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L E C T U R E  N O T E S  L E C T U R E  N O T E S   «

The Kalman fi lter is arguably one of the most notable al-
gorithms of the 20th century [1]. In this article, we de-
rive the Kalman fi lter using Newton’s method for root 

fi nding. We show that the one-step Kalman fi lter is given 
by a single iteration of Newton’s method on the gradient 
of a quadratic objective function, and with a judiciously 
chosen initial guess. This derivation is different from those 
found in standard texts [2]–[6], since it provides a more 
general framework for recursive state estimation. Although 
not presented here, this approach can also be used to derive 
the extended Kalman fi lter for nonlinear systems. 

BACKGROUND

Linear Estimation
Suppose that data are generated by the linear model 

 b5Ax1 e,  (1)

where A is a known m 3 n matrix of rank n, e is an m-di-
mensional random variable with zero mean and known 
positive-definite covariance Q5 E 3eeT 4, denoted Q . 0, 
and b [ Rm represents known, but inexact, measurements 
with errors given by e. The vector x [ Rn is the set of pa-
rameters to be estimated. 

The estimator x̂ is linear if x̂5Kb for some n 3 m matrix 
K. We say that the estimator x̂ is unbiased if E 3x̂ 45 x. Since 

 E 3x̂ 45 E 3Kb 4
 5 E 3K (Ax1 e )4
 5KAx1KE 3e 4
 5KAx, 

it follows that the linear estimator x̂5Kb is unbiased if and 
only if KA5 I. When m . n, many choices of K could be 
made to satisfy this condition. We want to find the mean-
squared error-minimizing linear unbiased estimator, or, in 
other words, the minimizer of the quantity E 3 7 x̂2 x 7 2 4 over 
all matrices K that satisfy the constraint KA5 I. In “What Is 
the Best Linear Unbiased Estimator,” we prove the Gauss-
Markov theorem, which states that the optimal K is given 

by K5 (ATQ21A )21ATQ21, and thus the corresponding 
 estimator is given by 

 x̂5 (ATQ21A )21ATQ21b,  (2)

whose covariance is given by 

 P5 E 3( x̂2 x ) ( x̂2 x )T 45 (ATQ21A )21. (3)

In addition, the Gauss-Markov theorem states that every 
other linear unbiased estimator of x has larger covariance 
than (3). Thus we call (2) the best linear unbiased estimator 
of (1). 

Weighted Least Squares
It is not a coincidence that the estimator in (2) has the same 
form as the solution of the weighted least squares problem 

 x̂5 argmin
x[Rn 

 
1
2
7b2Ax 7W2 , (4)

where W . 0 is a problem-specific weighting matrix and 7 # 7W describes a weighted 2-norm defined as 7x 7W2 J xTWx. 
The factor 1/2 is not necessary but makes calculations 
involving the derivative simpler. Scaling the objective 
function by a constant does not affect the minimizer. 
Therefore, consider the positive-definite quadratic objec-
tive function 

 J (x ) 5
1
2
7b2Ax 7W2  

 5
1
2

xTATWAx2 xTATWb1
1
2

bTWb. (5)

Its minimizer x̂ satisfies =J ( x̂ ) 5 0, which yields the normal 
equations 

 ATWAx̂5ATWb. (6)

Since A is assumed to have full column rank, the weighted 
Gramian ATWA is nonsingular, and thus (6) has the solution 

 x̂5 (ATWA )21ATWb. (7)

Hence, in comparing (2) with (7), we see that the 
best linear unbiased estimator of (1) is found by solv-
ing the weighted least squares problem (4) with weight 

Kalman Filtering with Newton’s Method 
JEFFREY HUMPHERYS and JEREMY WEST

 Digital Object Identifier 10.1109/MCS.2010.938485

1066-033X/10/$26.00©2010IEEE



102 IEEE CONTROL SYSTEMS MAGAZINE » DECEMBER 2010

W5Q21 . 0. Also from (3) it can be noted that the inverse 
weighted-Gramian matrix P5 (ATQ21A )21 is the covari-
ance of this estimator. 

