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Abstract: By a combination of asymptotic ODE estimates and numerical Evans func-
tion calculations, we establish stability of viscous shock solutions of the isentropic
compressible Navier–Stokes equations with γ -law pressure (i) in the limit as Mach
number M goes to infinity, for any γ ≥ 1 (proved analytically), and (ii) for M ≥ 2, 500,
γ ∈ [1, 2.5] or M ≥ 13, 000, γ ∈ [2.5, 3] (demonstrated numerically). This builds
on and completes earlier studies by Matsumura–Nishihara and Barker–Humpherys–
Rudd–Zumbrun establishing stability for low and intermediate Mach numbers, respec-
tively, indicating unconditional stability, independent of shock amplitude, of viscous
shock waves for γ -law gas dynamics in the range γ ∈ [1, 3]. Other γ -values may be
treated similarly, but have not been checked numerically. The main idea is to establish
convergence of the Evans function in the high-Mach number limit to that of a pres-
sureless, or “infinitely compressible”, gas with additional upstream boundary condition
determined by a boundary-layer analysis. Recall that low-Mach number behavior is
formally incompressible.
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1. Introduction

The isentropic compressible Navier-Stokes equations in one spatial dimension expressed
in Lagrangian coordinates take the form

vt − ux = 0,
(1.1)

ut + p(v)x =
(ux

v

)
x
,

where v is specific volume, u is velocity, and p pressure. We assume an adiabatic pressure
law

p(v) = a0v
−γ (1.2)

corresponding to a γ -law gas, for some constants a0 > 0 and γ ≥ 1. In the thermody-
namical rarified gas approximation, γ > 1 is the average over constituent particles of
γ = (n + 2)/n, where n is the number of internal degrees of freedom of an individual
particle [4]: n = 3 (γ = 5/3) for monatomic, n = 5 (γ = 7/5) for diatomic gas. For
dense fluids, γ is typically determined phenomenologically [19]. In general, γ is usually
taken within 1 ≤ γ ≤ 3 in models of gas-dynamical flow, whether phenomenological
or derived by statistical mechanics [42,43,45].

It is well known that these equations support viscous shock waves, or asymptotically-
constant traveling-wave solutions

(v, u)(x, t) = (v̂, û)(x − st), lim
z→±∞(v̂, û)(z) = (v, u)±, (1.3)

in agreement with physically-observed phenomena. In nature, such waves are seen to be
quite stable, even for large variations in pressure between v±. However, it is a long-stand-
ing mathematical question to what extent this is reflected in the continuum-mechanical
model (1.1), that is, for which choice of parameters (v±, u±, γ ) are solutions of (1.3)
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time-evolutionarily stable in the sense of PDE; see, for example, the discussions in
[3,25].

The first result on this problem was obtained by Matsumura and Nishihara in 1985
[36] using clever energy estimates on the integrals of perturbations in v and u, by
which they established stability with respect to the restricted class of perturbations with
“zero mass”, i.e., perturbations whose integral is zero, for shocks with sufficiently small
amplitude

|p(v+) − p(v−)| ≤ C(v−, γ ),

with C → ∞ as γ → 1, but C << ∞ for γ �= 1. There followed a number of works
by Liu, Goodman, Szepessy-Xin, and others [14,15,30,31,46] toward the treatment of
general, nonzero mass perturbations; see [48–50] and references therein. A complete
result of nonlinear stability with respect to general L1 ∩ H3 perturbations of small-
amplitude shocks of system (1.1) was finally obtained in 2004 by Mascia and Zumbrun
[35] using pointwise semigroup techniques introduced by Zumbrun and Howard [47,50]
in the strictly parabolic case. (For a precise statement, including rates of convergence,
see the subsuming Proposition 1.1 below.)

The result of [35], together with the small-amplitude spectral stability result of
Humpherys and Zumbrun [23]1 generalizing that of [36], in fact yields stability of
small-amplitude shocks of general symmetric hyperbolic-parabolic systems, largely set-
tling the problem of small-amplitude shock stability for continuum mechanical systems.

However, there remains the interesting question of large-amplitude stability. The
main result in this direction, following a general strategy proposed in [50], is a “refined
Lyapunov theorem”2 established by Mascia and Zumbrun [34,49] for general symmet-
ric hyperbolic–parabolic systems, stating that linearized L1 ∩ H3 → L1 ∩ H3 stability
is equivalent to and nonlinear L1 ∩ H3 → L1 ∩ H3 stability is implied by spectral
stability, defined as nonexistence of nonstable (nonnegative real part) eigenvalues of the
linearized operator L about the wave, other than at λ = 0 (where there is always an
eigenvalue, due to translational invariance of the underlying equations), together with
transversality of the traveling-wave connection and hyperbolic stability of the corre-
sponding discontinuous shock. Moreover, these same conditions imply also asymptotic
orbital stability, defined as convergence to the family of translates of the unperturbed
wave, in L p, p > 1, with optimal rates.

For concreteness, we state below the specialization of this result to system (1.1),
along with an extension of Raoofi [40] asserting phase-asymptotic stability, or conver-
gence to a specific translate of the unperturbed wave, under the additional assumption
that the initial perturbation has small L1-first moment. These results hold for general
hyperbolic-parabolic systems and waves under the additional assumptions of transver-
ality/hyperbolic stability. Under our hypotheses, transversality/hyperbolic stability hold
always for traveling waves of (1.1), as discussed in detail in the introduction of [34].

Proposition 1.1 ([34]). For any p such that p′ < 0 and p′′(0) > 0, in particular for
p as in (1.2) with γ ≥ 1, let (v̂, û)(x − st) be a spectrally stable traveling-wave (1.3)
of (1.1). Then, for any solution (ṽ, ũ)(x, t) of (1.1) with L1 ∩ H3 initial difference

1 The result of [23] is obtained by energy estimates combining the techniques of [36] with those of [14,15];
a similar approach has been used in [32] to obtain small-amplitude zero-mass stability of Boltzmann shocks.
See [12,39] for an alternative approach based on asymptotic ODE methods.

2 “Refined” because the linearized operator L does not possess a spectral gap, hence eLt decays time-alge-
braically and not exponentially; see [49,50] for further discussion.
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E0 := ‖(ṽ, ũ)(·, 0) − (v̂, û)‖L1∩H3 sufficiently small and some uniform C > 0, (ṽ, ũ)

exists for all t ≥ 0, with

‖(ṽ, ũ)(·, t) − (v̂, û)(· − st)‖L1∩H3 ≤ C E0 (stability). (1.4)

Moreover, there exists |α(t)| ≤ C E0, |α̇(t)| ≤ C E0(1 + t)−1/2 such that

‖(ṽ, ũ)(·, t) − (v̂, û)(· − st − α(t))‖L p ≤ C E0(1 + t)−(1/2)(1−1/p) (1.5)

for all 1 ≤ p ≤ ∞ (asymptotic orbital stability).

Proposition 1.2 ([40]). For (ṽ, ũ), (v̂, û) as in Proposition 1.1, if the initial difference
has in addition a sufficiently small L1-first moment

E1 := ‖|x | |(ṽ, ũ)(·, 0) − (v̂, û)|‖L1 , (1.6)

then also α converges to a limit α∞ as t → +∞, with

|α − α∞|(t), (1 + t)1/2|α̇(t)| ≤ C(ε) max{E0, E1}(1 + t)−1/2+ε, (1.7)

ε > 0 arbitrary (phase-asymptotic orbital stability).

Remark 1.3. Under the additional assumption that the initial perturbation and its first two
derivatives decay as E0(1 + |x |)−3/2, E0 sufficiently small, one may obtain also sharp
pointwise bounds on the solution, along with the sharp rate (1.7), ε = 0 for the phase;
see [20,21]. Such a localization condition, or the weaker (1.6) is necessary in order to
obtain a rate of convergence for α; smallness in L1 ∪ H3 is not enough, as may be seen
by the example of a small initial perturbation localized arbitrarily far from x = 0, which
takes arbitrarily long to reach and substantially affect the location of the shock profile.

Propositions 1.1–1.2 reduce the problem of large-amplitude stability to the study of
the associated eigenvalue equation (L − λ)u = 0, a standard analytically and numeri-
cally well-posed (boundary value) problem in ODE, which can be attacked by the large
body of techniques developed for asymptotic, exact, and numerical study of ODE. In
particular, there exist well-developed and efficient numerical algorithms to determine
the number of unstable roots for any specific linearized operator L , independent of its
origins in the PDE setting; see, e.g., [8–11,24] and references therein. In this sense, the
problem of determining stability of any single wave is satisfactorily resolved, or, for
that matter, of any compact family of waves. To determine stability of a family of waves
across an unbounded parameter regime, however, is another matter. It is this issue that
we confront in attempting to decide the stability of general isentropic Navier–Stokes
shocks.

As pointed out in [23,50], zero-mass stability implies (and in a practical sense is
roughly equivalent to) spectral stability. Thus, the original results of Matsumura and
Nishida [36] imply small-amplitude shock stability for general γ and large-amplitude
stability as γ → 1. Recently, Barker, Humpherys, Rudd, and Zumbrun [2] have car-
ried out a numerical Evans function study indicating stability on the large, but still
bounded, parameter range γ ∈ [1, 3], 1 ≤ M ≤ 3,000, where M is the Mach number
associated with the shock. For discussion of the Evans function, see Sect. 2.4. Recall
that Mach number is an alternative measure of shock strength, with 1 corresponding
to |p(v+) − p(v−)| = 0 and M → ∞ corresponding to |p(v+) − p(v−)| → ∞; see
Appendix A, [2], or Sect. 2.1 below. Mach 3, 000 is far beyond the hypersonic regime
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M ∼ 101 encountered in current aerodynamics. However, the mathematical question of
stability across arbitrary γ , M has remained open up to now.

In this paper, we resolve this question, using a combination of asymptotic ODE esti-
mates and numerical Evans function calculations to conclude, first, stability of isentropic
Navier–Stokes shocks in the large Mach number limit M → ∞ for any γ ≥ 1, and,
second, stability for all M ≥ 2, 500 for γ ∈ [1, 2.5] (for γ ∈ [1, 2], we obtain in fact sta-
bility for M ≥ 500) and for all M ≥ 13, 000 for γ ∈ [2.5, 3]. The first result is obtained
analytically, the second by a systematic numerical study. Together with the numerical
results of [2] (supplemented with additional computations for γ ∈ [2.5, 3]), this gives
convincing numerical evidence of unconditional stability for γ ∈ [1, 3], independent of
shock amplitude. As in [2], our numerical study is not a numerical proof, but contains
the necessary ingredients for one; see discussion, Sect. 6. The restriction to γ ∈ [1, 3]
is an arbitrary one coming from the choice of parameters on which the numerical study
[2] was carried out; stability for other γ can be easily checked as well. (Note that all
analytical results are for any γ ≥ 1.)

