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Abstract

We investigate a family of nonmonotonic radial twist maps constructed by unfolding the linear twist function. We find
several new modes of reconnection and derive conditions for them to occur. Reconnection and bifurcation of higher order
resonances are studied in detail, including vortex pairs and triplets. The structural instability of some of these exotic figures
is mitigated by the presence of chaotic separatrix layers. Invariant curves of involution pairs are utilized to locate and chart

their often very complex metamorphoses.

1. Introduction

Radial twist maps of the form

x =x— Ksin#,
{ (1)

o' =0+ f(x),

where the twist function f(x) is smooth in some in-
terval, are often encountered in physical problems.
For example, the choice f(x) = x gives the stan-
dard map [1], while f(x) = 1/x yields the Fermi
map {2]. Usually f(x) is monotonic in the interval
of interest, but occasionally one finds situations where
f(x) possesses an extremum, f'(x) = 0. Important
instances include orbits in particle accelerators [3],
plasma wave heating [4], and fluid dynamics [5].
Such mappings have many novel properties, as a con-
sequence of the degeneracy of the unperturbed mo-
tion. Formally regarding K as a perturbation parame-
ter, the mapping (1) may be derived from the gener-
ating function

* This paper is dedicated to the memory of Jeffrey Tennyson.

S(x',0) =Sp(x") + KSi(x',80)

- / F(E)dE+ Ksin 2)

so that dw/dx = 328y/dx* = 0 whenever f'(x) = 0.
Violation of nondegeneracy means that most of the
familiar lynchpins of Hamiltonian dynamics are in-
applicable, including the Poincaré-Birkhoff theorem
[6], the Moser twist theorem [7], and the KAM the-
orem [8,9]. Nevertheless, owing to the continuity of
the mapping (1) the Poincaré index is conserved, lim-
iting the types of bifurcations that can occur ! .

In a previous paper [10] we studied the proper-
ties of a one-parameter class of maps for which the
twist function f(x;a) possesses a single local maxi-
mum. For this class of nonmonotonic twist maps 2 we

} A familiar example of a violation of the Poincaré index is the
bifurcation of the central island in the standard map as K passes
through zero to negative values. In the present case we avoid this
possibility by restricting K to positive values.

2 Some authors use the term “non-twist” to describe maps for
which the twist condition is violated at isolated points.
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showed that the period-one primary resonances occur
in pairs, with island centers staggered 180 in phase,
i.e., each pair of resonances has opposite type and is
situated at the same phase. We also found that as a
control parameter was varied the intervening KAM
curves could reconnect at a critical parameter value,
as depicted in Fig. 1. Here we shall define reconnec-
tion of a flow or a discrete mapping as a topological
rearrangement of integral curves in which the criti-
cal points do not change their Morse type. Note that
this definition does not preclude the creation of ad-
ditional critical points dictated by preservation of the
Poincaré index. We shall refer to the sharing of sepa-
ratrices seen in Fig. 1b as braiding. From the averaged

Hamiltonian?,

H:/[f(f;a)—Zmz]df—KcosH, (3)

valid in the neighborhood of a resonance, f(x,) =
27rn, it follows that reconnection of two contiguous
separatrices occurs when

X2

/ Lf(& @) — 2mnlde. ()

X1

K(a) = %

This gives an approximate condition for the reconnec-
tion of separatrix /ayers in the map (1). In applying
this formula, account must be taken of bifurcations,
which may be analyzed with the help of the tangent
map

S 1 —Kf'cosd )

E:DT:( 1 —Kcosh )
Thus, when Tr£L =2 — Kf'cos§ = +2 = f' =0, ad-
jacent elliptic and hyperbolic fixed points annihilate
in a tangent bifurcation, as depicted in Fig. 1d. When
Tr £ = -2, a period-doubling bifurcation occurs, in
which case the notion of reconnection becomes mean-
ingless. It is also worth noting that the map (1) may
be written as a product of involutions, T = L [;, with

1} = I} = I as follows:

3 Note that the Legendre condition, 3> H /dx? = 0 is violated for
this approximate Hamiltonian.
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Fig. 1. Reconnection scenario for quadratic nonmonotonic twist
map (two periods are shown for clarity).

X' =x —Ksiné,
11:{0,=_9, (6a)
X =x
: ’ 6b
h {9’=-9+f(x’). (6b)

The decomposition (6) implies that the mapping 7 is
reversible [ 11,17], i.e. there exists a symmetry § such
that 7! = STS. Explicitly, § = I, so that T~ = I, [,.
This does not mean, however, that the Hamiltonian
(3) is time-reversal invariant, although the converse
implication holds. Indeed, we shall see that for the
mappings considered in this paper H is not even in
the momentum. In Section 5 we shall use the invariant
curves of /; and [, for analyzing reconnections and
bifurcations of higher order resonances.

Recently several authors have studied the reconnec-
tion process in some detail. In one paper, reconnec-
tion was found to occur near the 1:3 resonance in the
Hénon map [12]. For a certain parameter range, the
rotation number was found to have an extremum away
from the central resonance, leading to the formation
of twin Poincaré-Birkhoff chains. In a sequel [13], a
rather complicated map was constructed, for which re-
connection takes place in stages. The effects of a small
amount of dissipation on the reconnection/bifurcation
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scenario were also investigated, and in more detail in
Ref. [14], which also considered flows as well as dis-
crete maps. Reconnecting flows in two degrees of free-
dom were also studied for a cubic model Hamiltonian
derived from a general Birkhoff normal form expan-
sion [15]. Poincaré sections were calculated numeri-
cally for a 1:6 resonance including both integrable and
nonintegrable perturbations.