Newton’s Method
Let f  :  Rn S Rn be a smooth function. Assume that 
f( x̂ ) 5 0 and that the Jacobian matrix Df(x )  is nonsin-
gular in a neighborhood of x̂. If the initial guess x0 is 
sufficiently close to x̂, then Newton’s method, which is 
given by 

 xk115 xk2Df(xk)21f(xk) ,  (8)

produces a sequence 5xk6k50
`  that converges quadratically to 

x̂, that is, there exists a constant c . 0 such that, for every 
positive integer k, 

 7xk112 x̂ 7 # c 7xk2 x̂ 7 2.
Newton’s method is widely used in optimization prob-

lems since the local extrema of an objective function J (x )  can 
be obtained by finding roots of its gradient f(x ) J =J (x ) . 
Hence, from (8) we have 

 xk115 xk2D2J (xk)21=J (xk) ,  (9)

where D2J (xk)  denotes the Hessian of J evaluated at xk. 
This iterative process converges, likewise at a quadratic 
rate, to the isolated local minimizer x̂ of J whenever the 
starting point x0 is sufficiently close to x̂ and the Hes-
sian D2J (x )  is positive definite in a neighborhood of x̂. 
In practice, we do not invert the Hessian D2J (xk)  when 
computing (9).  Indeed, by a factor of roughly two, we can 

Suppose that data are generated by the linear model 

b5Ax1 e, 

where A is a known m 3 n matrix of rank n, and e is an m-dimen-
sional random variable with zero mean and covariance Q . 0. 

Recall that a linear estimator x̂5Kb of x  is unbiased if and 
only if KA5 I. If n , m, then there are many choices of K  that 
are possible. We want the matrix K  that minimizes the mean-
squared error E 3 7 x̂2 x 72 4. Note, however, that 

 7 x̂2 x 725 7Kb2 x 72
 5 7KAx1Ke 2 x 72
 5 7Ke 72
 5 eTKTKe.

Moreover, since eTKTKe is a scalar, we have 

 eTKTKe 5  tr (eTKTKe) 5  tr (KeeTKT) .

It follows, by the linearity of expectation, that 

 E 3 7 x̂2 x 72 4 5 tr (KE 3eeT 4KT) 5 tr (KQKT) .

Thus the mean-squared error minimizing linear unbiased esti-
mator is found by minimizing tr (KQKT)  subject to the constraint 
KA5 I, where K [ Rn3m. This is a convex optimization prob-
lem, that is, the objective is a convex function and the feasible 
set is a convex set. Hence, to fi nd the unique minimizer, it suf-
fi ces to fi nd the unique critical point of the Lagrangian 

 L (K, l) 5 tr (KQKT) 2  tr (lT(KA2 I )) , 

where the matrix Lagrange multiplier l [ Rn3n corresponds to 
the n2 constraints KA5 I. Thus the minimum occurs when 

 05=KL (K, l)

 5
'
'K

 tr (KQKT2lT(KA2 I ))

 5KQT1KQ2lAT

 5 2KQ2lAT, 

that is, when 

 K5
1
2
lATQ21.

Since KA5 I, we have that l5 2 (ATQ21A)21. Therefore, 
K5 (ATQ21A)21ATQ21, and the optimal estimator is given by 

 x̂5 (ATQ21A)21ATQ21b.

To compute the covariance of the estimator we expand x̂ as 

 x̂5 (ATQ21A)21ATQ21(Ax1 e)
 5 x1 (ATQ21A)21ATQ21e.

Thus the covariance is given by 

 P5 E 3( x̂2 x ) ( x̂2 x )T 4
 5 (ATQ21A)21ATQ21E 3eeT 4Q21A(ATQ21A)21

 5 (ATQ21A)21.

We now show that every linear unbiased estimator 
other than x̂ produces a larger covariance. If x̂L5 Lb is a 
linear unbiased estimator of the linear model, then since 
KA5 I, it follows that there exists a matrix D  such that 
DA5 0 and L5K1D. The covariance of x̂L is given by 

 E 3( x̂L2 x ) ( x̂L2 x )T 4 5 E 3(K1D)eeT(KT1DT)4
 5 (K1D)Q(KT1DT)
 5KQKT1DQDT1KQDT1 (KQDT)T.

Note, however, that KQDT5 0. Thus 

 E 3( x̂L2 x ) ( x̂L2 x )T 4 5KQKT1DQDT

 $ KQKT.

Therefore, x̂ is the best linear unbiased estimator of x. 

What Is the Best Linear Unbiased Estimator?
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more efficiently compute the Newton update by solving 
the linear system D2J (xk)yk52=J (xk) , for example by 
Gaussian elimination, and then setting xk115 xk1 yk; see 
[7] for details. 