In particular, we establish without aid of numerics the following theorem, an immedi-
ate consequence of Corollary 3.3 and Proposition 3.5 below. The rest of our results, both
analytical and numerical, are stated after some preliminary preparations and discussion
in Sect. 3.

Theorem 1.4. For any γ ≥ 1, isentropic Navier–Stokes shocks are spectrally stable for
Mach number M sufficiently large (equivalently, v+ sufficiently small, taking without
loss of generality v− > v+ > 0 in (1.3)), hence nonlinearly stable in L1 ∩ H3, with
bounds (1.4)–(1.5), (1.7).

Our method of analysis is straightforward, though somewhat delicate to carry out.
Working with the rescaled and conveniently rearranged versions of the equations intro-
duced in [2], we observe that the associated eigenvalue equations converge uniformly
as Mach number goes to infinity on a “regular region” x ≤ L , for any fixed L > 0,
to a limiting system that is well-behaved (hence treatable by the standard methods of
[2,33,39]) in the sense that its coefficient matrix converges uniformly exponentially in
x to limits at x = ±∞, but is underdetermined at x = +∞.

On the complementary “singular region” x ≥ L , the convergence is only pointwise
due to a fast “inner structure” featuring rapid variation of the converging coefficient
matrices near x = +∞, but the behavior at x = +∞ is of course determinate. Performing
a boundary-layer analysis on the singular region and matching across x = L , we are
able to show convergence of the Evans function of the original system as the Mach
number goes to infinity to an Evans function of the limiting system with an appropri-
ately imposed additional condition at x = +∞, upstream of the shock. This reduces
the question of stability in the high-Mach number limit to existence or nonexistence of
zeroes of the limiting Evans function on 
eλ ≥ 0, a question that can be resolved by
routine numerical computation as in [2], or by energy estimates as in Appendix B.

The limiting system can be recognized as the eigenvalue equation associated with a
pressureless (γ = 0) gas, that is, the “infinitely-compressible” limit one might expect
as the Mach number goes to infinity. Recall that behavior in the low Mach number
limit is incompressible [18,27,29]. However, the upstream boundary condition has to
our knowledge no such simple interpretation. Indeed, to carry out the boundary-layer
analysis by which we derive this condition is the main technical difficulty of the paper.

Our results on the large-amplitude limit allow us to complete a global stability anal-
ysis for traveling-waves of a nontrivial, physically relevant, and much-studied sys-
tem of equations, allowing us to conclude for this canonical model that isentropic
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Navier–Stokes shocks are stable for a γ -law gas with γ ∈ [1, 3]. More, the large ampli-
tude limit appears to serve as an organizing center governing behavior also of shocks
of large but relatively modest size. See, for example, Figs. 2–4, from which universal
stability may be deduced essentially by inspection. Indeed, together with the small-
amplitude limit, this appears to essentially govern by interpolation behavior of shocks
of all amplitudes. The study of this limit thus has importance apart from the specific
physical interest of the high-Mach number regime.

Besides their independent interest, the results of this paper seem significant as proto-
types for future analyses. Our calculations use some properties specific to the structure
of (1.1). In particular, we make use of surprisingly strong energy estimates carried out
in [2] in confining unstable eigenvalues to a bounded set independent of shock strength
(or Mach number). Also, we use the extremely simple structure of the eigenvalue equa-
tion to carry out the key analysis of the eigenvalue flow in the singular region near
x = +∞ essentially by hand. However, these appear to be conveniences rather than
essential aspects of the analysis. It is our hope that the basic argument structure of this
paper together with [2] can serve as a blueprint for the global study of large-amplitude
stability in more general situations. In particular, we expect that the analysis will carry
over to the full (nonisentropic) equations of gas dynamics with ideal gas equation of
state.

2. Preliminaries

We begin by recalling a number of preliminary steps carried out in [2]. Making the
standard change of coordinates x → x − st , we consider instead stationary solutions
(v, u)(x, t) ≡ (v̂, û)(x) of

vt − svx − ux = 0,
(2.1)

ut − sux + (a0v
−γ )x =

(ux

v

)
x
.

Under the rescaling

(x, t, v, u) → (−εsx, εs2t, v/ε,−u/(εs)), (2.2)

where ε is chosen so that 0 < v+ < v− = 1, our system takes the convenient form

vt + vx − ux = 0,

ut + ux + (av−γ )x =
(ux

v

)
x
, (2.3)

where a = a0ε
−γ−1s−2.

2.1. Profile equation. Steady shock profiles of (2.3) satisfy

v′ − u′ = 0,

u′ + (av−γ )′ =
(

u′

v

)′
,
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subject to boundary conditions (v, u)(±∞) = (v±, u±), or, simplifying,

v′ + (av−γ )′ =
(

v′

v

)′
.

Integrating from −∞ to x , we get the profile equation

v′ = H(v, v+) := v(v − 1 + a(v−γ − 1)), (2.4)

where a is found by setting x = +∞, thus yielding the Rankine-Hugoniot condition

a = − v+ − 1

v
−γ
+ − 1

= v
γ
+

1 − v+

1 − v
γ
+

. (2.5)

Evidently, a → γ −1 in the weak shock limit v+ → 1, while a ∼ v
γ
+ in the strong shock

limit v+ → 0. The associated Mach number M may be computed as in [2], Appendix
A, as

M = (γ a)−1/2 (2.6)

so that M ∼ γ −1/2v
−γ /2
+ → +∞ as v+ → 0 and M → 1 as v+ → 1; that is, the

high-Mach number limit corresponds to the limit v+ → 0.

2.2. Eigenvalue equations. Linearizing (2.3) about the profile (v̂, û), we obtain the
eigenvalue problem

λv + v′ − u′ = 0,
(2.7)

λu + u′ −
(

h(v̂)

v̂γ +1 v

)′
=

(
u′

v̂

)′
,

where

h(v̂) = −v̂γ +1 + a(γ − 1) + (a + 1)v̂γ . (2.8)

We seek nonstable eigenvalues λ ∈ {
e(λ) ≥ 0} \ {0}, i.e., λ for which (2.7) pos-
sess a nontrivial solution (v, u) decaying at plus and minus spatial infinity. As pointed
out in [23,50], by divergence form of the equations, such solutions necessarily satisfy∫ +∞
−∞ v(x)dx = ∫ +∞

−∞ u(x)dx = 0, from which we may deduce that

ũ(x) =
∫ x

−∞
u(z)dz, ṽ(x) =

∫ x

−∞
v(z)dz

and their derivatives decay exponentially as x → ∞. Substituting and then integrating,
we find that (ũ, ṽ) satisfies the integrated eigenvalue equations (suppressing the tilde)

λv + v′ − u′ = 0, (2.9a)

λu + u′ − h(v̂)

v̂γ +1 v′ = u′′

v̂
. (2.9b)

This new eigenvalue problem differs spectrally from (2.7) only at λ = 0, hence spectral
stability of (2.7) is equivalent to spectral stability of (2.9). Moreover, since (2.9) has no
eigenvalue at λ = 0, one can expect more uniform stability estimates for the integrated
equations in the vicinity of λ = 0 [14,36,50].
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2.3. Preliminary estimates. The following estimates established in [2] indicate the suit-
ability of the rescaling chosen in Sect. 2.1. For completeness, we recall their proofs in
Appendix A.

Proposition 2.1 ([2]). For each γ ≥ 1, 0 < v+ ≤ 1, (2.4) has a unique (up to translation)
monotone decreasing solution v̂ decaying to its endstates with a uniform exponential
rate, independent of v+, γ . In particular, for 0 < v+ ≤ 1

12 and v̂(0) := v+ + 1
12 ,

|v̂(x) − v+| ≤
(

1

12

)
e− 3x

4 x ≥ 0, (2.10a)

|v̂(x) − v−| ≤
(

1

4

)
e

x+12
2 x ≤ 0. (2.10b)

Proposition 2.2 ([2]). Nonstable eigenvalues λ of (2.9), i.e., eigenvalues with nonneg-
ative real part, are confined for any 0 < v+ ≤ 1 to the region

� := {λ : 
e(λ) + |�m(λ)| ≤
(√

γ +
1

2

)2

}. (2.11)

2.4. Evans function formulation. Following [2], we may express (2.9) concisely as a
first-order system

W ′ = A(x, λ)W, (2.12)

A(x, λ) =
⎛
⎝

0 λ 1
0 0 1
λv̂ λv̂ f (v̂) − λ

⎞
⎠ , W =

⎛
⎝

u
v

v′

⎞
⎠ , ′ = d

dx
, (2.13)

where

f (v̂) = v̂ − v̂−γ h(v̂) = 2v̂ − a(γ − 1)v̂−γ − (a + 1), (2.14)

with h as in (2.8) and a as in (2.5), or, equivalently,

f (v̂) = 2v̂ − (γ − 1)

(
1 − v+

1 − v
γ
+

) (v+

v̂

)γ −
(

1 − v+

1 − v
γ
+

)
v

γ
+ − 1. (2.15)

Eigenvalues of (2.9) correspond to nontrivial solutions W for which the boundary
conditions W (±∞) = 0 are satisfied. Because A(x, λ) as a function of v̂ is asymptoti-
cally constant in x , the behavior near x = ±∞ of solutions of (2.13) is governed by the
limiting constant-coefficient systems

W ′ = A±(λ)W, A±(λ) := A(±∞, λ), (2.16)

from which we readily find on the (nonstable) domain 
λ ≥ 0, λ �= 0 of interest that there
is a one-dimensional unstable manifold W −

1 (x) of solutions decaying at x = −∞ and
a two-dimensional stable manifold W +

2 (x) ∧ W +
3 (x) of solutions decaying at x = +∞,

analytic in λ, with asymptotic behavior

W ±
j (x, λ) ∼ eµ±(λ)x V ±

j (λ) (2.17)
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as x → ±∞, where µ±(λ) and V ±
j (λ) are eigenvalues and associated analytically cho-

sen eigenvectors of the limiting coefficient matrices A±(λ). A standard choice of eigen-
vectors V ±

j [8,11,13,22], uniquely specifying W ±
j (up to constant factor) is obtained by

Kato’s ODE [26], a linear, analytic ODE whose solution can be alternatively character-
ized by the property that there exist corresponding left eigenvectors Ṽ ±

j such that

(Ṽ j · Vj )
± ≡ constant, (Ṽ j · V̇ j )

± ≡ 0, (2.18)

where “ ˙ ” denotes d/dλ; for further discussion, see [13,22,26].
Defining the Evans function D associated with operator L as the analytic function

D(λ) := det(W −
1 W +

2 W +
3 )|x=0, (2.19)

we find that eigenvalues of L correspond to zeroes of D both in location and multiplicity;
moreover, the Evans function extends analytically to λ = 0, i.e., to all of 
λ ≥ 0. See
[1,13,33,49] for further details.