[n this paper we introduce a family of nonmonotonic
twist maps constructed by adding lower order polyno-
mials to the linear twist function in the standard map.
Section 2 describes the general family of twist maps
under consideration and reviews previous work on the
quadratic case. Section 3 contains a detailed account
of the interaction of the period-one islands in the cu-
bic twist map. The possible reconnection scenarios are
classified and described in quantitative detail. A set of
reconnection thresholds analogous to (4) are derived
and found to compare well with numerical maps. As
in the mapping model of van der Weele and Valker-
ing [12] and the model flow of de Carvalho and de
Almeida [15], we find that reconnection takes place
in stages as a control parameter is varied. However,
the relative simplicity of our mappings allows us to
describe new types of braiding and reconnection an-
alytically. Moreover, the polynomial twist functions
considered here are natural extensions of linear twist,
which may well have physical manifestations. Section
4 contains a brief discussion of the quartic twist map,
which has less symmetry than the quadratic or cubic
maps.

Section 5 compares the behavior of the higher-order
primary resonances in the quadratic and cubic twist
maps. While many similar bifurcations and reconnec-
tions are observed, there are important differences.
Thus, higher-order loops are observed to form and
disappear, but now even-order loops, which bifurcate
asymmetrically, are seen for cubic twist. In both cases
the period-two islands form vortex pairs, similar to
those observed in hydrodynamics. With the help of the
invariant curves of 72 we obtain explicit conditions
for their formation and subsequent destruction in the
case of quadratic twist and semi-analytically for cubic
twist. An approximate period-two Hamiltonian, which
correctly describes vortex pair formation for aK? <<

1 is obtained via secular perturbation theory. In addi-
tion to vortex pairs, we also predict and observe vortex
triplets in the cubic map. Although triplets are struc-
turally unstable [16] in integrable systems, the pres-
ence of chaotic separatrix layers makes them easily
observable in nonintegrable maps and flows. Finally,
semi-analytic conditions for the reconnection and bi-
furcation of the period-three islands are obtained from
the properties of the invariant curves of 7°.

2. Classification of twist functions

Regarding the twist function f(x) as an unfolding
of x, let

f(x) =Pu(x)=x —ax*+ b= Zakxk,
1
(7

where P,(x) is a polynomial with alternating coef-
ficients, linear term x and constant term zero. It is
convenient to parametrize the coefficients of P, (x) in
terms of its extrema at {x}}7':

) =77 (1= x/x}). (8)

Thus

fo =3 Vg (9)
- - k k—1 5

where Sy = 1 and

/
1
Sk = _— 10
k inkx*...x’!‘ (10)

In this way one can easily construct polynomials
P,.(x) such that

0 <min{f(x})} <2mn < max{f(x])}. (1)

A word of caution is in order regarding cases where
(7) represents a Taylor series approximation to some
physical twist function. Such expansions are valid only
near the origin and may introduce spurious critical
points if utilized for finite values of x, even within the
radius of convergence. For example, in Ref. [20] a
“relativistic standard map” is derived, with monotonic
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Fig. 2. Twist function for (a) quadratic twist, (b) cubic twist, (¢) quartic twist.

twist function (in our notation) f(x) = x/+/1 + Bx2,

which has the Taylor expansion f(x) =~ x — 38x°.
A mapping constructed from this approximate twist
function would contain reconnecting structures not
present in the original physical model.

Quadratic twist

For the quadratic model of Ref. [10],
F(x)y=1-x/x"

so that we have the one-parameter family

f(x) =x —ax?

(12)

with «a

1/2x* > 0, as sketched in Fig. 2a.
The resonances thus occur in pairs x;2 = (1 &
v/1 — 87na) /2a, which annihilate in a tangent bifur-
cation (codim 1) when a = 1/87rn. As in Ref. [10]
we shall refer to the resulting map as the logistic twist
map (LTM). Fig. 3 shows sections for K = 1.5 and
two values of «, illustrating the characteristic island
staggering and reconnection of KAM curves as the
control parameter « passes through the critical value
given by (4). The period-one fixed points are located
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Fig. 3. Logistic twist map for K =1 and («¢) @ =0.036, (b) a = 0.038.

at the intersections of the invariant curves I"y and I,
of the involutions /; and /. For I; the curves are the
vertical lines @ = 0, = while for I, we find

0=1f(x)—mm, meZ (12a)

Fig. 4 shows the invariant curves for a = 0.036 and
m = 0,1 (all others being equivalent mod 277) which
locate the period-one fixed points in Fig. 3a. These
curves will prove useful in tracking period-two fixed
points in Section 5.

Note that by the Morse Lemma [16] f(x) is struc-
turally stable to small perturbations. It follows that the
fixed points of the mapping (1) are also robust and
that the reconnections and bifurcations are similarly
unaffected by small perturbations.

The reconnection threshold is given by evaluating
the integral (4):

(1 — 87na)?/?