To find the minimizer of a positive-definite quadratic 
form (5), it is not necessary to use an iterative scheme, 
such as Newton’s method, since the gradient is affine 
in x and the unique minimizer can be found by solving 
the normal equations (6) directly. However, positive-
definite quadratic forms have the special property that 
Newton’s method (9) converges in a single step for each 
starting point x [ Rn, that is, for all x [ Rn, the mini-
mizer x̂ satisfies 

 x̂5 x2D2J (x )21=J (x ) . (10)

This observation provides a key insight used to derive the 
Kalman filter below. Note also that the Hessian of the qua-
dratic form (5) is D2J (x ) 5ATWA, which is constant in x. 
Thus, throughout we denote the Hessian as D2J, dropping 
the explicit dependence on x. 

Recursive Least Squares
We now consider the least squares problem (4) in the case 
of recursive implementation. At each time k, we seek the 
best linear unbiased estimator x̂k of x for the linear model 

 bk5Akx1 ek,  (11)

where 

 bk5 £ b1

(
bk

§ ,  Ak5 £A1

(
Ak

§ ,  and ek5 £ v1

(
vk

§ .

We assume, for each j5 1, c, k, that the noise terms vj 
have zero mean and are uncorrelated with E 3vjvj

T 45Rj . 0. 
We also assume that A1 has full column rank, and thus each 
Ak has full column rank. The estimate is found by solving 
the weighted least squares problem 

 x̂k5 argmin
x

7 b2
 
Akx 7Wk

2 ,  (12)

where the weight is given by the inverse covariance 
Wk5 E 3ekek

T 4215  diag(R1
21, c, Rk

21 ) . 
As time marches forward, the number of rows of the lin-

ear system increases, thus altering the least squares solu-
tion. We now show that it is possible to use the least squares 

solution x̂k21 at time k2 1 to efficiently compute the least 
squares solution x̂k at time k. This process is the recursive 
least squares algorithm. 

We begin by rewriting (12) as 

 Jk(x ) 5
1
2a

k

i51
7bi2Aix 7Ri

21
2 . (13)

The positive-definite quadratic form (13) can be expressed 
recursively as 

 Jk(x ) 5 Jk21 (x ) 1
1
2
7bk2Ak x 7Rk

21
2 .

The gradient and Hessian of Jk are given by 

 =Jk(x ) 5=Jk21 (x ) 1Ak
TRk

21 (Akx2 bk)

and 

 D2Jk5D2Jk211Ak
TRk

21Ak,  (14)

respectively. Since A1 has full column rank, we see that 
D2J1 . 0. From (14), it follows that D2Jk . 0 for every positive 
integer k, and hence from (10) the minimizer of (13) becomes 

 x̂k5 x2 (D2Jk)21 (=Jk21 (x ) 1Ak
TRk

21 (Akx2 bk)) ,  (15)

where the starting point x [ Rn can be arbitrarily chosen. 
Since =Jk21 ( x̂k21 ) 5 0, we set x5 x̂k21 in (15). Thus (15) be-
comes 

 x̂k5 x̂k212KkAk
TRk

21 (Akx̂k212 bk) , 

where Kk J (D2Jk)21 is the inverse of the Hessian of J, and 
from (3) represents the covariance of the estimate. Observ-
ing from (14) that Kk

215Kk21
21 1Ak

TRk
21Ak and using Lemma 

1 in “Inversion Lemmata,” we have 

 Kk5 (Kk21
21 1Ak

TRk
21Ak)21

 5Kk212Kk21Ak
T (Rk1AkKk21Ak

T )21AkKk21.

Thus, to summarize, the recursive least squares method is 

 Kk5Kk212Kk21Ak
T (Rk1AkKk21Ak

T )21AkKk21

 x̂k5 x̂k212KkAk
TRk

21 (Akx̂k212 bk) .

At each time k, this algorithm gives the best linear unbi-
ased estimator of (11), along with its covariance. 

In this article, we derive the Kalman filter using Newton’s method 
for root finding.
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The recursive least squares algorithm allows for efficient 
updating of the weighted least squares solution. Indeed, if 
p rows are added during the kth step, then the expression 
Rk1AkKk21Ak

T is a p 3 p matrix, which is small in size com-
pared to the matrix AkWk Ak

T, which is needed, say, if we 
compute the solution directly using (7). 

STATE-SPACE MODELS 
AND STATE ESTIMATION
Consider the stochastic discrete-time linear dynamic  system 

 xk115 Fkxk1Gkuk1wk,  (16)

 yk5Hkxk1 vk,  (17)

where the variables represent the state xk [ Rn, the input 
uk [ Rp, and the output yk [ Rq. The terms wk and vk are 
noise processes, which are assumed to have mean zero and 
be mutually uncorrelated, with known covariances Qk . 0 
and Rk . 0, respectively. We assume that the system has the 
stochastic initial state x05m01w21, where m0 is the mean 
and w21 is a zero-mean random variable with covariance 
E 3w21w21

T 45Q21 . 0. 

