoroshev type (stability for an exponentially long time span, on an open
set of initial conditions). A survey of both kind of methods can be found in Arnol’d.!

In this work we are going to focus on the results of Nekhoroshev type. Our purpose
will be to bound the diffusion of the motion near an elliptic equilibrium point of a
Hamiltonian system. The kind of methods we are going to use is very similar to the
ones used by Giorgilli et al.?2 and Simé® for autonomous Hamiltonians.
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