12a2

and is plotted in Fig. 5 for n = 1. In Ref. [10] ex-
tensive comparisons were made between the predic-
tions of (12b) and numerical calculations. The re-
sults show that (12b) is very accurate for smaller K-
values but that the growth of chaotic regions and sec-
ondary islands come into play at large values of K.
The lower (elliptic) fixed point period-doubles when

K (a) = (12b)

Invar:ant Cerves for LIM: a = 0.035

- I I,

9 s

Fig. 4. Invariant curves for logistic twist map for a = 0.036.

Kf' = K\/1 ~8mna = 4, (a codim 1 bifurcation),
plotted in Fig. 5 as the dashed curve labelled Kj;¢. The
presence of finite separatrix layers obscures the recon-
nection process, so that it is more accurate to speak of
reconnection of a chaotic band. Here the existence of
an adiabatic barrier to chaotic diffusion is intimately
linked to the reconnection process. As described in
Ref. [10], the meandering stream of KAM surfaces
between the loops in Fig. 3b may be destroyed by in-
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Fig. 5. Reconnection diagram for logistic twist map, including
thresholds for period-two and -three islands.

creasing K. Note that the period-one homoclinic points
are connected homoclinically after as well as before re-
connection. Heteroclinic connections between neigh-
boring pairs of resonances are possible when the in-
tervening KAM curves have been destroyed.

In contrast, the cubic twist function described in
Section 3 is a two-parameter family, which allows us to
select conditions such that the effects of chaotic orbits
are entirely negligible. In Ref. [10] we showed that
the period-two and -three secondary islands strongly
affect reconnection and destruction of adiabatic bar-
riers to chaotic diffusion. The properties of these res-
onances will be elucidated and compared with their
cubic analogues in Section 5.

3. Cubic twist

For a cubic twist function there are in general two
extrema,

fl(x)=(t—x/x7) (1 -x/x3),
which yields the two-parameter family
f(x) =x —ax® + bx>, (13)
with

40

Fig. 6. Cubic twist map for K = 1.75, a = 0.047 and b = 0.00068.

R (1)
2xyx5 3xix3

both positive, as depicted in Fig. 2b. Inverting (14),
we find

7 _

Xy = &3‘;——3—” (15)
When a? = 3b the maximum and minimum merge into
a horizontal inflection point at ¥ = a/3b = 1/a, where
f(X) =1/3a.In order that all three resonances exist, a
and b must be chosen such that a®> > 3 and f(x3) <
27rn < f(x7). A first approximation is conveniently
found by letting the resonance line pass through the
horizontal inflection point; 27rn = 1/3a, and unfolding
by decreasing b slightly from b = a?/3. Fig. 6 shows
the (codim 2) unfolded cubic twist map (CTM) for
K = 175, a = 0.047 and b = 0.00068. Varying b
with a fixed then allows us to control the position
of the resonance line and thereby cover the complete
sequence of reconnections and bifurcations. Again, by
the Morse Lemma [ 16] the general appearance of the
mapping is stable to small perturbations that may arise
in real physical systems.

In order to justify this program, let us consider the
cubic resonance equation
bxg — ax(% + x0 — 27n =0,

nez", (16)
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Fig. 7. Coefficients of cubic resonance equation leading to positive
real resonances.

which has three positive real roots for all positive a
and ». We must show that the position of the resonance
line can be moved smoothly from peak to valley of
f(x) by varying b between two positive real limits,
bpin < b < bpay. At each extremum (16) has a double
root, where its discriminant vanishes. This gives

(a* - 3b) = [2b(67nb — a) + a*)?, (17)
which reduces to a quadratic for b:

Q2’7 b* — (9nma — 1)b + La*(8nma — 1) =0,
(18)

whose roots (byin, bpay) are positive real iff a >
1/8nr. The discriminant of (18) is in turn a cubic in
a, which reduces to A’ = (67rna — 1)*. The vanishing
of A’ at a = 1/67rn then yields an upper bound for real
values of bpqy and by, This rather Byzantine stratifi-
cation of nested cubics and quadratics is summarized
in Fig. 7, which shows the useful range of b,,, and
Bmin vs. a. When 1/87n < a < 1/6wn, both limits
exist and are ‘positive. Fixing a in this range and vary-
ing b then leads to a family of reconnection diagrams
in the b-K plane all qualitatively similar to Fig. 4 of
Ref. [10].

As in the quadratic case, accurate reconnection
thresholds may be calculated from the averaged

Hamiltonian (3). The result is

Ku=§/[f<£) —2mn)de,

X3

[f(€) — 2mn]dE,

1
Kp=—j3

0 =%/[f(§) — 2mnldé = Kig — Ka3. (19)

Thus, in addition to the expected braiding of contigu-
ous islands, there is the possibility of reconnection of
the upper and lower island chains when K = Kp3.
The complete picture is summarized in the reconnec-
tion diagram of Fig. 8, which gives the reconnection
thresholds K|, and K33 in the b— K plane for a = 0.05
and n = 1. The Kj; curve begins at b = b,,;,, where
the lower two islands annihilate in a tangent bifurca-
tion, increasing monotonically and terminating at b =
bmax, where the upper two islands annihilate. The be-
havior of the Kj3 threshold is similarly bounded by
bmin and by, crossing the Kj; curve at (b*, K*},
in the vicinity of which it is possible for the upper
and lower islands to interact. Also plotted in Fig. 8 as
points are numerically derived values of K|, and K33,
which for this value of a agree with the theoretical
formulas (16) to better than three significant figures.
Choosing a smaller value of a leads to higher values
of K, with all the complications of chaotic layers and
secondary resonances. The emphasis here however, is
on the discovery of new kinds of braiding.

