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Spectral stability of small-amplitude shock profiles for
dissipative symmetric hyperbolic–parabolic systems
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Abstract. We prove one-dimensional spectral stability of small amplitude shock profiles for
degenerate viscosity conservation laws that are dissipative symmetric hyperbolic–parabolic in
the sense of Kawashima [Ka.1], generalizing well-known results of Matsumura and Nishihara
[MN] and of Kawashima, Matsumura, and Nishihara [KM,KMN] for the case of compressible
gas dynamics. The proof follows an approach different from that of [MN,KM,KMN], instead
combining the weighted energy method of Goodman [Go.2] with the auxiliary derivative estimates
of Kawashima [Ka.1].
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Section 1. Introduction

Consider a one-dimensional system of conservation laws
ut + f(u)x = (B(u)ux)x, (1.1)

u, f ∈ Rn, B ∈ Rn×n, f , B ∈ C2, that is of symmetric hyperbolic–parabolic type in
the sense of Kawashima [Ka.1,KSy] in some neighborhood U of a particular base
point u∗, i.e.:

(+) For all u ∈ U , there exists a symmetrizer A0(u), symmetric and positive
definite, such that A0(u)A(u) is symmetric, A(u) := df(u), and A0(u)B(u) is
symmetric, positive semidefinite.

Note that (+) implies that also (A0)1/2A(A0)−1/2 is symmetric, and so the spec-
trum of A is real and semi-simple, i.e. the first-order part of (1.1) is (nonstrictly)
hyperbolic. In addition, suppose that there hold Kawashima’s conditions of dissi-
pativity:

(++) For u ∈ U , there is no eigenvector of A(u) lying in the kernel of B(u);

and block structure:
(+++) The right kernel of B(u) is independent of u.

These properties are enjoyed by many of the equations of continuum mechan-
ics, in particular the equations of compressible gas dynamics and magnetohydro-
dynamics. In such applications, the matrix B(u) is usually singular, i.e. (1.1)
is incompletely parabolic. The significance of (+)–(+++) is that behavior is
nonetheless similar in many ways to what would be seen in the parabolic case;
for example, the “genuine coupling” of hyperbolic and parabolic effects embodied
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in condition (++) has been shown in several contexts to imply time-asymptotic
smoothing and large-time behavior similar to that of the strictly parabolic case
[MNi,Ka.1–2,Ze,LZe,Ho,HoZ.1–2].

In particular, at least for small amplitude waves, conditions (+)–(+++) imply
that the viscosity B is sufficiently regularizing to “smooth” discontinuous traveling
wave solutions, or “shock waves,”

u(x, t) = ū(x− st) :=
{

u− x− st < 0,

u+ x− st ≥ 0,
(1.2)

of the corresponding hyperbolic equations

ut + f(u)x = 0, (1.3)

yielding instead smooth traveling wave solutions

u = ū(x− st); lim
z→±∞ ū(z) = u±, (1.4)

or “viscous shock profiles.” This fact, well-known in the context of gas dynamics
[We,Gi], was recently established by Freistühler [Fre] for general Kawashima class
systems, using a variation on the center manifold argument of Majda and Pego
[MP] in the strictly parabolic case.

More precisely, let
a1(u) ≤ · · · ≤ an(u)

denote the eigenvalues of A = df(u), rj(u) and lj(u) a smooth choice of associated
right and left eigenvectors, lj · rk = δj

k, and assume at the base point u∗ that:

(H1) The pth characteristic field is of multiplicity one, i.e. ap(u∗) is a simple
eigenvalue of A(u∗).

(H2) The pth characteristic field is genuinely nonlinear, i.e. ∇ap ·rp(u∗) 6= 0.

Then, we have:

Proposition 1.1 ([Fre]). Let (+)–(+++) and (H1)–(H2) hold. Then, for left
and right states u± lying within a sufficently small neighborhood V ⊂ U of u∗,
and speeds s lying within a sufficiently small neighborhood of ap(u∗), there exists a
viscous profile (1.4) that is “local” in the sense that the image of ū(·) lies entirely
within V if and only if the triple (u−, u+, s) satisfies both the Rankine–Hugoniot
relations:

s[u] = [f ], (RH)

and the Lax characteristic conditions for a p-shock:

ap(u−) > s > ap(u+); sgn (aj(u−)− s) = sgn (aj(u+)− s) 6= 0 for j 6= p.
(L)
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(Note: The structure theorem of Lax [La,Sm] implies that (RH), always a necessary
condition for existence of profiles, holds for u± ∈ V only if s lies near some aj(u∗);
thus, the restriction on speed s is only the assumption that the triple (u−, u+, s)
be associated with the pth and not some other characteristic field).