State Estimation
We formulate the state estimation problem, given m known 
observations y1, c, ym and k known inputs u0, c, uk21, 
where k $ m. To find the best linear unbiased estimator of 
the states x1, c, xk, we begin by writing (16)–(17) as the 
large linear estimation problem 

 

m0 5 x0 2 w21, 
G0u0 5 x12 F0x0 2 w0, 

y1 5 H1x1 1 v1, 
( (

Gm21um21 5 xm2 Fm21xm21 2 wm21, 
ym 5 Hmxm 1 vm, 

Gmum 5 xm112 Fmxm 2 wm, 
( (

Gk21uk21 5 xk2 Fk21xk21 2 wk21.

Note that the known measurements, namely, the inputs and 
outputs, are on the left, whereas the unknown states are on 
the right, together with the noise terms. The parameters to 
be estimated in this linear estimation problem are the states 
x0, x1, c, xk, which we write as 

 zk5 3x0
c xk 4T [ R(k11)n.

Then the linear system takes the form 

bk|m5Ak|mzk1 ek|m, 

where 

ek|m5 3w21
T w0

T v1
T c wm21

T vm
T wm

T c wk21
T 4T

is a zero-mean random variable whose inverse covariance 
is the positive-definite block-diagonal matrix 

Wk|m5  diag(Q21
21, Q0

21, R1
21, c, Qm21

21 , Rm
21, Qm

21 c, Qk21
21 ) .

We provide some technical lemmata that are used through-
out the article. The first lemma is the Sherman–Morrison–

Woodbury formula, which shows how to invert an additively up-
dated matrix when we know the inverse of the original matrix. 
The second inversion lemma tells us how to invert block matri-
ces. These statements can be verified by direct computation; 
see also [8, p. 18–19]. 

LEMMA 1 (SHERMAN-MORRISON-WOODBURY)
Let A and C  be square matrices and B and D  be given so that 
the sum A1BCD  is nonsingular. If A, C  and C211DA21B are 
also nonsingular, then 

(A1BCD)215A212A21B(C211DA21B)21DA21.

LEMMA 2 (SCHUR)
Let M  be a square matrix with block form 

 M5 cA B
C D

d .
If A, D, A2BD21C, and D2CA21B are nonsingular, then 

M215 c (A2BD21C)21 2A21B(D2CA21B)21

2D21C(A2BD21C)21 (D2CA21B)21 d .

Inversion Lemmata

The Kalman filter is arguably one of the most notable algorithms 
of the 20th century.
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We observe that each column of Ak|m is a pivot column. 
Hence, it follows that Ak|m has full column rank, and thus 
the weighted Gramian Ak|m

T Wk|mAk|m is nonsingular. Thus, 
the best linear unbiased estimator ẑk|m of zk is given by the 
weighted least squares solution 

 ẑk|m5 (Ak|m
T Wk|mAk|m)21Ak|m

T Wk|mbk|m.

Since the state estimation problem is cast as a linear model, 
we can equivalently solve the estimation problem by mini-
mizing the positive-definite objective function 

 Jk|m(zk) 5
1
2
7Ak|mzk2 bk|m 7Wk|m

2 . (18)

We can find its minimizer ẑk|m by performing a single itera-
tion of Newton’s method given by 

 ẑk|m5 z2 (Ak|m
T Wk|mAk|m)21Ak|m

T Wk|m(Ak|mz2 bk|m) ,  (19)

where z [ R(k11)n is arbitrary. In the following, we set m5 k 
and choose a canonical z that simplifies (19), thus leaving 
us with the Kalman filter. 

Kalman Derivation with Newton’s Method
Consider the state estimation problem in the case m5 k, that is, 
the number of observations equals the number of inputs. It is of 
particular interest in applications to determine the current state 
xk given the observations y1, c, yk and inputs u0, c, uk21. 
The Kalman filter gives the best linear unbiased estimator 
x̂k|k of xk in terms of the previous state estimator x̂k21|k21 and 
the latest data uk21 and yk up to that point in time. 