In contrast to the quadratic case, there are several
different paths in the reduced parameter space (b, K)
to consider. The reconnection scenario of Fig. 9 cor-
responds to a path along a line of constant K < K*
in Fig. 8. Starting from a point in the lower triangu-
lar region (“home base”), and travelling to the left
along this path produces reconnection of the lower and
middle islands, followed by mutual annihilation (not
shown), while moving to the right leads to reconnec-
tion of the upper and middle islands and their ultimate
demise. Both metamorphoses are locally very similar
to the scenario for the quadratic twist map. The re-
connection in Fig. 9a,b is shown for the full map in
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Fig. 9. Reconnection scenario for cubic twist map along a path of
constant K < K*.

brmax

Fig. 8. Reconnection diagram for cubic twist map.
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(e)

(d)

Fig. 10. Reconnection scenario for cubic twist map, along a path
of constant b < b*.

Fig. 6. A more interesting scenario is found along a
vertical path of constant b < b*, as depicted in Fig.
10. Here we observe the usual reconnection of the two

lower island chains upon crossing the K, threshold,
followed by a second braiding of the upper two is-

land separatrices upon crossing the K3 curve. Fig. 11

illustrates the strikingly beautiful hourglass structure

that appears in the full mapping. A similar scenario
takes place along a vertical path of constant b > b*.
A third type of braiding occurs for a vertical path ex-
actly along the b = b* line, as depicted in Fig. 12. At
the point (b*, K*) a symmetric braiding of all three
island chains occurs. For K > K* the upper and lower
X-points at # = 7 are connected. Fig. 13 shows this
transition for the full map, with a = 0.05, for which
b* = 0.000792, and K* = 0.42828. In the integrable
approximation these symmetric maps are structurally
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Fig. 11. Full mapping corresponding to the scenario of Fig. 9e,
with K =2, « =0.05, and b= 0.000785.

(e}

()

(a)

=

Fig. 12. Symmetric braiding for a path of constant b = b*.

unstable, since a small variation in b can destroy the
topology. However, the presence of a chaotic separa-
trix layer fuzzes out the transitions and maintains the
heteroclinic connections over a finite range of b near
b*. A final scenario occurs for a horizontal path of con-
stant K = K*, where the symmetric braiding usurps
the “home base” configuration seen in Fig. 9. Recon-
nection and bifurcation of secondary islands will be
described in Section 5.

4. Quartic twist

The three-parameter twist function is

f(x) =x —ax® + bx® — cx*, (20)
with
1 1 1 1 1 1
2a=—:+_*+_*’ 3b= **+ **+ * ok ?
x5 x5 x3 xX(xy 0 xyxy 0 x5x3
1
de=——= 20
XX X3

again assumed all positive. A typical case is illus-
trated in Fig. 2c. There are several different configura-
tions, depending on whether the resonance line crosses
f(x) two or four times. Without loss of generality
let us assume that x] < x; < x3, with f(x) <
27n < min( f(x}), f(x3)). Note that, in contrast to
the quadratic and cubic cases, a general quartic has no
symmetry point about which f(x) has definite par-
ity. This lack of symmetry will be seen to influence
the possible modes of reconnection. In order to re-
duce the parameter space to managable proportions,
we again take the degenerate case f' = f' = f"' =0
as a point of departure. This gives the single critical
point X = x} = x} = x} = 3/2a, with b = 44 /9 and
¢ =2a’/27. Setting f(X) = 3/8a = 2mrn then yields a
first guess for a. A typical unfolding, possessing four
critical points, is illustrated in Fig. 2c. As in the cubic
case, all situations of interest can be achieved by fix-
ing a and varying b and c. However, we have not yet
found a way to capture the full range of possibilities
by varying only one of the parameters b or c. We call
the resulting map the quartic twist map (QTM).

5. Higher-order resonances

As shown in Ref. [10] higher order island chains
can also reconnect and have a strong effect on the
breakdown of adiabatic barriers to global diffusion.
Here we elaborate on our previous treatment of the
reconnection of secondary islands in the LTM and
compare their characteristics with those in the CTM.
Fig. 14 shows reconnection of the period-two islands
in the LTM, which is seen to be quite unlike the sce-
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Fig. 13. Full mapping for the scenario of Fig. 12b and c.

nario for the period-one resonances. For fixed a the
islands form a tight vortex-pair structure at a critical
value K, at which the X-points momentarily merge
and subsequently move apart horizontally as K is in-
creased beyond K. In contrast to the transitory braid-
ing of the period-one separatrices, however, the sepa-
ratrices remain shared. As in the case of the period-one
islands, the vortices annihilate in a tangent bifurcation
depending only on «. The scenario for the N = 3 is-
lands in the LTM more closely resembles that for the
period-one islands, as depicted in Fig. 16. In general,
in the LTM even-order islands form vortices and odd-
order islands form loops. As we shall see, there are
more possibilities in the CTM.