Equivalently, following [2,38], we may express the Evans function as

D(λ) = (
W̃ +

1 · W −
1

)
|x=0 , (2.20)

where W̃ +
1 (x) spans the one-dimensional unstable manifold of solutions decaying at

x = +∞ (necessarily orthogonal to the span of W +
2 (x) and W +

3 (x)) of the adjoint eigen-
value ODE,

W̃ ′ = −A(x, λ)∗W̃ . (2.21)

The simpler representation (2.20) is the one that we shall use here.

3. Description of the Main Results

We can now state precisely our main results.

3.1. Limiting equations. Under the strategic rescaling (2.2), both profile and eigenvalues
equations converge pointwise as v+ → 0 to limiting equations at v+ = 0. The limiting
profile equation (the limit of (2.4)) is evidently

v′ = v(v − 1), (3.1)

with explicit solution

v̂0(x) = 1 − tanh(x/2)

2
, (3.2)

while the limiting eigenvalue system (the limit of (2.13)) is

W ′ = A0(x, λ)W, (3.3)

A0(x, λ) =
⎛
⎝

0 λ 1
0 0 1

λv̂0 λv̂0 f0(v̂0) − λ

⎞
⎠, (3.4)
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where

f0(v̂0) = 2v̂0 − 1 = − tanh(x/2). (3.5)

Indeed, this convergence is uniform on any interval v̂0 ≥ ε > 0, or, equivalently,
x ≤ L , for L any positive constant, where the sequence is therefore a regular perturba-
tion of its limit. We will call x ∈ (−∞, L] the “regular region” or “regular side”. For
v̂0 → 0 on the other hand, or x → ∞, the limit is less well-behaved, as may be seen
by the fact that ∂ f/∂v̂ ∼ v̂−1 as v̂ → v+, a consequence of the appearance of

(
v+
v̂

)
in

the expression (2.15) for f . Similarly, in contrast to v̂, A(x, λ) does not converge to
A+(λ) as x → +∞ with uniform exponential rate independent of v+, γ , but rather as
C v̂−1e−x/2. We call x ∈ [L , +∞) therefore the “singular region” or “singular side”.
(This is not a singular perturbation in the usual sense but a weaker type of singularity,
at least as we have framed the problem here.)

3.2. Limiting Evans function. We should now like to define a limiting Evans function
following the asymptotic Evans function framework introduced in [39] and establish
convergence to this function in the v+ → 0 limit, thus reducing the stability problem as
v+ → 0 to the study of the (fixed) limiting Evans function. However, we face certain
difficulties due to the (mild) singularity of the limit, as can be seen even at the first step
of defining an Evans function for the limiting system.

For, the limiting coefficient matrix

A0
+(λ) := A0(+∞, λ) =

⎛
⎝

0 λ 1
0 0 1
0 0 −1 − λ

⎞
⎠ (3.6)

is nonhyperbolic (in ODE sense) for all λ, having eigenvalues 0, 0,−1−λ; in particular,
the stable manifold drops to dimension one in the limit v+ → 0. Thus, the subspace in
which W +

2 and W +
3 should be initialized at x = +∞ is not self-determined by (3.6), but

must be deduced by a careful study of the double limit v+ → 0, x → +∞. But, the
computation

lim
v+→0

A(+∞, λ) =
⎛
⎝

0 λ 1
0 0 1
0 0 −γ − λ

⎞
⎠ �= A0

+(λ) = lim
x→∞ lim

v+→0
A(x, λ)

shows that these limits do not commute, except in the special case γ = 1 already treated
in [36] by other methods.

The rigorous treatment of this issue is the main work of the paper. However, the end
result can be easily motivated on heuristic grounds. A study of limv+→0 A(+∞, λ) on the
set 
eλ ≥ 0 of interest reveals that eigenmodes decouple into a single “fast” (stable sub-
space) decaying mode (∗, ∗, 1)T associated with eigenvalue −γ −λ of strictly negative
real part and a two-dimensional (center) subspace of neutral modes (r, 0)T associated

with Jordan block

(
0 λ

0 0

)
, of which there is only a single genuine eigenvector (1, 0, 0)T .

For v+ small, therefore, A+(λ) has also a single fast, decaying, eigenmode with eigen-
value near −γ − 1 and two slow eigenmodes with eigenvalues near zero, one decaying
and the other growing (recall, Sect. 2.4, that the stable subspace of A+ has dimension
two for 
eλ ≥ 0, λ �= 0 and the unstable subspace dimension one).
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Focusing on the single slow decaying eigenvector of A+, and considering its limiting
behavior as v+ → 0, we see immediately that it must converge in direction to ±(1, 0, 0)T .
For, the sequence of direction vectors, since continuously varying and restricted to a
compact set, has a nonempty, connected set of accumulation points, and these must be
eigenvectors of limv+→0 A+ with eigenvalues near zero. Since ±(1, 0, 0)T are the unique
candidates, we obtain the result. Indeed, both growing and decaying slow eigenmodes
must converge to this common direction, making the limiting analysis trivial.

The same argument shows that ±(1, 0, 0)T is the limiting direction of the slow stable
eigenmode of A0(x, λ) as x → +∞, that is, in the alternate limit

lim
x→∞ lim

v+→0
A(x, λ).

Since V +
2 := (1, 0, 0)T is the common limit of the slow decaying eigenmode in either of

the two alternative limits limv+→0 A+ and limv+→0 A+, it thus seems a reasonable choice
to use this limiting slow direction to define an Evans function for the limiting system
(3.4). On the other hand, the stable eigenmode

V3 := (b−1(λ/b + 1), b−1, 1)T ,

b = −1 − λ, of A0
+ is forced on us by the system itself, independent of the limiting

process.
Combining these two observations, we require that solutions W 0+

2 and W 0+
3 of the

limiting eigenvalue system (3.4) lie asympotically in directions V2 and V3, respectively,
thus determining a limiting, or “reduced” Evans function

D0(λ) := det(W 0−
1 W 0+

2 W 0+
3 )|x=0, (3.7)

or alternatively

D0(λ) =
(

W̃ 0+
1 · W 0−

1

)
|x=0

, (3.8)

with W̃ 0+
1 defined analogously as a solution of the adjoint limiting system lying asymp-

totically at x = +∞ in direction

Ṽ1 := (0, 1, b̄−1)T = (0, 1, (1 + λ̄)−1)T (3.9)

orthogonal to the span of V2 and V3, where “¯” denotes complex conjugate. (The prescrip-
tion of W 0−

1 in the regular region is straightforward: it must lie on the one-dimensional
unstable manifold of A0− as in the v+ > 0 case.)

3.3. Physical interpretation. Alternatively, the limiting equations may be derived by
taking a formal limit as v+ → 0 of the rescaled equations (2.3), recalling that a ∼ v

γ
+ ,

to obtain a limiting evolution equation

vt + vx − ux = 0,
(3.10)

ut + ux =
(ux

v

)
x
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corresponding to a pressureless gas, or γ = 0, then deriving profile and eigenvalue
equations from (3.10) in the usual way. This gives some additional insight on behavior,
of which we make important mathematical use in Appendix B. Physically, it has the
interpretation that, in the high-Mach number limit v+ → 0, effects of pressure are con-
centrated near x = +∞ on the infinite-density side, as encoded in the special upstream
boundary condition (u, u′, v, v′) → c(1, 0, 0, 0) as x → +∞ for the integrated eigen-
value equation, which may be seen to be equivalent to the conditions imposed on W +

j in
the previous subsection.

3.4. Analytical results. Defining D0 as in (3.7)–(3.8), we have the following main the-
orems, all valid for arbitrary γ ≥ 1.

Theorem 3.1. For each γ ≥ 1 and λ in any compact subset of 
eλ ≥ 0, D(λ) converges
uniformly to D0(λ) as v+ → 0.

Corollary 3.2. For each γ ≥ 1 and any compact subset � of 
eλ ≥ 0, D is nonvan-
ishing on � for v+ sufficiently small if D0 is nonvanishing on �, and is nonvanishing
on the interior of � only if D0 is nonvanishing there.

Proof. Standard properties of uniform limit of analytic functions. ��
Corollary 3.3. For each γ ≥ 1, isentropic Navier–Stokes shocks are spectrally stable
in the high-Mach number limit v+ → 0 if D0 is nonvanishing on the wedge

� : 
e(λ) + |�m(λ)| ≤
(√

γ +
1

2

)2

, 
eλ ≥ 0 (3.11)

and only if D0 is nonvanishing on the interior of �.

Proof. Corollary 3.2 together with Proposition 2.2. ��
Remark 3.4. Likewise, on any compact subset of 
eλ ≥ 0, |D| is uniformly bounded
from zero for v+ sufficiently small (M sufficiently large) if and only if |D0| is uniformly
bounded from zero. Thus, isentropic Navier–Stokes shocks are “uniformly stable” for
sufficiently small v+, in the sense that |D| is bounded from below independent of v+, if
and only if D0 is nonvanishing on � as defined in (3.11).

The following result completes our abstract stability analysis. The proof, given in
Appendix B, is by an energy estimate analogous to that of [36].3

Proposition 3.5. The limiting Evans function D0 (note: independent of γ ) is nonzero on

eλ ≥ 0.

From Proposition 3.5 and Corollary 3.3 we obtain Main Theorem 1.4 stated in the
Introduction.

3 Stability for γ = 1, proved in [36], already implies nonvanishing of D0 outside the imaginary interval
[−i

√
3/2, +i

√
3/2], by Corollary 3.3.
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3.5. Numerical computations. Unfortunately, the energy estimate used to establish Prop-
osition 3.5, though mathematically elegant, yields only the stated, abstract result and not
quantitative estimates. A simpler and more general approach, that does yield quantitative
information, is to compute the reduced Evans function numerically. We carry out this
by-now routine numerical computation using the methods of [2]. Specifically, we map
a semicircle ∂({
eλ ≥ 0} ∩ {|λ| ≤ 10}) enclosing � for γ ∈ [1, 3] by D0 and compute
the winding number of its image about the origin to determine the number of zeroes of
D0 within the semicircle, and thus within �. For details of the numerical algorithm, see
[2,11,23].