We begin by rewriting (18) as 

 
Jk|m(zk)  5

1
2
0 0 x02m0 0 0 Q21

21
2 1

1
2a

m

i51
0 0 yi2Hixi 0 0 Ri

21
2

       1
1
2a

k

i51
0 0 xi2 Fi21xi212Gi21ui21 0 0 Qi21

21
2 .

 
(20)

For convenience, we denote ẑk|k as ẑk, x̂k|k as x̂k, and Jk|k as Jk. 
For m5 k, (20) can be expressed recursively as 

 Jk(zk) 5 Jk21 (zk21 ) 1
1
2
7yk2Hk xk 7Rk

21
2

 1
1
2
7xk2Fk21zk212Gk21uk21 7Q k21

21
2 , 

where Fk5 30 c 0 Fk 4. The gradient and Hessian of Jk 
are given by 

=Jk(zk) 5

 c =Jk21 (zk21 ) 1Fk21
T Qk21

21 (Fk21zk212 xk1Gk21uk21 )
2Qk21

21 (Fk21zk212 xk1Gk21uk21 ) 1Hk
TRk

21 (Hkxk2 yk) d
and 

 D2Jk5 cD2Jk211Fk21
T Qk21

21 Fk21 2 Fk21
T Qk21

21

2Qk21
21 Fk21 Qk21

21 1Hk
TRk

21Hk
d ,  (21)

respectively. Since D2J05Q21
21 . 0, it follows inductively 

that D2Jk . 0 for every positive integer k. The proof follows 
from the observation that 

 zk
TD2Jkzk5 zk21

T D2Jk21zk21

 1 7Fk21zk212 xk 7Qk21
21

2 1 7Hkxk 7Rk
21

2 , 

and thus the right-hand side is nonnegative, being zero 
only if zk215 0 and xk5 0, or, equivalently, zk5 0. 

From one iteration of Newton’s method, we have that 

 ẑk5 zk2 (D2Jk)21=Jk(zk)  (22)

for all zk [ R(k11)n. Since =Jk21 ( ẑk21 ) 5 0 and Fk21ẑk215

Fk21x̂k21, we set 

 zk5 c ẑk21

Fk21x̂k211Gk21uk21.
d .

Thus, 

 =Jk(zk) 5 c 0
Hk

TRk
21 3Hk(Fk21x̂k211Gk21uk21 ) 2 yk 4 d , 

and the bottom row of (22) becomes 

 x̂k5 Fk21x̂k211Gk21uk212 PkHk
TRk

21

 3 3Hk(Fk21x̂k211Gk21uk21 ) 2 yk 4, 
where Pk is the bottom-right block of the inverse Hessian 
(D2Jk)21, which from Lemma 2 in “Inversion Lemmata,” 
is given by 

 Pk5 (Qk21
21 1Hk

TRk
21Hk2Qk21

21 Fk21

 3 (D2Jk211Fk21
T Qk21

21 Fk21 )21Fk21
T Qk21

21 )21

 5 3(Qk211Fk21 (D2Jk21 )21Fk21
T )211Hk

TRk
21Hk 421

 5 3(Qk211 Fk21Pk21Fk21
T )211Hk

TRk
21Hk 421.

The second observation is that the least-squares estimation problem can be 
solved by minimizing a positive-definite quadratic functional.
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Note that Pk is the covariance of the estimator x̂k. 
To summarize, we have the recursive estimator for xk 

given by 

 Pk5 3(Qk211 Fk21Pk21Fk21
T )211Hk

TRk
21Hk 421

 x̂k5 Fk21x̂k211Gk21uk212 PkHk
TRk

21

 3 3Hk(Fk21x̂k211Gk21uk21 ) 2 yk 4, 
where x̂05m0, P05Q21. This recursive estimator is the one-
step Kalman filter. 

CONCLUSIONS
There are a few key observations in the Newton method der-
ivation of the Kalman filter. First is that the state  estimation 
problem for linear systems (16)–(17) is a potentially large 
linear least squares estimation problem. The second ob-
servation is that the least-squares estimation problem can 
be solved by minimizing a positive-definite quadratic 
functional. The third point is that a positive-definite qua-
dratic functional can be minimized with a single iteration 
of Newton’s method for any starting point x [ Rn. The 

final  observation is that by judiciously choosing the start-
ing point to be the solution of the previous state estimate, 
several terms cancel and the Newton update simplifies to 
the one-step Kalman filter. We remark that this approach 
to state estimation can be generalized to include predictive 
estimates on future states and smoothed  estimates on pre-
vious states. We can also use Newton’s method to derive 
the extended Kalman filter. 
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