5.1. Period-two

In order to describe these transitions analytically,
let us examine the general period-two map

x' =x —Ksin#,
0 =6+ f(x),

x" =x"— Ksin¢',
6// =6/+f(x//)’

T2 - (22)

whose fixed points are given by

f(xo0) + f(xp) =2mm, m odd, (23)
sinfp + sin @) = 0, (24)
or

sin § (6o + ) cos 3 (6o — 63) = 0. (25)

Just as for the standard map [2] there are two families
of resonances, those with (i) 6y + 06 = () and those
with (ii) 6y — 6} = £

Consider first the primary period-two resonances.
As Fig. 14 shows, solutions are O-points at 6y =
0, 6} = m, with xo = x{,, and X-points near § = £ /2,
with x{ = xo — K sin flp. Knowledge of the locations of
these fixed points is sufficient to predict reconnection
into vortex pairs and their subsequent annihilation. The
locations of the O-points x are easily found by setting
xo = x4 in (23) to obtain f(xo) = wm. Thus, for the
LTM the O-points are given by xo — ax3 = 7rm, so that

2axg =1+ V1 —4mam. (26)

When o = 1/47rm the N = 2 islands disappear in a
tangent bifurcation. The positions of the O-points can
also be found as the intersections of invariant curves
of T2, which can be written as a product of invo-
lutions; 7% = L (1| L1}) = L. Alternatively, T? =
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(b}
30 <

s

Fig. 14. Vortex pair formation in the logistic twist map, for K =4 and (a), a = 0.0260, (b) a = a. = 0.026234, (¢) a = 0.02635. The
dashed curves are invariant curves of /|, /5, and the resonance curves /7.

(11 1)1 = I,I;. However, it is more convenient to
utilize the “resonance curves” given by (23) and la-
belled by I'F in Fig. 14. Thus, the O-points lie at the
intersections of the I” ﬁt and 7"y, the invariant curves of
11, which are just the vertical lines 8 = 0, 77. Whether
the I", are themselves invariant curves of some invo-
lution remains an open question.

The X-points lie at the intersections of the resonance

curves and the invariant curves of /5. Explicitly, the
I", are the solutions of

f(xg) + f(xo — Ksin6y) =27m, (27)
or

Zaxg —~2(1+ca)xg+o(l +0a) +27m=0.
(28)

where we have defined o = K sin 8.
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Fig. 15. Level sets for approximate integrable period-two Hamiltonian (A.17) derived using secular perturbation theory, with K = 4 and
(a) a=0.0262, (b) a=0.026378 and (c) a = 0.0265 (compare with Fig. 14).
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The family of invariant curves associated with the
involution /,, namely

B0 = 5 f(x0) + mm, (29)

are shown in Fig. 14 as the I’y for m = 2 and 3.
Several other resonances can also be seen to lie on
I"». For example, the lower island near 6y = 45° is a
member of an N = 2 pair which has bifurcated from
the N = 1, m = O island at the origin. As noted in Ref.
[10] the X-points can be made to merge, at which
point a vortex pair is formed, as depicted in Fig. 14b.
The X-points coincide when the discriminant of (28)
vanishes:

A=1-a’c? —dmam=0 (30)
which yields
aKsinfy = £V 1 — 4ram. (31)

Thus, there are two values of 8y € (0, ), which
merge when 6y = 7r/2. This establishes the claim of
Ref. [10] that a vortex pair is born when X exceeds

K. =vV1—4mram/a, (32)

shown in Fig. 6 as the curve labelled N = 2. For
example, the m = 3 vortex pair in Fig. 14c is formed
when a = 0.02623374, K = 4 and disappears when
a = 1/127r = 0.026526. Note that the reconnection
threshold (32) is derived directly from the map (19),
in contrast to (4) for the period-oneislands, which was
derived from the approximate averaged Hamiltonian
(3).

After reconnection the two branches of 7', join to
form a single ellipsoidal curve, which no longer in-
tersects I™;. The four X-points, corresponding to the
stagnation points of a physical vortex pair [19], now
lie at the tangential intersections of I~ ,i, have changed
symmetry type, and satisfy 6y — 6 = 7 rather than
6y + 68y = 0. Thus, they now lie on a second pair of
resonance curves /, given by f(x9) = 2m — 1),
so that all X- and O-points fall on the same horizontal
lines.

An approximate integrable Hamiltonian for the
period-two islands can be obtained via secular canon-
ical perturbation theory [2]. The result, as derived in
Appendix A, is

H® =3x* — fax’ — mmx

—LK*(1 - 2ax) cos20. (32a)

Fig. 15 shows level sets for this Hamiltonian for K = 4
and comparable a-values to those in the full maps of
Fig. 14. The integrable flow described by H®) may be
useful as a model stream function for hydrodynami-
cal vortex streets ¢ . Its properties closely mimic those
of the LTM for sufficiently small K; the critical point
analysis of Appendix B yields reconnection and bifur-
cation thresholds and quantitative conditions for their
applicability to the full mapping. Thus, vortex pairs
form when

(4mm)* + 2K? — 4arm

Qrec = K2 (32b)

and disappear when

: - \/__T~_—
Qpif = dmm (gm) 2K2- (32c)
Comparing these formulas with their counterparts for
the exact map shows agreement for aK?* << 87m. For
the examples of Fig. 14, m =3, @ ~ 0.025 and K =
4, ak? ~ 0.4 << 247. The predicted thresholds are
@rec = 0.026378, apip = 0.026677, in good agree-
ment with the exact values, @,,. = 0.026234, ap;if =
0.026526.