The result is displayed in Fig. 1, clearly indicating stability. More precisely, the
minimum of |D| on the semicircle is found to be ≈ 0.2433. Together with Rouchés
Theorem, this gives explicit bounds on the size of the Mach number for which shocks
are stable, as displayed in Table 1, Sect. 6. Specifically, computing numerically the first
value of M at which |D − D0|/|D0| < 1/2 on the entire semicircle, we obtain the
lower bounds M ≥ 500 for γ ∈ [1, 2], M ≥ 2, 400 for γ ∈ [2, 2.5], and M ≥ 13,000
for γ ∈ [2.5, 3], all corresponding approximately to v+ = 10−3. Recall by Rouchés
Theorem that winding number is unaffected by relative error |D − D0|/|D0| < 1.

This is essentially a convergence study, since we rely on the assumed convergence
of the relative error to zero in concluding that relative error remains < 1 also for
Mach numbers larger than this minimum value. In Fig. 2, we superimpose on the
image of the semicircle by D0 its (again numerically computed) image by the full
Evans function D, for a monatomic gas γ = 5/3 at successively higher Mach numbers
v+ =1e-1,1e-2,1e-3,1e-4,1e-5,1e-6, graphically demonstrating the con-
vergence of D to D0 as v+ approaches zero and (numerically) verifying the conclusions
of Table 1.

In fact, we can see a great deal more from Fig. 2. For, note that the displayed contours
are, to the scale visible by eye, “monotone” in v+, or nested, one within the other (they
do not appear so at smaller scales). Thus, lower-Mach number contours are essentially
“trapped” within higher-Mach number contours, with the worst-case, outmost contour
corresponding to the limiting Evans function D0. From this observation, we may con-
clude with confidence stability down to the smallest value M ≈ 5.5 displayed in the
figure, corresponding (see Table 2) to v+ = 10−1. Note, further, that the low-Mach
number contours appear to be shrinking to a point as v+ → 1. This is indeed the case,
as can be confirmed by the small-amplitude analysis of [39]; see Remark 3.6.

That is, a great deal of topological information is encoded in the analytic family of
Evans functions indexed by v+, from which stability may be deduced almost by inspec-
tion. Behavior for other γ ∈ [1, 3] is similar. See, for example, the case γ = 3 displayed
in Fig. 4, which is virtually identical to Fig. 2.4

Such topological information does not seem to be available from other methods of
investigating stability such as direct discretation of the linearized operator about the
wave [28] or studies based on linearized time-evolution or power methods [5,6]. This
represents in our view a significant advantage of the Evans function formulation.

Remark 3.6. Recall that the Evans function is not determined uniquely, but only up to
a nonvanishing analytic factor [1,13]. The simple contour structure in Fig. 2 is thus
partly due to a favorable choice of D induced by the initialization at ±∞ by Kato’s
ODE [26], as described in [2,11,24]. A canonical algorithm for tracking bases of evolv-
ing subspaces, this in some sense minimizes “action”; see [22] for further discussion.

4 In particular, Fig. 4 indicates stability down to v+ = 10−1, or Mach number ∼ 20, from which we may
conclude unconditional stability on the whole range γ ∈ [1, 3] of [2].
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Fig. 1. The image of the semi-circular contour via the Evans function for the reduced system. Note that the
winding number of this graph is zero. Hence, there are no unstable eigenvalues in the semi-circle
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Fig. 2. Convergence to the limiting Evans function as v+ → 0 for a monatomic gas, γ = 5/3. The con-
tours depicted, going from inner to outer, are images of the semicircle under D for v+ =1e-1,1e-2,
1e-3,1e-4,1e-5,1e-6. The outermost contour is the image under D0, which is nearly indistinguishable
from the image for v+ =1e-6

In particular, this leads to the surprisingly simple constant small-amplitude limit, as
we show by explicit computation in Appendix D for the case of a Burgers shock. The
small-amplitude analysis of [39] shows that the Evans function in the general case con-
verges to a multiple of the Burgers Evans function, yielding the result in the general
case.

Remark 3.7. Note that the limiting equations, and the limiting Evans function D0 are
both independent of γ . To study high-Mach number stability for γ > 3, therefore,
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requires only to examine D0 on successively larger semicircles. Thus, our methods in
combination with the those of [2], allow us to determine stability in principle over any
bounded interval in γ , for γ ≥ 1 and for all Mach numbers M ≥ 1.

Remark 3.8. As Fig. 2 suggests, an alternative method for determining stability, without
reference to D0, is to compute the full Evans function for sufficiently high Mach number.
That is, nonvanishing of D0, and thus stability of sufficiently high Mach number shocks
for γ ∈ [1, 3], can already be concluded by large-but-finite Mach number study of [2]
together with the fact that a limit D → D0 exists (see also Remark 3.4).

3.6. Conclusions. The analytical result of Theorem 1.4 guarantees stability for γ ≥ 1,
M sufficiently large. For γ ∈ [1, 2.5], our numerical results indicate stability for M ≥
2,500 by a crude Rouche bound, and indeed much lower if further structure is taken into
account. Together with the small and intermediate Mach number studies of [2,36] for
M ≤ 3, 000, this yields unconditional stability of isentropic Navier–Stokes shocks for
γ ∈ [1, 2.5] and M ≥ 1. Additional intermediate-strength computations supplementing
[2] extend this result to γ ∈ [1, 3]. There is no inherent restriction to γ ∈ [1, 3]; as
discussed in Remark 3.7, numerical computations can be carried out for any value of γ

to determine stability (or instability) for all M ≥ 1. Indeed, our method of analysis indi-
cates that the large-γ limit is quite analogous to the high-Mach number limit v+ → 0,
suggesting the possibility to establish still more general results encompassing all γ ≥ 1,
M ≥ 1.

Our numerical results reveal also an unexpected “universality” of behavior in the
high-Mach number regime, beyond just convergence to the limiting system. Namely,
we see (cf. Figs. 2 and 4) that behavior for a given v+ is virtually independent of the
value of γ . This also indicates that v+ and not M is the more useful measure of shock
strength in this regime.

4. Boundary-Layer Analysis

We now carry out the main work of the paper, analyzing the flow of (2.13) in the singular
region. Our starting point is the observation that

A(x, λ) =
⎛
⎝

0 λ 1
0 0 1
λv̂ λv̂ f (v̂) − λ

⎞
⎠ (4.1)

is approximately block upper-triangular for v̂ sufficiently small, with diagonal blocks(
0 λ

0 0

)
and

(
f (v̂) − λ

)
that are uniformly spectrally separated on 
eλ ≥ 0, as follows

by

f (v̂) ≤ 2v̂ − 1 ≤ −1/2. (4.2)

We exploit this structure by a judicious coordinate change converting (2.13) to a system
in exact upper triangular form, for which the decoupled “slow” upper lefthand 2 × 2
block undergoes a regular perturbation that can be analyzed by standard tools intro-
duced in [39]. Meanwhile, the fast, lower righthand 1 × 1 block, since scalar, may be
solved exactly.
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Fig. 3. Convergence to the limiting Evans function as v+ → 0 for γ = 1. The contours depicted, going from
inner to outer, are images of the semicircle under D for v+ =1e-1,1e-2,1e-3,1e-4,1e-5,1e-6. The
outermost contour is the image under D0
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Fig. 4. Convergence to the limiting Evans function as v+ → 0 for γ = 3. The contours depicted, going from
inner to outer, are images of the semicircle under D for v+ =1e-1,1e-2,1e-3,1e-4,1e-5,1e-6. The
outermost contour is the image under D0

The global structure of this argument loosely follows the general strategy introduced
in [39] of first decoupling fast and slow modes, then treating slow modes by regular per-
turbation methods. However, there are interesting departures that may be of use in other
degenerate situations. First, we only partially decouple the system, to block-triangular
rather than block-diagonal form as in more standard cases, and second, we introduce a
more stable method of block-reduction taking account of usually negligible derivative
terms in the definition of block-triangularizing transformations, which, if ignored, would
in this case lead to unacceptably large errors.
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4.1. Preliminary transformation. We first block upper-triangularize by a static (con-
stant) coordinate transformation the limiting matrix

A+ = A(+∞, λ) =
⎛
⎝

0 λ 1
0 0 1

λv+ λv+ f (v+) − λ

⎞
⎠ (4.3)

at x = +∞ using special block lower-triangular transformations

R+ :=
(

I 0
λv+θ+ 1

)
, L+ := R−1

+ =
(

I 0
−λv+θ+ 1

)
, (4.4)

where I denotes the 2 × 2 identity matrix and θ+ ∈ C
1×2 is a 1 × 2 row vector.

Lemma 4.1. For each γ ≥ 1, on any compact subset of 
eλ ≥ 0, for each v+ > 0
sufficiently small, there exists a unique θ+ = θ+(v+, λ) such that Â+ := L+ A+ R+ is
upper block-triangular,

Â+ =
(

λ(J + v+11θ+) 11
0 f (v+) − λ − λv+θ+11

)
, (4.5)

where J =
(

0 1
0 0

)
and 11 =

(
1
1

)
, satisfying a uniform bound

|θ+| ≤ C. (4.6)

Proof. Setting the (2, 1) block of Â+ to zero, we obtain the matrix equation

θ+(bI − λJ ) = −11T + λv+θ+11θ+,

where b = f (v+) − λ, or, equivalently, the fixed-point equation

θ+ =
(
−11T + λv+θ+11θ+

)
(bI − λJ )−1. (4.7)

By det(bI − λJ ) = b2 �= 0, (bI − λJ )−1 is uniformly bounded on compact subsets of

eλ ≥ 0 (indeed, it is uniformly bounded on all of 
eλ ≥ 0), whence, for |λ| bounded
and v+ sufficiently small, there exists a unique solution by the Contraction Mapping
Theorem, which, moreover, satisfies (4.6). ��

4.2. Dynamic triangularization. Defining now Y := L+W and

Â(x, λ) = L+ A(x, λ)R+

=
(

λ(J + v+11θ+) 11
λ(v̂ − v+)11T + λv+( f (v̂) − f (v+))θ+ f (v̂) − λ − λv+θ+11

)
,

we have converted (2.13) to an asymptotically block upper-triangular system

Y ′ = Â(x, λ)Y, (4.8)
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with Â+ = Â(+∞, λ) as in (4.5). Our next step is to choose a dynamic transformation
of the same form

R̃ :=
(

I 0
	̃ 1

)
, L̃ := R̃−1 =

(
I 0

−	̃ 1

)
, (4.9)

converting (4.8) to an exactly block upper-triangular system, with 	̃ uniformly expo-
nentially decaying at x = +∞: that is, a regular perturbation of the identity.

