Kalman Filtering with Newton’s Method

JEFFREY HUMPHERYS and JEREMY WEST

gorithms of the 20th century [1]. In this article, we de-
rive the Kalman filter using Newton’s method for root
finding. We show that the one-step Kalman filter is given
by a single iteration of Newton’s method on the gradient
of a quadratic objective function, and with a judiciously

The Kalman filter is arguably one of the most notable al-

chosen initial guess. This derivation is different from those
found in standard texts [2]-[6], since it provides a more
general framework for recursive state estimation. Although
not presented here, this approach can also be used to derive
the extended Kalman filter for nonlinear systems.

BACKGROUND

Linear Estimation
Suppose that data are generated by the linear model

b=Ax+e, )

where A is a known m X n matrix of rank n, ¢ is an m-di-
mensional random variable with zero mean and known
positive-definite covariance Q = E[ee’], denoted Q >0,
and b € R" represents known, but inexact, measurements
with errors given by &. The vector x € R" is the set of pa-
rameters to be estimated.

The estimator & is linear if X = Kb for some n X m matrix
K. We say that the estimator ¥ is unbiased if E[X] = x. Since

E[x] = E[Kb]
=[E[K(Ax + €)]
= KAx + KE[e]
= KAzx,

it follows that the linear estimator X = Kb is unbiased if and
only if KA =1. When m > n, many choices of K could be
made to satisfy this condition. We want to find the mean-
squared error-minimizing linear unbiased estimator, or, in
other words, the minimizer of the quantity E[||* — x||*] over
all matrices K that satisfy the constraint KA = I. In “What Is
the Best Linear Unbiased Estimator,” we prove the Gauss-
Markov theorem, which states that the optimal K is given
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by K= (ATQ'A)'ATQ7!, and thus the corresponding
estimator is given by

= (ATQ'A)1ATQ 1y, 2)
whose covariance is given by
P=E[(x—x)(x—x)"]=(ATQ'A) " 3)

In addition, the Gauss-Markov theorem states that every
other linear unbiased estimator of x has larger covariance
than (3). Thus we call (2) the best linear unbiased estimator
of (1).

Weighted Least Squares
It is not a coincidence that the estimator in (2) has the same
form as the solution of the weighted least squares problem

. 1
% = argmin —|b — Ax|3, 4)
R 2

where W > 0 is a problem-specific weighting matrix and
|- |w describes a weighted 2-norm defined as | x|}, = x"Wx.
The factor 1/2 is not necessary but makes calculations
involving the derivative simpler. Scaling the objective
function by a constant does not affect the minimizer.
Therefore, consider the positive-definite quadratic objec-
tive function

1
J(x) = b~ Axy
1 1
= JxTATWAxX — xTATWb + - bTWD. ®)

Its minimizer X satisfies V(%) = 0, which yields the normal
equations

ATWAX = ATWb. (6)
Since A is assumed to have full column rank, the weighted

Gramian ATWA is nonsingular, and thus (6) has the solution

3= (ATWA) 'ATWb. )
Hence, in comparing (2) with (7), we see that the
best linear unbiased estimator of (1) is found by solv-

ing the weighted least squares problem (4) with weight
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What Is the Best Linear Unbiased Estimator?
SUppose that data are generated by the linear model

b=Ax+¢,

where Ais a known m X nmatrix of rank n, and € is an m-dimen-
sional random variable with zero mean and covariance Q > 0.

Recall that a linear estimator x = Kb of x is unbiased if and
only if KA = I. If n < m, then there are many choices of K that
are possible. We want the matrix K that minimizes the mean-
squared error E[|| X — x|?]. Note, however, that

%= x| = | Kb — x|?
= |KAx + Ke — x|?
= | Kel?
= ¢’K'Ke.

Moreover, since e’K'Ke is a scalar, we have
e'K'Ke = tr(e"'K'Ke) = tr(Kee'K').
It follows, by the linearity of expectation, that
E[|x — x|?] = tr(KE[seT]K") = tr(KQKT).

Thus the mean-squared error minimizing linear unbiased esti-
mator is found by minimizing tr(KQK") subject to the constraint
KA = |, where K€ R™™. This is a convex optimization prob-
lem, that is, the objective is a convex function and the feasible
set is a convex set. Hence, to find the unique minimizer, it suf-
fices to find the unique critical point of the Lagrangian

L(K, L) =tr(KQK") —tr(AT(KA— 1)),

where the matrix Lagrange multiplier A € R"*" corresponds to
the n? constraints KA = I. Thus the minimum occurs when

0=ViL(K, A)

_9 T_ 3T, _
E)Ktr(KQK A (KA = 1))

W =Q !> 0. Also from (3) it can be noted that the inverse
weighted-Gramian matrix P = (ATQ7'A) ! is the covari-
ance of this estimator.