For the CTM the period-two islands are similar,
with O-points at fy = 0, 77 and X-points at §, = +7/2
as depicted in Fig. 17. There are three island chains,
with O-points given by

bxg—ax%+xo—7rm=0. (33)

As in the LTM, vortex pairs disappear via a tangent
bifurcation when the corresponding O-points merge,
which occurs when the discriminant of (33) vanishes.
Since (33) can be obtained from (16) by replacing
n — m/2, we may derive conditions for the existence
of the N = 2 islands mutatis mutandis from the N =1

4 Although the reconnected period-two islands closely resemble
vortex pairs familiar from hydrodynamics, there is an essential
difference. Hydrodynamic vortices are described by poles of a
stream function, whereas the analogous points in the level sets of
A®D are local maxima and minima.
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Fig. 17. Vortex pair formation in the cubic twist map for a = 0.047, b = 0.00060, and (a) K = 4.0, (b) K =5.

conditions. Thus, the vortex pairs disappear when A =
0, or

21m* b — 2(9mma — 2)b + a*(dmma — 1) =0,
(34)

provided that a* > 3b. The solutions of (34) yield a
diagram similar to Fig. 7. The vanishing of the dis-
criminant A’ = (3mma — 1)3 gives a maximum value

of a beyond which the N = 2 resonances cease to ex-

ist. Vortex pairs are again formed when adjacent X-

points merge. The X-points are given by (27), which

becomes

2bx3 — (2a+ 30b)xt + (2 + 20a + 30%b) x,
—o(1+0a+0?b) —~27m =0, (35)

whose solutions are the resonance curves I . Setting
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the discriminant of (35) equal to zero yields an un-
wieldy quintic in b, which we have not succeeded in
reducing further. Thus, an explicit threshold for vortex
pair formation in the CTM may not be possible.

Now, however, there is the intriguing possibility of
all three island chains simultaneously coalescing in a
super-vortex. In order for this to occur, the cubic reso-
nance curve f(x) must have a shallow maximum and
minimum near 7. Choosing m = 1, we find that f(x)
has a horizontal inflection point at x = 377 when a =
1/37 and b = a/9. For fixed a, the unfolded f =
resonance passes through the (now oblique) inflec-
tion point when 277b* — 9ab + 2a> = 0. For a = 0.1
this gives b = 0.00316828 and 0.0074420. The second
solution is extraneous since 35 > a°. In the integrable
approximation, when b deviates from b a triplet does
not form, i.e. vortex triplets are structurally unstable
[ 16]. However, just as for the period-one resonances,
the presence of chaotic separatrix layers mitigates this
sensitivity.

Fig. 18 shows the spectacular vortex triplet that
forms when K =~ 4.5. Unlike vortex pairs, the creation
of a vortex triple occurs in several stages. First the up-
per and lower X-points undergo simultaneous tangent
bifurcations, giving birth to an O-point and two neigh-
boring X-points, as depicted in Fig. 18b. Next a com-
plicated reconnection involving the new O-points and
the central X-point takes place, similar to the period-
one reconnection of Fig. 12, as illustrated in Fig. 18c.
At this point the vortex triplet is also formed. It may
be possible to derive an analytic threshold for this re-
connection and thereby a condition for triple-vortex
formation, using an averaged N=2 Hamiltonian along
the lines of Appendix A. Finally, the hourglass struc-
ture disappears in an inverse tangent bifurcation, as
shown in Fig. 18d. Also shown are the (dashed) in-
variant curves of I, I; and the I,, which serve to
locate (almost) all period-two fixed points, including
the new O-points born near +£90°. As in the case of
the LTM vortex pairs, two of the three separate I,
curves in Fig. 18a join to form a single closed ellip-
tical curve in Fig. 18b. Again, the post-reconnection
X-points have changed symmetry type such that the
upper O- and X-points all lie on the same horizon-
tal line given by f(xo) = (2m — 1)7. The vanishing

of the hourglass figure corresponds to a triple root of
(35) and is readily predictable analytically. For fixed
a and b(a) the critical value of K is

K* = %\/02—31_). (36)

For a = 0.1 and b = 0.00316828 this gives K* =
4.6829, in good agreement with numerical calcula-
tions.

Also worthy of note is the extreme asymmetry in the
chaotic layers surrounding the upper and lower hete-
roclinic points. While the “exterior” regions are quite
chaotic, the “interior” region appears to be very reg-
ular. It would be interesting to explore the structure
of the heteroclinic orbits for these points and to cal-
culate Lyapunov exponents for the interior and exte-
rior regions. We expect that even more complex, albeit
structurally unstable, supervortices can be stacked for
higher dimensional unfoldings, such as the QTM.

5.2. Period-three

The general period-three map is

(x’ =x — Ksiné,
0 =6+ f(x),
X" =x — Ksiné’,

T 37
8// =6’+f(xl/), ( )
X" =x" ~ Ksin8"
0/// =0I/ + f(x”l)

whose fixed points are given by

f(x0) + f(xp) + f(xg) = 2mm, (38)

sin g + sin By + sin 6y =0, (39)

where m is an integer not divisible by 3. Let us apply
these conditions to the period-three islands in Fig. 16,
which depicts the LTM for K = 5.35 and a = 0.0292.
Setting 6y = 0, (39) is satisfied for 4 = —6}. It
follows that xo = x{, so that (38) becomes

2f(x4) + f(xy — o) =2am, (40)

whose solutions we call resonance curves, analogous
to the I'* for the period two islands. In addition, set-
ting 8" = —@' in the third of Egs. (37) gives
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Fig. 18. Vortex triplet formation in the cubic twist map for ¢ = 0.1, b = 0.00316828 and (a) K =4, (b) K =4.25, (¢c) K =4.5, (d) K =5.0.