Lemma 4.2. For each γ ≥ 1, on any compact subset of 
eλ ≥ 0, for L sufficiently
large and each v+ > 0 sufficiently small, there exists a unique 	̃ = 	̃(x, λ, v+) such
that Ã := L̃ Â(x, λ)R̃ + L̃ ′ R̃ is upper block-triangular,

Ã =
(

λ(J + v+11θ+) + 11	̃ 11
0 f (v̂) − λ − λv+θ+11 − 	̃11

)
, (4.10)

and 	̃(L) = 0, satisfying a uniform bound

|	̃(x, λ, v+)| ≤ Ce−ηx , η > 0, x ≥ L , (4.11)

independent of the choice of L, v+.

Proof. Setting the (2, 1) block of Ã to zero and computing

L̃ ′ R̃ =
(

0 0
−	̃′ 0

)(
I 0
	̃ I

)
=

(
0 0

−	̃′ 0

)
,

we obtain the matrix equation

	̃′ − 	̃ (bI − λ(J + v+11θ+)) = ζ + 	̃11	̃, (4.12)

where b(x, λ, v+) := f (v̂) − λ − λv+θ+11 and the forcing term

ζ := λ(v̂ − v+)11T + λv+( f (v̂) − f (v+))θ+

by derivative estimate d f/d v̂ ≤ C v̂−1 together with the Mean Value Theorem is uni-
formly exponentially decaying:

|ζ | ≤ C |v̂ − v+| ≤ C2e−ηx , η > 0. (4.13)

Initializing 	̃(L) = 0, we obtain by Duhamel’s Principle/Variation of Constants the
representation (supressing the argument λ)

	̃(x) =
∫ x

L
Sy→x (ζ + 	̃11	̃)(y) dy, (4.14)

where Sy→x is the solution operator for the homogeneous equation

	̃′ − 	̃ (bI − λ(J + v+11θ+)) = 0,

or, explicitly,

Sy→x = e
∫ x

y b(y)dye−λ(J+v+11θ+)(x−y).
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For |λ| bounded and v+ sufficiently small, we have by matrix perturbation theory that
the eigenvalues of −λ(J + v+11θ+) are small and the entries are bounded, hence

|e−λ(J+v+11θ+)z | ≤ Ceεz

for z ≥ 0. Recalling the uniform spectral gap 
eb = f (v̂)−
eλ ≤ −1/2 for 
eλ ≥ 0,
we thus have

|Sy→x | ≤ Ce−η(x−y) (4.15)

for some C , η > 0. Combining (4.13) and (4.15), we obtain
∣∣∣∣
∫ x

L
Sy→xζ(y) dy

∣∣∣∣ ≤
∫ x

L
C2e−η(x−y)e−(η/2)ydy

= C3e−(η/2)x . (4.16)

Defining 	̃(x) =: θ̃ (x)e−(η/2)x and recalling (4.14) we thus have

θ̃ (x) = f + e(η/2)x
∫ x

L
Sy→x e−ηy θ̃11θ̃ (y) dy, (4.17)

where f := e(η/2)x
∫ x

L Sy→xζ(y) dy is uniformly bounded, | f | ≤ C3, and

e(η/2)x
∫ x

L
Sy→x e−ηy θ̃11θ̃ (y) dy

is contractive with arbitrarily small contraction constant ε > 0 in L∞[L , +∞) for
|θ̃ | ≤ 2C3 for L sufficiently large, by the calculation

∣∣∣∣e(η/2)x
∫ x

L
Sy→x e−ηy θ̃111θ̃1(y) − e(η/2)x

∫ x

L
Sy→x e−ηy θ̃211θ̃2(y)

∣∣∣∣

≤
∣∣∣∣e(η/2)x

∫ x

L
Ce−η(x−y)e−ηy dy

∣∣∣∣ ‖θ̃1 − θ̃2‖∞ max
j

‖θ̃ j‖∞

≤ e−(η/2)L
∣∣∣∣
∫ x

L
Ce−(η/2)(x−y) dy

∣∣∣∣ ‖θ̃1 − θ̃2‖∞ max
j

‖θ̃ j‖∞

= C3e−(η/2)L‖θ̃1 − θ̃2‖∞ max
j

‖θ̃ j‖∞.

It follows by the Contraction Mapping Principle that there exists a unique solution θ̃

of fixed point equation (4.17) with |θ̃ (x)| ≤ 2C3 for x ≥ L , or, equivalently (redefining
the unspecified constant η), (4.11). ��
Remark 4.3. The above calculation is the most delicate part of the analysis, and the
main technical point of the paper. The interested reader may verify that a “quasi-static”
transformation treating term 	̃′ in (4.12) as an error, as is typically used in situations
of slowly-varying coefficients (see for example [33,39]), would lead to unacceptable
errors of magnitude

O(|( f (v̂))′||v̂ − v+|) = O(|d f/d v̂||v̂ − v+|) = O(|v̂|−1|v̂ − v+|).
One may think of the exact ODE solution (4.9) as “averaging” the effects of rapidly-
varying coefficients by integration of (4.12). Note that success of this approach depends
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in principle only on spectral separation at infinity and not everywhere along the pro-
file; thus, it may be considered as interpolating between the tracking and conjugation
lemmas of [50,33,48,49,39], used respectively to treat slowly-varying- and asymptoti-
cally constant- coefficient systems. This seems likely to be of use also in other delicate
situations.

Remark 4.4. One may combine the static and the dynamic triangularization used in this
section. We may define

	 = 	̃ + λv+θ+, (4.18)

and obtain the two different terms 	̃ and λv+θ+ as follows. Consider Ã being defined as

L ′ R + L ÂR, where L =
(

I 0
−	 1

)
and R := L−1. One obtains

Ã =
(

λJ + 11	 11
−	′ + ( f (v̂) − λ − 	11)	 − λ	J + λv̂11T f (v̂) − λ − 	11

)
.

A necessary and sufficient condition for Ã to be upper block-triangular is that 	 solve

	′ = ( f (v̂) − λ − 	.11)	 − λ	J + λv̂11T . (4.19)

If a solution 	 is bounded at +∞ and 	′ → 0, then the limit of 	, called 	+, solves
( f (v+) − λ − 	+11)	+ − λ	+ J + λv+11T = 0. The unique solution of this equation
that is uniformly bounded by C |λ|v+ for 0 < v+ < 1/C and λ in a compact subset of

eλ ≥ 0 is 	+ = λv+θ+. Considering now 	̃ = 	−λv+θ+ and replacing in Eq. (4.19),
one obtains the equation (4.12) for 	̃.

The preliminary, static, transformation is thus a way of subtracting the behavior at
infinity (and choosing this behavior) in the dynamic triangularization and can be used
in general. For each possible behavior at infinity, however, we have a different solution
	̃ and our construction is the only one that ensures the uniform bounds in v+ at infinity.

4.3. Fast/Slow dynamics. Making now the further change of coordinates

Z = L̃Y

and computing

(L̃Y )′ = L̃Y ′ + L̃ ′Y = (L̃ A+ + L̃ ′)Y = (L̃ A+ R̃ + L̃ ′ R̃)Z ,

we find that we have converted (4.8) to a block-triangular system

Z ′ = ÃZ =
(

λ(J + v+11θ+) + 11	̃ 11
0 f (v̂) − λ − λv+θ+11 − 	̃11

)
Z , (4.20)

related to the original eigenvalue system (2.13) by

W = L Z , R := R+ R̃ =
(

I 0
	 1

)
, L := R−1 =

(
I 0

−	 1

)
. (4.21)
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Since it is triangular, (4.20) may be solved completely if we can solve the component
systems associated with its diagonal blocks. The fast system

z′ =
(

f (v̂) − λ − λv+θ+11 − 	̃11
)

z

associated to the lower righthand block features rapidly-varying coefficients. However,
because it is scalar, it can be solved explicitly by exponentiation.

The slow system

z′ =
(
λ(J + v+11θ+) + 11	̃

)
z (4.22)

associated to the upper lefthand block, on the other hand, by (4.11), is an exponentially
decaying perturbation of a constant-coefficient system

z′ = λ(J + v+11θ+)z (4.23)

that can be explicitly solved by exponentiation, and thus can be well-estimated by com-
parison with (4.23). A rigorous version of this statement is given by the conjugation
lemma of [37]:

Proposition 4.5 ([37]). Let M(x, λ) = M+(λ) + 	(x, λ), with M+ continuous in λ and
|	(x, λ)| ≤ Ce−ηx , for λ in some compact set �. Then, there exists a globally invertible
matrix P(x, λ) = I + Q(x, λ) such that the coordinate change z = Pv converts the
variable-coefficient ODE z′ = M(x, λ)z to a constant-coefficient equation

v′ = M+(λ)v,

satisfying for any L, 0 < η̂ < η a uniform bound

|Q(x, λ)| ≤ C(L , η̂, η, max |(M+)i j |, dim M+)e−η̂x for x ≥ L. (4.24)

Proof. See [37,49], or Appendix C. ��

By Proposition 4.5, the solution operator for (4.22) is given by

P(x, λ)eλ(J+v+11θ+(λ,v+))(x−y) P(y, λ)−1, (4.25)

where P is a uniformly small perturbation of the identity for x ≥ L and L > 0 suffi-
ciently large.

5. Proof of the Main Theorem

With these preparations, we turn now to the proof of the main theorem.
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5.1. Boundary estimate. We begin by establishing the following key estimates on
W̃ +

1 (L), that is, the value of the dual mode W̃ +
1 appearing in (2.20) at the boundary

x = L between regular and singular regions.

Lemma 5.1. For each γ ≥ 1, for λ on any compact subset of 
eλ ≥ 0, and L > 0
sufficiently large, with W̃ +

1 normalized as in [13,39,2],

|W̃ +
1 (L) − Ṽ1| ≤ Ce−ηL (5.1)

as v+ → 0, uniformly in λ, where C, η > 0 are independent of L and

Ṽ1 := (0, 1, (1 + λ̄)−1)T

is the limiting direction vector (3.9) appearing in the definition of D0.

Corollary 5.2. For each γ ≥ 1, under the hypotheses of Lemma 5.1,

|W̃ 0+
1 (L) − Ṽ1| ≤ Ce−ηL (5.2)

and

|W̃ +
1 (L) − W̃ 0+

1 (L)| ≤ Ce−ηL (5.3)

as v+ → 0, uniformly in λ, where C, η > 0 are independent of L and W̃ 0+
1 is the solution

of the limiting adjoint eigenvalue system appearing in definition (3.8) of D0.