Newton’s Method

Let f:R"—>R" be a smooth function. Assume that
f(x) =0 and that the Jacobian matrix Df(x) is nonsin-
gular in a neighborhood of x. If the initial guess x, is
sufficiently close to %, then Newton’s method, which is
given by

X1 =X — Df(x) (%), (8)
produces a sequence {x;}i, that converges quadratically to
%, that is, there exists a constant ¢ > 0 such that, for every

positive integer k,

102 IEEE CONTROL SYSTEMS MAGAZINE » DECEMBER 2010

= KQ™+ KQ— \AT
=2KQ — AAT,

that is, when
1
K= AATQ™".
> Q

Since KA=1, we have that A=2(A’Q 'A)~". Therefore,
K= (ATQ 'A) 'A’Q ', and the optimal estimator is given by

x=(ATQ A TATQ 'b.
To compute the covariance of the estimator we expand x as

x=(ATQ'A) TATQ T (Ax + ¢)
=x+ (ATQ 'A) TATQ ..

Thus the covariance is given by

P=E[(x—x)(x—x)T]
= (ATQ 'A) TATQ 'E[eeT]Q TA(ATQA) !
=(ATQ 'A) .

We now show that every linear unbiased estimator
other than X produces a larger covariance. If X, = Lb is a
linear unbiased estimator of the linear model, then since
KA = |, it follows that there exists a matrix D such that
DA =0 and L = K+ D. The covariance of %, is given by

E[(%, — x) (X, = x) T = E[(K+ D)ee" (K" + D")]
= (K+ D)Q(K"+ D")
= KQK™ + DQD" + KQD™ + (KQD™).

Note, however, that KQD” = 0. Thus

E[(%, — x) (%, — x)T] = KQK + DQD"
= KQK'.

Therefore, X is the best linear unbiased estimator of x.

teer = 2 = el — 2.

Newton’s method is widely used in optimization prob-
lems since thelocal extrema of an objective function | (x) can
be obtained by finding roots of its gradient f(x) = VJ(x).
Hence, from (8) we have

Xer1 =X — DY (x) "'V (%), )

where D% (x;) denotes the Hessian of | evaluated at x;.
This iterative process converges, likewise at a quadratic
rate, to the isolated local minimizer ¥ of | whenever the
starting point x, is sufficiently close to X and the Hes-
sian D% (x) is positive definite in a neighborhood of .
In practice, we do not invert the Hessian D¥(x,) when
computing (9). Indeed, by a factor of roughly two, we can



In this article, we derive the Kalman filter using Newton’s method
for root finding.

more efficiently compute the Newton update by solving
the linear system D% (x)y, = —VJ(x;), for example by
Gaussian elimination, and then setting x;,; = x; + y; see
[7] for details.

To find the minimizer of a positive-definite quadratic
form (5), it is not necessary to use an iterative scheme,
such as Newton’s method, since the gradient is affine
in x and the unique minimizer can be found by solving
the normal equations (6) directly. However, positive-
definite quadratic forms have the special property that
Newton’s method (9) converges in a single step for each
starting point x € R”, that is, for all x € R", the mini-
mizer X satisfies

¥ =x—D¥(x) 'V](x). (10)

This observation provides a key insight used to derive the
Kalman filter below. Note also that the Hessian of the qua-
dratic form (5) is D?*J(x) = ATWA, which is constant in x.
Thus, throughout we denote the Hessian as D], dropping
the explicit dependence on x.

Recursive Least Squares

We now consider the least squares problem (4) in the case
of recursive implementation. At each time k, we seek the
best linear unbiased estimator X; of x for the linear model

Bk = Akx + € (11)
where
b] A] (%]
ﬁk = : ’ Ak = ’ and & = :
by Ay %3

We assume, for each j=1, ...,k that the noise terms v;
have zero mean and are uncorrelated with [E[vjva] =R;>0.
We also assume that A; has full column rank, and thus each
Ay has full column rank. The estimate is found by solving
the weighted least squares problem
&, = argmin|  — Awy, 12)
where the weight is given by the inverse covariance
Wi = Elgel] ' = diag(RiY, ..., RY.
As time marches forward, the number of rows of the lin-
ear system increases, thus altering the least squares solu-
tion. We now show that it is possible to use the least squares

solution X,_; at time k — 1 to efficiently compute the least
squares solution X, at time k. This process is the recursive
least squares algorithm.