F(xg) +2(65 —7m) =0, (41) pear for K ~ 6.6. For the LTM, in all cases the up-
per and lower loops disappear together, a symmetry
property apparently shared by all odd-order islands.
Even-period islands always reconnect to form vortex
pairs. As in the case of vortex pair formation, recon-
nection occurs when the two branches of I, merge to
form closed curves. An approximate condition for re-
connection can also be derived from an approximate

which is an invariant curve of f, = I;T. These curves
intersect at the fixed point (xg, 8)), as shown in Fig.
16. (It is readily seen that 7° = [,,.) The upper and
lower chains annihilate in a tangent bifurcation when
these two curves are tangent. In this way we gener-
ate the two o — K curves shown in Fig. 6 for m = 4
and 5. For example, for @ = 0.0292 the loops disap-
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period-three Hamiltonian, which can be obtained by
the methods of Appendix A.

In general, families of higher order resonances may
be located by observing that in the limit K — O the
resonance condition analogous to (38) becomes

fxo) =2mm/n. (42)

For each value of n the index m must be chosen rel-
atively prime to n. In order to see reconnections the
mapping parameters a, b, ¢, ... must then be carefully
chosen so that the resonance line (42) crosses the
twist function more than once. As in the case of vor-
tex triplets this is most easily done by starting near an
inflection point of f(x). In this way we have located
period-three and -four reconnections for the CTM.
Here the invariant and resonance curves proved invalu-
able in finding reconnection thresholds. Fig. 19 shows
reconnection of the period three islands for fixed a
and b and two values of K. Note the pronounced
asymmetry in the upper and lower loops, unlike their
LTM cousins seen in Fig. 16, which are of compa-
rable size and disappear together. In contrast, for the
CTM the lower loops in Fig. 19b are seen to self-
destruct before the upper loops. These differences are
consequences of the different symmetries of the two
maps. Another striking difference is illustrated in Fig.
20, which illustrates reconnection of two staggered
period-four chains in the CTM, which again occurs
in stages. In contrast, the period-four (and in fact all
even-period) islands in the LTM invariably form vor-
tex pairs. Again, the different behaviors are ultimately
attributable to the symmetry properties of the invari-
ant curves of the maps. As noted elsewhere [ 13] the
LTM is not generic; the examples considered in this
paper help lead the way toward a full understanding
of the range of possible modes of reconnection.

6. Discussion

We have studied in some detail a new family of non-
monotonic radial twist maps constructed by generaliz-
ing the linear twist function in the standard map. These
mappings exhibit an extraordinary variety of novel dy-
namical behavior, including several new modes of re-

(a)
0

16 k.

- 9 T
Fig. 19. Reconnection of period-three islands in the CTM for
a=0.039, b=0.000495 and (a) K =4, (b) K =4.25.

connection. Since they were obtained as natural exten-
sions of the linear twist function, we expect that they
will model real physical systems. The relative simplic-
ity of the mappings allows one in many cases to derive
explicit analytic conditions for the observed reconnec-
tions and bifurcations as straightforward exercises in
the classical theory of equations. In this way explicit
conditions were derived for the reconnection and anni-
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Fig. 20. Reconnection of period-four islands in the CTM for a = 0.05,» =0.0008, and (a) K =4, (b) K =5.

hilation of both period-one and period-two resonances
in the LTM, and semi-analytically for the period-three
islands. For the CTM period-one islands reconnec-
tion 1s governed by the zeros of a quartic, which was
solved numerically to generate Fig. 8. Tangent bifur-
cation thresholds for these resonances are given by the
solutions of the quadratic (18). Vortex pairs similar
to observed in two-dimensional hydrodynamic flows
were found in both the LTM and CTM, and explicit
reconnection and bifurcation thresholds derived for
the LTM. An approximate integrable Hamiltonian for
vortex pairs was derived via secular perturbation the-
ory and shown to compare closely with the full LTM.
This Hamiltonian may be useful as a model stream
function for hydrodynamic vortex streets. The CTM
period-three analysis was greatly facilitated by knowl-
edge of the invariant curves. Here interesting differ-
ences were found from their LTM counterparts. While
the LTM n = 3 islands are symmetric and annihilate
together, the CTM loops are asymmetric and disappear
separately. Moreover, the CTM n = 4 islands were
found to be staggered and form asymmetric loops, un-
like their LTM cousins, which are aligned and make
vortex pairs. More complex higher-dimensional struc-
tures are certainly possible, but (asymmetric) loops

and vortex pairs appear to be generic.