Proof of Lemma 5.1. Making the coordinate-change

Z̃ := R∗W̃ , (5.4)

R as in (4.21), reduces the adjoint equation W̃ ′ = −A∗W̃ to block lower-triangular
form,

Z̃ ′ = − Ã∗ Z̃

=
(

−
(
λJ + λv+11θ+) + 11	̃

)∗
0

−11T − f (v̂) + λ̄ + λ̄v+(θ+11)∗ + (	̃11)∗

)
Z , (5.5)

with “¯” denoting complex conjugate.
Denoting by Ṽ +

1 a suitably normalized element of the one-dimensional (slow) stable
subspace of − Ã∗, we find, similarly as in the discussion of Sect. 3.2 that, without loss
of generality,

Ṽ +
1 → (0, 1, (γ + λ̄)−1)T (5.6)

as v+ → 0, while the associated eigenvalue µ̃+
1 → 0, uniformly for λ on an compact

subset of 
eλ ≥ 0. The dual mode Z̃+
1 = R∗W̃ +

1 is uniquely determined by the prop-
erty that it is asymptotic as x → +∞ to the corresponding constant-coefficient solution
eµ̃+

1 Ṽ +
1 (the standard normalization of [2,13,39]).

By lower block-triangular form (5.5), the equations for the slow variable z̃T :=
(Z̃1, Z̃2) decouples as a slow system

z̃′ = −
(
λ(J + v+11θ+) + 11	̃

)∗
z̃ (5.7)



Stability of Isentropic Navier–Stokes Shocks 23

dual to (4.22), with solution operator

P∗(x, λ)−1e−λ̄(J+v+11θ+)∗)(x−y) P(y, λ)∗ (5.8)

dual to—that is, the adjoint inverse of—(4.25), i.e. (fixing y = L , say), having solutions
of general form

z̃(λ, x) = P∗(x, λ)−1e−λ̄(J+v+11θ+)∗)x ṽ, (5.9)

ṽ ∈ C
2 arbitrary.

Denoting by

Z̃+
1 (L) := R∗W̃ +

1 (L),

therefore, the unique (up to constant factor) decaying solution at +∞, and ṽ+
1 :=

((Ṽ +
1 )1, (Ṽ +

1 )2)
T , we thus have evidently

z̃+
1(x, λ) = P∗(x, λ)−1e−λ̄(J+v+11θ+)∗)x ṽ+

1 ,

which, as v+ → 0, is uniformly bounded by

|z̃+
1(x, λ)| ≤ Ceεx (5.10)

for arbitrarily small ε > 0 and, by (5.6), converges for x less than or equal to any fixed
X simply to

lim
v+→0

z̃+
1(x, λ) = P∗(x, λ)−1(0, 1)T . (5.11)

Defining by q̃ := (Z̃+
1 )3 the fast coordinate of Z̃+

1 , we have, by (5.5),

q̃ ′ +
(

f (v̂) − λ̄ − (λv+θ+11 + 	̃11)∗
)

q̃ = 11T z̃+
1 ,

whence, by Duhamel’s principle, any decaying solution is given by

q̃(x, λ) =
∫ +∞

x
e
∫ x

y b̃(z,λ,v+)dz11T z+
1(y) dy,

where

b̃(y, λ, v+) := −b̄(y, λ, v+) = −
(

f (v̂) − λ̄ − (λv+θ+11 + 	̃11)∗
)

,

b as in (4.12). Recalling, for 
eλ ≥ 0, that 
eb̃ = −
b ≥ 1/2, combining (5.10) and
(5.11), and noting that b̃ converges uniformly on y ≤ Y as v+ → 0 for any Y > 0 to

b̃0(y, λ) := − f0(v̂) + λ̄ + (	̃011)∗

= (1 + λ̄) + O(e−ηy),

we obtain by the Lebesgue Dominated Convergence Theorem that

q̃(L , λ) →
∫ +∞

L
e
∫ L

y b̃0(z,λ)dz11T (0, 1)T dy

=
∫ +∞

L
e(1+λ̄)(L−y)+

∫ L
y O(e−ηz)dz dy

= (1 + λ̄)−1(1 + O(e−ηL)).
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Recalling, finally, (5.11), and the fact that

|P − I d|(L , λ), |R − I d|(L , λ) ≤ Ce−ηL

for v+ sufficiently small, we obtain (5.1) as claimed. ��
Proof of Corollary 5.2. Applying Proposition 4.5 to the limiting adjoint system,

W̃ ′ = −(A0)∗W̃ =
⎛
⎝

0 0 0
−λ̄ 0 0
−1 −1 1 + λ̄

⎞
⎠ W̃ + O(e−ηx )W̃ ,

we find that, up to an I d + O(e−ηx ) coordinate change, W̃ 0+
1 (x) is given by the exact

solution W̃ ≡ Ṽ1 of the limiting, constant-coefficient system

W̃ ′ = −(A0)∗W̃ =
⎛
⎝

0 0 0
−λ̄ 0 0
−1 −1 1 + λ̄

⎞
⎠ W̃ .

This yields immediately (5.2), which, together with (5.1), yields (5.3). ��
Remark 5.3. Noting that (5.2) is sharp, we see from (5.3) that the error between W̃ +

1 (L)

and W̃ 0+
1 (L) is already within the error tolerance of the numerical scheme used to approx-

imate D0, in which W̃ 0+
1 is initialized at x = L with approximate value Ṽ1 [2,11,39].

Thus, so long as the flow on the regular region x ≤ L well-approximates the exact
limiting flow as v+ → 0, we can expect convergence of D to D0 based on the known
convergence of the numerical approximation scheme.

5.2. Convergence to D0. As hinted by Remark 5.3, the rest of our analysis is standard
if not entirely routine.

Lemma 5.4. For each γ ≥ 1, on x ≤ L for any fixed L > 0, there exists a coordinate-
change W = T Z conjugating (2.13) to the limiting equations (3.4), T = T (x, λ, v+),
satisfying a uniform bound

|T − I d| ≤ C(L)v+ (5.12)

for all v+ > 0 sufficiently small.

Proof. For x ∈ (−∞, 0], this is a consequence of the Convergence Lemma of [39], a
variation on Proposition 4.5, together with uniform convergence of the profile and eigen-
value equations. For x ∈ [0, L], it is essentially continuous dependence; more precisely,
observing that |A − A0| ≤ C1(L)v+ for x ∈ [0, L], setting S := T − I d, and writing
the homological equation expressing conjugacy of (2.13) and (3.4), we obtain

S′ − (AS − S A0) = (A − A0),

which, considered as an inhomogeneous linear matrix-valued equation, yields an expo-
nential growth bound

S(x) ≤ eCx (S(0) + C−1C1(L)v+)

for some C > 0, giving the result. ��
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Proof of Theorem 3.1. Lemma 5.4, together with convergence as v+ → 0 of the unsta-
ble subspace of A− to the unstable subspace of A0− at the same rate O(v+) (as follows
by spectral separation of the unstable eigenvalue of A0 and standard matrix perturbation
theory) yields

|W −
1 (0, λ) − W 0−

1 (0, λ)| ≤ C(L)v+. (5.13)

Likewise, Lemma 5.4 gives

|W̃ +
1 (0, λ) − W̃ 0+

1 (0, λ)| ≤ C(L)v+|W̃ +
1 (0, λ)|

+|SL→0
0 ||W̃ +

1 (L , λ) − W̃ 0+
1 (L , λ)|, (5.14)

where Sy→x
0 denotes the solution operator of the limiting adjoint eigenvalue equation

W̃ ′ = −(A0)∗W̃ . Applying Proposition 4.5 to the limiting system, we obtain

|SL→0
0 | ≤ C2e−A0

+ L ≤ C2L|λ|
by direct computation of e−A0

+ L , where C2 is independent of L > 0. Together with (5.3)
and (5.14), this gives

|W̃ +
1 (0, λ) − W̃ 0+

1 (0, λ)| ≤ C(L)v+|W̃ +
1 (0, λ)| + L|λ|C2Ce−ηL ,

hence, for |λ| bounded,

|W̃ +
1 (0, λ) − W̃ 0+

1 (0, λ)| ≤ C3(L)v+|W̃ 0+
1 (0, λ)| + LC4e−ηL

≤ C5(L)v+ + LC4e−ηL . (5.15)

Taking first L → ∞ and then v+ → 0, we obtain therefore convergence of W +
1 (0, λ)

and W̃ +
1 (0, λ) to W 0+

1 (0, λ) and W̃ 0+
1 (0, λ), yielding the result by definitions (2.20) and

(3.8).

6. Numerical Convergence

Having established analytically the convergence of D to D0 as v+ → 0 (M → ∞),
we turn finally to numerics to obtain quantitative information yielding a concrete sta-
bility threshold. Specifically, for fixed γ , we numerically compute the “Rouché bound”
consisting of the value of v+ at which the maximum relative error |D − D0|/|D0| over
the semicircular contour ∂{
eλ ≥ 0, |λ| ≤ 10} around which we perform our winding
number calculations becomes 1/2. Recall that Rouché’s Theorem guarantees for relative
error < 1 that the winding number of D is equal to the winding number of D0, which we
have shown to be zero, hence we may conservatively conclude stability for v+ less than
or equal to this bound, or M greater than or equal to the corresponding Mach number.
Computations are performed using the algorithm of [2]; results are displayed in Table 1.

More detailed results are displayed for the monatomic gas case γ = 5/3 in Table 2.
Results are similar for other γ ∈ [1, 3], as may be seen by comparing Figs. 2–4.

From the quantitative gap and conjugation estimates given in Appendix C, which
in turn yield a quantitative version of the Convergence Lemma of [39], one could in
principle establish quantitative convergence rates for |D − D0|, by tracking constants
carefully through the estimates of the previous sections. Indeed, one could do much
better than the rather crude bounds stated for the general case by taking into account the
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Table 1. Rouché bounds for various γ

γ v+ Relative Mach
Error Number

3.0 1.27e-3 .5009 12765
2.5 1.36e-3 .5006 2423
2.0 1.49e-3 .5001 474
1.5 1.75e-3 .4999 95.5
1.0 2.8e-3 .4995 18.9

Table 2. Maximum relative and absolute differences between D and D0, for γ = 5/3 and λ on the semicircle
of radius 10

v+ Mach Relative Absolute
Number Difference Difference

1.0 (−6) 7.71 (4) 0.1221 0.0601
1.0 (−5) 1.13 (4) 0.1236 0.1445
1.0 (−4) 1.64 (3) 0.1487 0.4714
1.0 (−3) 2.44 (2) 0.4098 1.3464
1.0 (−2) 36.1 0.9046 2.8253
1.0 (−1) 5.50 1.2386 3.8688

eigenstructure of the actual matrices A±, A0± appearing in our analysis, and (crucial for
good estimates, since bounds grow exponentially with dimension n) by observing that
it suffices to use the gap and not the full conjugation lemma for the estimation of the
single dual mode at plus infinity. That is, there are contained in our analysis, as in the
study of [2], all of the ingredients needed for a numerical proof. Given the fundamental
nature of the problem studied, this would be a very interesting program to carry out.