We begin by rewriting (12) as

1 k
i) =5 S~ An

i=1

13)

The positive-definite quadratic form (13) can be expressed
recursively as

1
Je(x) = Jia (%) + Eku = Ao
The gradient and Hessian of ], are given by
V]i(x) = V] (x) + AIR; Y (Ax — by)

and

D% = D1 + A{R( Ay, (14)

respectively. Since A; has full column rank, we see that
D?, > 0. From (14), it follows that D?J, > 0 for every positive
integer k, and hence from (10) the minimizer of (13) becomes

Be=x— (DY) "(Via (x) + AIRN(Ax = b)), (15)

where the starting point x € R" can be arbitrarily chosen.
Since VJ,_;(%_1) =0, we set x = X,_; in (15). Thus (15) be-
comes

X=X — KAR (A, — by),

where K, = (D?;) ! is the inverse of the Hessian of ], and
from (3) represents the covariance of the estimate. Observ-
ing from (14) that K; ' = K; !, + AfR; 'A; and using Lemma
1 in “Inversion Lemmata,” we have
K= (K + AfR'A) T
=K1 — K 1AL (R + AK 1 AD T AK .

Thus, to summarize, the recursive least squares method is

Ky = Ki—1 = Ky 1AL (R + AK 1 AD T AK -4
X=X — KAR (Ak—y = by).

At each time k, this algorithm gives the best linear unbi-
ased estimator of (11), along with its covariance.
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The Kalman filter is arguably one of the most notable algorithms
of the 20th century.

The recursive least squares algorithm allows for efficient
updating of the weighted least squares solution. Indeed, if
p rows are added during the kth step, then the expression
Ry + AWK, 1Al isap X p matrix, which is small in size com-
pared to the matrix AW, Af, which is needed, say, if we
compute the solution directly using (7).

STATE-SPACE MODELS
AND STATE ESTIMATION

Consider the stochastic discrete-time linear dynamic system

(16)
17)

X1 = Foe + Gy + wy,

Y= Hkxk + 4%

where the variables represent the state x, € R", the input
u, € R?, and the output y, € R?. The terms w, and v are
noise processes, which are assumed to have mean zero and
be mutually uncorrelated, with known covariances Q; > 0
and R, > 0, respectively. We assume that the system has the
stochastic initial state x, = wy + w_,, where p, is the mean
and w_, is a zero-mean random variable with covariance
Elw_w"]=Q 1 >0.

State Estimation

We formulate the state estimation problem, given m known
observations vy, ..., Y, and k known inputs ug, ..., 1_4,
where k = m. To find the best linear unbiased estimator of
the states x;, ..., x;, we begin by writing (16)—(17) as the
large linear estimation problem

Inversion Lemmata

We provide some technical lemmata that are used through-
out the article. The first lemma is the Sherman—Morrison—
Woodbury formula, which shows how to invert an additively up-
dated matrix when we know the inverse of the original matrix.
The second inversion lemma tells us how to invert block matri-
ces. These statements can be verified by direct computation;
see also [8, p. 18—19].

LEMMA 1 (SHERMAN-MORRISON-WOODBURY)

Let A and C be square matrices and B and D be given so that
the sum A + BCD is nonsingular. If A, Cand C™ '+ DA™ 'B are
also nonsingular, then
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Mo = Xo - W-y
Gotlg x1 = Foxo - Wo,
N = Hix, + vy,
Gmflumfl X — melxmfl Wiy -1,
Ym = mem + O
Gmum = Xm+1 — mem - Wiy
Gr-1lr—1 = X = FroaXe Wi—1-

Note that the known measurements, namely, the inputs and
outputs, are on the left, whereas the unknown states are on
the right, together with the noise terms. The parameters to
be estimated in this linear estimation problem are the states
Xo, X4, - - -, X, Wwhich we write as

ze =[x x )T € RE+D,

Then the linear system takes the form
bk\m = Aklmzk + Eklms
where

T T T T T T
[w,] wWo &1 e Wy —1 U Wy,

_ T T
Ekim = wk*]]
is a zero-mean random variable whose inverse covariance
is the positive-definite block-diagonal matrix

—1
Q).

Wklm = dlag(Q:%r Q(;l/ Rflr ey Qr;llr Rr;1/ Qr;l ..

(A+BCD) '=A"'"-A'B(C"'"+ DA 'B) 'DA".

LEMMA 2 (SCHUR)
Let M be a square matrix with block form
A B}

Mz{c D

If A, D, A— BD 'C, and D— CA™'B are nonsingular, then

(A-BD'C) !
-D'C(A-BD'C)"!

—-A'B(D-CA 'B)'

L
M (D— CA~'B)~"



The second observation is that the least-squares estimation problem can bhe
solved by minimizing a positive-definite quadratic functional.