The numerical maps give one a great deal to ponder
and hopefully to explain. For example, do changes of
homo/ heteroclinic connections invariably accompany
reconnection of separatrix layers? Why are the sepa-
ratrix layers so extremely asymmetric in vortex-pairs
and -triplets? What does the homo/heteroclinic tangle
look like in such cases? Can we generalize the miti-
gating effects of chaotic layers on structural instabil-
ity? Are there higher-dimensional versions of recon-
nection? ( The phenomenon was originally discovered
in a four-dimensional symplectic map [4]). While all
known reconnecting discrete maps are nonintegrable,
physically interesting reconnecting flows are readily
constructed. Reconnecting integrable flows, such as
represented by the Hamiltonian (3), have been inves-
tigated for a cubic model Hamiltonian in Ref. [15].Is
a taxonomy of types of reconnection possible for two-
dimensional maps or flows? The examples consider in
this paper suggest an affirmative answer. The violation
of the nondegeneracy conditions implies that there are
regions where the Legendre transformation between
the Hamiltonian and Lagrangian pictures is also vio-
lated [18]. Is a Lagrangian formulation of reconnec-
tion possible? Preliminary attempts to date have been
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unsuccessful. Finally, we note that similar patterns oc- Acknowledgements

cur in stochastic webs [21], where the nondegener-

acy condition is also violated. It would be interesting We are grateful to Al Lichtenberg, Jim Meiss and
to cxplore the parallels between nonmonotonic twist Tim Poston for helpful discussions.

maps and the 3/2 degree of freedom models treated

in Ref. [21].

Appendix A. Perturbative treatment of higher order resonances

The exact Hamiltonian for the LTM can be written [2]

H= %xz — %ax3 —K Z cos(8 — 2mrqn), (A.1)

g=—0%

where the sum represents an infinite train of delta functions. Formally treating K as a small parameter, we seek
a canonical transformation (x,8) — (%,8) such that the new averaged Hamiltonian represents the period-two
resonances. Our treatment follows that of Chirikov [ 1] and Lichtenberg and Lieberman [2]. Taking as generating
function

S(x,0,n) = 0% + KS|(X,0,n) + K*S(%,0,n) + -, (A2)

where n is integer time gives

0s, -
P gy kDL A3
9 MY (A3)

Substituting (A.2) in (A.1) and collecting terms, we find

r=X4+K

2
) a _ _ _5S1 (?S] 1 2 _ 5S] 3
_ip g ] Lk2(1 a0 [0 4 oy, Ad
H=3x 3% + K[ (1 ax)xaa 3n+U]+2 ( aX) Y + O(K?) (A4)

where U is the infinite sum in (A.1). The term proportional to K can be killed by constraining S to satisfy the PDE

) _._d5 a5
| — — 4+ —+U=0. A5
¢ ax)xae on ( )

The form of U suggests the ansatz

$i1(X.0,n) = a,(%) sin(# — 2mqn) (A6)
q
so that
=10 ~a56;)’c—27rq' (A7)
Hence
%5071 - Zq: <T°f(i-5§ ing)rq' (A.8)

This yields the new Hamiltonian
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A(x.0.n) =32 ~ S8 4+ K7 (1 - 2a0)Uy(%,0.m), (A9)
where
T
To exhibit the period-two resonances, write
2 cos(8 — 2mrgn) cos(0 — 2mmn) = cos[26 — 27 (g + m)n] + cos[ (g — m)2mwn]. (A.11)
At resonance, @ = m(g+ m) = Mz, M odd, so that
% — ax’ = M, (A.12)

which yields the usual pair of resonant actions. Near resonance the double sum then reduces to

C03(20 — 271) 1 COS<29 2 Z —Lcos(20 — 2mn).
272 £ (M —2q) (M —2m) (m— M/2)2
(A.13)
Thus we arrive at the approximate period-two Hamiltonian
8% = %xz - ia - —Kz(l —2a¥) cos(26 — 2mn). (A.14)
where #(4, %, n) is given implicitly by
sm(19-27rqn) (A.]S)

§=0+K(-2a%)y [(1-ax)x—2mwg]?’
q

If we neglect this phase shift, Z® can be simplified by transforming to a moving frame £, # = 6 — 7rn by means
of the generating function

$(2,8)=(0—7m3% (A.16)
Carrying out this transformation and removing the hats then gives our final result

A® = 1x? - lax® — Mmx — £K* (1 - 2ax) cos 26. (A1T7)

Appendix B. Critical point analysis of H®

The critical points of the period-two LTM Hamiltonian (A.17) are given by the simultaneous solutions of

aH
= = 4K%(1 - 2ax) 5in 260 = 0, (B.1)
222
88 =x — ax’ —m7r+§aK2 cos28 = 0. (B.2)
X

From (B.1) there are two classes of fixed points:
({) 69 =0, tw/2, with xo given by
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ax(z)—xo-{—mn'— %00[(2 =0, (B.3)
(ii) xo =1/2a, with 6y given by
tak? cos20y = mm — 1/4a. (B.4)

As in the scenario depicted in Fig. 14 let us fix K and vary a. For small a, (B.4) gives elliptic fixed points at
Ay (o =1) and saddles at 8y = £77/2 (o = —1) located at

1+ /1 — 4a(mr — cak?/B)
Yo = 2w ’

which agrees with the exact values (26) for «K? << 8mm. The O-points merge when the discriminant of (B.5)

(B.S5)

vanishes, 1.e.
LloK*a? — dmma +1=0, (B.6)

so that
4mm — /(4mm)? — 2K?

X2 . (B.7)
Thus, the annihilation threshold has a slight K-dependence, in contrast to the exact value ap;s = 1 /4mrm. Vortex
pairs are formed when the X-points merge, i.e.

dpif =

(4mm)? + 2K? — 47rm
Apee = -
K2
A this point the X-points lie at xop = 1/2a. As « is increased further the X-points divide and move horizontally
along this line, with 8y given by (B.4). When o — ays, 6o — 0 and the vortices disappear.

(B.8)
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