7. Discussion and Open Problems

Besides long-time stability, our results have application also to existence of shock
layers in the small-viscosity limit, which likewise reduces to the question of stabil-
ity of the Evans function [17,41]. Indeed, spectral stability has been a key missing
piece in several directions [48,49]. Our methods should have application also to spectral
stability of large-amplitude noncharacteristic boundary layers, completing the investi-
gations of [16,37,44]. It may be hoped that they will extend also to full gas dynamics
and multi-dimensions, two important directions for further investigation. As discussed
in the text, the problems of numerical proof and of stability in the large-γ limit are two
other interesting directions for further study.

More speculatively, our results suggest the possibility of a large-variation version
of the results obtained by quite different methods in [7] on general viscous solutions
(including not only noninteracting shocks, but shocks, rarefactions, and their interac-
tions), and, through the physical insight provided into the high-Mach number limit,
perhaps even a hint toward possible methods of analysis. Note that the results of [7]
include not only convergence in the small-viscosity limit but also bounded L1 stability
for constant viscosity of general small-variation solutions. This would be an extremely
interesting direction for further investigation.
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Appendix A. Proofs of Preliminary Estimates

Proof of Proposition 2.1. Existence and monotonicity follow trivially by the fact that
(2.4) is a scalar first-order ODE with convex righthand side. Exponential convergence
as x → +∞ follows, for example, by the computation

H(v, v+) = v

(
(v − 1) − (v+ − 1)(v−γ − 1)

v
−γ
+ − 1

)

= v

(
(v − v+) +

(
1 − v+

1 − v
γ
+

)((v+

v

)γ − 1
))

= (v − v+)

(
v −

(
1 − v+

1 − v
γ
+

)(
1 − (

v+
v

)γ

1 − (
v+
v

)
))

,

yielding

v − γ ≤ H(v, v+)

v − v+
≤ v − (1 − v+)

by the elementary estimate 1 ≤ 1−xγ

1−x ≤ γ for 0 ≤ x ≤ 1. Convergence as x → −∞
follows by a similar, but simpler computation; see [2]. ��
Lemma A.1. For each γ ≥ 1, the following identity holds for 
eλ ≥ 0:

(
e(λ) + |�m(λ)|)
∫

R

v̂|u|2 − 1

2

∫

R

v̂x |u|2 +
∫

R

|u′|2

≤ √
2

∫

R

h(v̂)

v̂γ
|v′||u| +

∫

R

v̂|u′||u|. (A.1)

Proof. We multiply (2.9b) by v̂ū and integrate along x . This yields

λ

∫

R

v̂|u|2 +
∫

R

v̂u′ū +
∫

R

|u′|2 =
∫

R

h(v̂)

v̂γ
v′ū.

We get (A.1) by taking the real and imaginary parts and adding them together, and noting
that |
e(z)| + |�m(z)| ≤ √

2|z|. ��
Lemma A.2. For each γ ≥ 1, the following identity holds for 
eλ ≥ 0:

∫

R

|u′|2 = 2
e(λ)2
∫

R

|v|2 + 
e(λ)

∫

R

|v′|2
v̂

+
1

2

∫

R

[
h(v̂)

v̂γ +1 +
aγ

v̂γ +1

]
|v′|2. (A.2)

Proof. We multiply (2.9b) by v̄′ and integrate along x . This yields

λ

∫

R

uv̄′ +
∫

R

u′v̄′ −
∫

R

h(v̂)

v̂γ +1 |v′|2 =
∫

R

1

v̂
u′′v̄′ =

∫

R

1

v̂
(λv′ + v′′)v̄′.

Using (2.9a) on the right-hand side, integrating by parts, and taking the real part gives


e

[
λ

∫

R

uv̄′ +
∫

R

u′v̄′
]

=
∫

R

[
h(v̂)

v̂γ +1 +
v̂x

2v̂2

]
|v′|2 + 
e(λ)

∫

R

|v′|2
v̂

.
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The right hand side can be rewritten as


e

[
λ

∫

R

uv̄′ +
∫

R

u′v̄′
]

= 1

2

∫

R

[
h(v̂)

v̂γ +1 +
aγ

v̂γ +1

]
|v′|2 + 
e(λ)

∫

R

|v′|2
v̂

. (A.3)

Now we manipulate the left-hand side. Note that

λ

∫

R

uv̄′ +
∫

R

u′v̄′ = (λ + λ̄)

∫

R

uv̄′ −
∫

R

u(λ̄v̄′ + v̄′′)

= −2
e(λ)

∫

R

u′v̄ −
∫

R

uū′′

= −2
e(λ)

∫

R

(λv + v′)v̄ +
∫

R

|u′|2.

Hence, by taking the real part we get


e

[
λ

∫

R

uv̄′ +
∫

R

u′v̄′
]

=
∫

R

|u′|2 − 2
e(λ)2
∫

R

|v|2.

This combines with (A.3) to give (A.2). ��
Lemma A.3. For each γ ≥ 1, for h(v̂) as in (2.8), we have

sup
v̂

∣∣∣∣
h(v̂)

v̂γ

∣∣∣∣ = γ
1 − v+

1 − v
γ
+

≤ γ. (A.4)

Proof. Defining

g(v̂) := h(v̂)v̂−γ = −v̂ + a(γ − 1)v̂−γ + (a + 1), (A.5)

we have g′(v̂) = −1 − aγ (γ − 1)v̂−γ−1 < 0 for 0 < v+ ≤ v̂ ≤ v− = 1, hence the
maximum of g on v̂ ∈ [v+, v−] is achieved at v̂ = v+. Substituting (2.5) into (A.5) and
simplifying yields (A.4). ��
Proof of Proposition 2.2. Using Young’s inequality twice on right-hand side of (A.1)
together with (A.4), we get

(
e(λ) + |�m(λ)|)
∫

R

v̂|u|2 − 1

2

∫

R

v̂x |u|2 +
∫

R

|u′|2

≤ √
2

∫

R

h(v̂)

v̂γ
|v′||u| +

∫

R

v̂|u′||u|

≤ θ

∫

R

h(v̂)

v̂γ +1 |v′|2 +
(
√

2)2

4θ

∫

R

h(v̂)

v̂γ
v̂|u|2 + ε

∫

R

v̂|u′|2 +
1

4ε

∫

R

v̂|u|2

< θ

∫

R

h(v̂)

v̂γ +1 |v′|2 + ε

∫

R

|u′|2 +

[
γ

2θ
+

1

4ε

] ∫

R

v̂|u|2.

Assuming that 0 < ε < 1 and θ = (1 − ε)/2, this simplifies to

(
e(λ) + |�m(λ)|)
∫

R

v̂|u|2 + (1 − ε)

∫

R

|u′|2

<
1 − ε

2

∫

R

h(v̂)

v̂γ +1 |v′|2 +

[
γ

2θ
+

1

4ε

] ∫

R

v̂|u|2.
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Applying (A.2) yields

(
e(λ) + |�m(λ)|)
∫

R

v̂|u|2 <

[
γ

1 − ε
+

1

4ε

] ∫

R

v̂|u|2,

or equivalently,

(
e(λ) + |�m(λ)|) <
(4γ − 1)ε − 1

4ε(1 − ε)
.

Setting ε = 1/(2
√

γ + 1) gives (2.11). ��

Appendix B. Nonvanishing of D0

As pointed out in Sect. 3.3, the limiting eigenvalue system (3.3), (3.4), together with the
limiting boundary conditions derived in Sect. 3.2 may be expressed equivalently as the
integrated eigenvalue problem

λv + v′ − u′ = 0, (B.1a)

λu + u′ − 1 − v̂

v̂
v′ = u′′

v̂
, (B.1b)

corresponding to a pressureless gas, γ = 0, with special boundary conditions

(u, u′, v, v′)(−∞) = (0, 0, 0, 0), (u, u′, v, v′)(+∞) = (c, 0, 0, 0). (B.2)

Motivated by this observation, we establish stability of the limiting system by a
Matsumura–Nishihara-type spectral energy estimate exactly analogous to that used to
prove stability for γ = 1 in [2,36].

Proof of Proposition 3.5. Multiplying (B.1b) by v̂ū/(1 − v̂) and integrating on some
subinterval [a.b] ⊂ R, we obtain

λ

∫ b

a

v̂

1 − v̂
|u|2dx +

∫ b

a

v̂

1 − v̂
u′ūdx −

∫ b

a
v′ūdx =

∫ b

a

u′′ū
1 − v̂

dx .

Integrating the third and fourth terms by parts yields

λ

∫ b

a

v̂

1 − v̂
|u|2dx +

∫ b

a

[
v̂

1 − v̂
+

(
1

1 − v̂

)′]
u′ūdx

+
∫ b

a

|u′|2
1 − v̂

dx +
∫ b

a
v(λv + v′)dx

=
[
vū +

u′ū
1 − v̂

] ∣∣∣b
a .

Taking the real part, we have


e(λ)

∫ b

a

(
v̂

1 − v̂
|u|2 + |v|2

)
dx +

∫ b

a
g(v̂)|u|2dx +

∫ b

a

|u′|2
1 − v̂

dx

= 
e

[
vū +

u′ū
1 − v̂

− 1

2

[
v̂

1 − v̂
+

(
1

1 − v̂

)′]
|u|2 − |v|2

2

] ∣∣∣b
a, (B.3)
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where

g(v̂) = −1

2

[(
v̂

1 − v̂

)′
+

(
1

1 − v̂

)′′]
.

Note that

d

dx

(
1

1 − v̂

)
= − (1 − v̂)′

(1 − v̂)2 = v̂x

(1 − v̂)2 = v̂(v̂ − 1)

(1 − v̂)2 = − v̂

1 − v̂
.

Thus, g(v̂) ≡ 0 and the third term on the right-hand side vanishes, leaving


e(λ)

∫ b

a

(
v̂

1 − v̂
|u|2 + |v|2

)
dx +

∫ b

a

|u′|2
1 − v̂

dx

=
[

e(vū) +


e(u′ū)

1 − v̂
− |v|2

2

] ∣∣∣b
a .

We show next that the right-hand side goes to zero in the limit as a → −∞ and
b → ∞. By Proposition 4.5, the behavior of u, v near ±∞ is governed by the limit-
ing constant–coefficient systems W ′ = A0±(λ)W , where W = (u, v, v′)T and A0± =
A0(±∞, λ). In particular, solutions W asymptotic to (1, 0, 0) at x = +∞ decay expo-
nentially in (u′, v, v′) and are bounded in coordinate u as x → +∞. Observing that
1 − v̂ → 1 as x → +∞, we thus see immediately that the boundary contribution at b
vanishes as b → +∞.