We observe that each column of Ay, is a pivot column.
Hence, it follows that Ay, has full column rank, and thus
the weighted Gramian A}, Wy, ,,Ax is nonsingular. Thus,
the best linear unbiased estimator 2;,,, of z; is given by the
weighted least squares solution

Zkim = (AL WitnAein) " AL Wi bk e

Since the state estimation problem is cast as a linear model,
we can equivalently solve the estimation problem by mini-
mizing the positive-definite objective function
1 2
]k|n1(Zk) = E”Ak|mzk - bk\m”WH,,,' (18)
We can find its minimizer 2, by performing a single itera-
tion of Newton’s method given by

2klm =z- (Azlmwk\mAklm) 71AI{Ika\m(Ak|mZ - bklm)/ (19)

where z € R** D g arbitrary. In the following, we set m = k
and choose a canonical z that simplifies (19), thus leaving
us with the Kalman filter.

Kalman Derivation with Newton’s Method

Consider the state estimation problem in the case m = k, thatis,
the number of observations equals the number of inputs. It is of
particular interest in applications to determine the current state
x; given the observations y;, . . ., y, and inputs ug, . .., 1.
The Kalman filter gives the best linear unbiased estimator
Xy of x; in terms of the previous state estimator X;_;;_; and
the latest data u;_; and v, up to that point in time.

We begin by rewriting (18) as

1 1&
]k|m(zk) = E\Ixo - Mo"z:g + EE "]/i - HixiHIZQ,’]
i=1

1 k
+ ) 2 lx; = Fioaxiog = Gioquia g (20)
=

For convenience, we denote 2, as 2, X as X, and [, as ;.
For m =k, (20) can be expressed recursively as

1
Je(zi) = Jioa(ze—y) + E”yk — Hexyz:
1
+ Eka = Froazee1 — Geoqtg 0,

where F, = [0
are given by

- 0 F). The gradient and Hessian of J;

Vii(z) =

[ Vi1 (ze1) + FlaQei (Froazimr — xp + Gyoqit—q) }
= Qi (Feoazeey — xp + Gqutg—q) + HER (Hixy — i)

and

Dy + Fioa Qe Froa
— Qi hFi

- F,Qh

D?, = 21
Ji { QE31+HZR{1HJ’ @)

respectively. Since D¥,= Q"1 >0, it follows inductively
that D?J, > 0 for every positive integer k. The proof follows
from the observation that

T2 — T 2
zD7Yizk = 21D Jx-12k—1
2 2
1 Fem1zi-1 = 1o, + [Hixdx;
and thus the right-hand side is nonnegative, being zero

only if z,_; = 0 and x; = 0, or, equivalently, z, = 0.
From one iteration of Newton’s method, we have that

Z =2z~ (D) "'V]ilzy) (22)

for all z, € R**V" Since VJ,_;1(%_,) =0 and Fy_ 2, =
Fr_1Xx,_q, we set

o |: 2](71 :|
k= ~ .

Fro1Xpq + Geoathy—1
Thus,

0
Vitz) = {leRl:l[Hk(Fk—lfck—l + Groqtle—1) — yk]}’

and the bottom row of (22) becomes
X = FeiXe_q + Geoqi—y — PHRL!
X [Hi(Fy—Xi—q + Groqttg—1) — yi,

where Py is the bottom-right block of the inverse Hessian
(D¥,) !, which from Lemma 2 in “Inversion Lemmata,”
is given by

P=(Qc!y + H{R; 'Hy — Qi F i
X Dy + FiaQihFe 1) Q) ™!
=[(Qe1 + Fra (D) 'FE) T+ HiRTH !
= [(Qu1 + FeaPeiFiog) ™+ HiRTH]
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Note that Py is the covariance of the estimator ;.
To summarize, we have the recursive estimator for x;
given by

P =[(Qu-1 + FeoaPr 1 Fio) ™' + HIR'H ™!
= FeaXoq + Gy — PH{R!
X [Hy(Fy_1Xg—1 + Ge—itte—1) — YiJ,

where X, = uo, Py = Q_;. This recursive estimator is the one-
step Kalman filter.

CONCLUSIONS

There are a few key observations in the Newton method der-
ivation of the Kalman filter. First is that the state estimation
problem for linear systems (16)—(17) is a potentially large
linear least squares estimation problem. The second ob-
servation is that the least-squares estimation problem can
be solved by minimizing a positive-definite quadratic
functional. The third point is that a positive-definite qua-
dratic functional can be minimized with a single iteration
of Newton’s method for any starting point x € R". The

final observation is that by judiciously choosing the start-
ing point to be the solution of the previous state estimate,
several terms cancel and the Newton update simplifies to
the one-step Kalman filter. We remark that this approach
to state estimation can be generalized to include predictive
estimates on future states and smoothed estimates on pre-
vious states. We can also use Newton’s method to derive
the extended Kalman filter.
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