The situation at −∞ is more delicate, since the denominator 1− v̂ of the second term
goes to zero at rate ex as x → −∞, the rate of convergence of the limiting profile v̂. By
inspection, the limiting coefficient matrix

A0− =
⎛
⎝

0 λ 1
0 0 1
λ λ 1 − λ

⎞
⎠ , (B.4)

has eigenvalues

µ = −λ,
1 ± √

1 + 4λ

2
,

hence for 
eλ ≥ 0 the unique decaying mode at x = +∞ is the unstable eigenvector

corresponding to µ = 1+
√

1+4λ
2 , with growth rate


e

(
1 +

√
1 + 4λ

2

)
= 1

2
+

1

2

e

√
1 + 4λ > 1/2.

Thus, |u|, |u′|, |v′|, |v| ≤ Ce(1+ε)x/2 as x → −∞, ε > 0, and in particular
∣∣∣∣

e(u′ū)

1 − v̂

∣∣∣∣ ≤ Ce(1+ε)x/ex ≤ Ceεx → 0

as x → −∞. It follows that the boundary contribution at x = a vanishes also as
a → −∞, hence, in the limit as a → −∞, b → +∞,


e(λ)

∫ +∞

−∞

(
v̂

1 − v̂
|u|2 + |v|2

)
dx +

∫ +∞

−∞
|u′|2
1 − v̂

dx = 0. (B.5)
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But, for 
eλ ≥ 0, this implies u′ ≡ 0, or u ≡ constant, which, by u(−∞) = 0, implies
u ≡ 0. This reduces (B.1a) to v′ = λv, yielding the explicit solution v = Ceλx . By
v(±∞) = 0, therefore, v ≡ 0 for 
eλ ≥ 0. It follows that there are no nontrivial
solutions of (B.1), (B.2) for 
eλ ≥ 0. ��

Remark B.1. The above energy estimate is equivalent to multiplying the system by the

special symmetrizer

(
1 0
0 v̂/(1 − v̂)

)
, then taking the L2 inner product with (v, u)T . The

analog of the high-frequency estimates of Appendix A would be obtained using the alter-

native symmetrizer

(
1 − v̂ 0

0 v̂

)
optimized for its effect on second-order derivative term

u′′/v̂. This may clarify somewhat the strategy of the energy estimates used in [2,36].

Appendix C. Quantitative Conjugation Estimates

Consider a general first-order system

W ′ = A(x, λ)W. (C.1)

Proposition C.1 (Quantitative Gap Lemma [13,50]). Let V + and µ+ be an eigenvec-
tor and associated eigenvalue of A+(λ) and suppose that there exist complementary
generalized eigenprojections (i.e., A-invariant projections) P and Q such that

|Pe(A+−µ+)x | ≤ C1e−η̂x x ≤ 0,

|Qe(A+−µ+)x | ≤ C1e−η̂x x ≥ 0, (C.2)

|(A − A+)(x)| ≤ C2e−ηx x ≥ 0,

with 0 ≤ η̂ < η. Then, there exists a solution W = eµ+x V (x, λ) of (C.1) with

|V (x, λ) − V +(λ)|
|V +(λ)| ≤ C1C2e−ηx

(η − η̂)(1 − ε)
for x ≥ L (C.3)

provided (η − η̂)−1C1C2e−ηL ≤ ε < 1.

Proof. Writing V ′ = (A+ − µ+)V + (A − A+)V and imposing the limiting behavior
V (+∞, λ) = V +, we seek a solution in the form V = T V ,

T V (x) := V + −
∫ +∞

x
Pe(A+−µ+)(x−y)(A − A+)V (y)dy

+
∫ x

L
Qe(A+−µ+)(x−y)(A − A+)V (y)dy,
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from which the result follows by a straightforward Contraction Mapping argument, using
(C.2) to compute that

|T V1 − T V2|(x) =
∣∣∣∣−

∫ +∞

x
Pe(A+−µ+)(x−y)(A − A+)(V1 − V2)(y)dy

+
∫ x

L
Qe(A+−µ+)(x−y)(A − A+)(V1 − V2)(y)dy

∣∣∣∣

≤ C1C2

∫ +∞

L
e−η̂(x−y)e−ηydy‖V1 − V2‖L∞[L ,+∞)

= C1C2e−η̂x e−(η−η̂)L

η − η̂
‖V1 − V2‖L∞[L ,+∞),

and thus ‖T V1 − T V2‖L∞[L ,+∞) ≤ C1C2e−ηL

η−η̂
‖V1 − V2‖L∞[L ,+∞). ��

Corollary C.2. Let V + and µ+ be an eigenvector and associated eigenvalue of A+(λ),
where A+ is n × n with at most k eigenvalues of real part < 
µ+ and

max |(A+ − µ)i j | ≤ C0; |(A − A+)(x)| ≤ C2e−ηx x ≥ 0, (C.4)

0 < η̂ < η. Then, there exists a solution W = eµ+x V (x, λ) of (C.1) with

|V (x, λ) − V +(λ)|
|V +(λ)| ≤ 16nn!(C0)

nC2e−η̂x

δn(η − η̂)(1 − ε)
for x ≥ L, (C.5)

δ := η−η̂
2k+2 , provided 16nn!(C0)

nC2e−η̂L

δn(η−η̂)
≤ ε < 1.

Proof. Without loss of generality, take µ ≡ 0. Dividing [−η,−η̂] into k + 1 equal
subintervals, we find by the pigeonhole principle that at least one subinterval contains
the real part of no eigenvalue of A+. Denoting the midpoint of this interval by −η̃ > η̂,
we have

min |
eσ(A+) − η̃| ≥ δ := η − η̂

2k + 2
. (C.6)

Defining P to be the total eigenprojection of A+ associated with eigenvalues of real
part greater than η̂ and Q the total eigenprojection associated with eigenvalues of real
part less than η̂, and estimating PeA+x , QeA+x using the inverse Laplace transform
representation

eA+x = 1

2π i

∮

�

ezx (z − A+)−1dz,

with � chosen to be a rectangle of side 4nC0 centered about the real axis, with one
vertical side passing through 
eλ ≡ −η̃ and the other respectively lying respectively to
the right and to the left, and estimating

|(λ − A+)−1| ≤ n!Cn−1
0 δ−n

crudely by Kramer’s rule, we obtain (C.2) with C1 = 16nn!Cn
0 δ−n, whence the result

follows by Proposition C.1. ��
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Corollary C.3 (Quantitative Conjugation Lemma). Proposition 4.5 holds for 0 < ε < 1
with

C(L , η̂, η, max |(M+)i j |, dim M+) = 16nn!(C0)
nC2e−η̂x

δn(η − η̂)(1 − ε)
,

n := (dim M+)2, k := (dim M+)2−dim M
2 , when 16nn!(C0)

nC2e−η̂L

δn(η−η̂)
≤ ε.

Proof. Writing the homological equation expressing conjugacy of variable- and
constant-coefficient systems following [37], we have

P ′ = M+ P − P M+ + 	M.

Considering this as an asymptotically constant-coefficient system on the n2-dimensional
vector space of matrices P , noting that the linear operator M+ P := M+ P − P M+, as
a Sylvester matrix, has at least n zero eigenvalues and equal numbers of stable and
unstable eigenvalues, we see that the number of its stable eigenvalues is not more than
k := n2−n

2 , whence the result follows by Corollary C.2. ��

Appendix D. An Illuminating Example

Consider Burgers’ equation, ut + (u2)x = uxx , and the family of stationary viscous
shock solutions

ûε(x) := −ε tanh(εx/2), lim
z→±∞ ûε(z) = ∓ε (D.1)

of amplitude |u+ − u−| = 2ε going to zero as ε → 0.
The linearized eigenvalue equation u′′ = (ûεu)′ + λu about ūε , expressed in the

integrated variable w(x) := ∫ x
−∞ u(y)dy, appears as

w′′ = ûεw′ + λw. (D.2)

This reduces by the linearized Hopf–Cole transformation w = sech(εx/2)z to the
constant-coefficient linear oscillator equation z′′ = (λ + ε2/4)z, yielding exact solu-
tions

w±(x, λ) = sech(εx/2)e∓
√

ε2/4+λx (D.3)

decaying, respectively, as x → ±∞, with asymptotic behavior

W±(x, λ) ∼ eµ±(λ)xV±(λ), (D.4)

where µ±(λ) := ∓(ε/2 +
√

ε2/4 + λ and V± := (1, µ±(λ))T are the eigenvalues and
eigenvectors of the limiting constant-coefficient equations at plus and minus spatial
infinity written as a first-order system, W± := (w,w′)T±.

Defining an Evans function D(λ) := det(W−,W+)|x=0, we may compute explicitly

D(λ) = −2
√

ε2/4 + λ. (D.5)
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However, this is not “the” Evans function

D(λ) := det(W −, W +)|x=0

specified in Sect. 2.4, which is constructed, rather, from a special basis

W± = c±(λ)W± ∼ eµ±x V ±,

where V± = c±(λ)V± are “Kato” eigenvectors determined uniquely (up to a constant
factor independent of λ) by the property that there exist corresponding left eigenvectors
Ṽ ± such that

(Ṽ · V )± ≡ constant, (Ṽ · V̇ )± ≡ 0, (D.6)

where “ ˙ ” denotes d/dλ; see [26,13,22] for further discussion.
Computing dual eigenvectors Ṽ± = (λ + µ2)−1(λ, µ±) satisfying (Ṽ · V)± ≡ 1,

and setting V ± = c±V±, Ṽ ± = V±/c±, we find after a brief calculation that (D.6) is
equivalent to the complex ODE,

ċ± = −
(

Ṽ · V̇

Ṽ · V

)±
c± = −

(
µ̇

2µ − ε

)

±
c±, (D.7)

which may be solved by exponentiation, yielding the general solution

c±(λ) = C(ε2/4 + λ)−1/4. (D.8)

Initializing at a fixed nonzero point, without loss of generality c±(1) = 1,5 and noting
that Dε(λ) = c−c+Dε(λ), we thus obtain the remarkable formula

Dε(λ) ≡ −2
√

ε2/4 + 1. (D.9)

That is, with the “Kato” normalization, the Evans function associated with a Burgers
shock is not only stable (nonvanishing), but identically constant. Moreover, in the weak
shock limit, ε → 0, Dε(λ) converges uniformly to the constant function D0(λ) ≡ −2.6
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