The purpose of the present paper is to establish the spectral stability of such
shock profiles as solutions of the “viscous” equations (1.1), under the same hy-
potheses (+)–(+++), (H1)–(H2). Take without loss of generality s = 0, so that
u = ū(x) becomes a stationary solution. Then, the linearized equations of (1.1)
about ū take the form

vt = Lv := −[(A + E)v]x + (Bvx)x, (1.5)

where
B := B(ū), A := df(ū), (1.6)

and
Ev := −(dBv)ūx. (1.7)

Definition 1.2. We call the profile ū(·) spectrally stable if the linearized operator
L about the wave has no spectrum in the closed unstable complex half-plane
{λ : Re λ ≥ 0} except at the origin, λ = 0. (Recall, [Sat], that λ = 0 is always
in the spectrum of L, since Lūx = 0 by direct calculation/differentiation of the
traveling wave ODE).

Our main result is then:

Theorem 1.3. Let (+)–(+++) and (H1)–(H2) hold, and let ū(x − st) be a vis-
cous shock solution such that the profile {ū(z)} lies entirely within a sufficently
small neighborhood V ⊂ U of u∗, and the speed s lies within a sufficiently small
neighborhood of ap(u∗). Then, ū is spectrally stable, in the sense of Definition 1.2
above.

Spectral stability is in general a weaker notion than linearized stability, which
in turn is weaker than nonlinear stability. However, in the present context, we
expect that these three notions can be shown to be equivalent, through the general
program set out in [ZH,MZ]; in any case, spectral stability is an essential initial
step in this program.

As pointed out in [ZH], spectral stability is implied by linearized stability with
respect to zero-mass perturbations; indeed, in most cases, an argument for spectral
stability can often be translated directly to a proof of zero-mass stability [Z.1–2].
Thus, Theorem 1.3 may be viewed as a generalization of the zero-mass results
obtained early on by Matsumura–Nishihara [MN] and Kawashima–Matsumura–
Nishihara [KM,KMN] for small-amplitude shocks of the equations of compressible
gas dynamics. It can also be viewed as a generalization of the corresponding result
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of Goodman [Go.1–2] for small-amplitude shocks of general, strictly parabolic
systems, which appeared at roughly the same time.

Interestingly, these two apparently similar results proceed by rather different
arguments. Indeed, though it seems natural to conjecture that the results of
[MN,KM,KMN] should extend to general Kawashima class systems, we do not see
an obvious way to extend the approach of [MN,KM,KMN] to more general systems.
We proceed here, instead, by adapting the weighted energy method of Goodman
[Go.2] to the degenerate viscosity case, thus achieving a unified approach to the
degenerate and the strictly parabolic viscosity case.

The structure of our argument is straightforward: Since Goodman’s approach
involves coordinate changes not respecting the spectral structure of A0B, the re-
sulting diffusion term may in fact be indefinite, yielding unfavorable energy es-
timates in certain modes. However, the extent of deviation from semidefinite
positivity is small on the order of the shock amplitude, and so the resulting bad
H1 term in the energy estimate can be controlled by higher order energy estimates
of the type described by Kawashima [Ka.1]. An interesting aspect of the analysis
is that here, in contrast to [Ka.1], the approach of Kawashima is applied to per-
turbations of a nonconstant background solution, confirming the flexibility of the
method.

We remark, finally, that the assumption of genuine nonlinearity (H2) is not
needed either for the existence or the stability result, but is made only to sim-
plify the discussion. Though we stated above only the restriction to the genuinely
nonlinear case, existence was in fact treated for the general (nongenuinely nonlin-
ear) case in [Fre]. Likewise, to extend our stability argument to the general case,
one has only to substitute for the “Goodman-type” weighted energy estimate in
Section 5, the variation introduced by Fries [Fri.1–2] to treat the nongenuinely non-
linear case for strictly parabolic viscosities; for, at this point in the argument, the
situation is reduced essentially to that of the strictly parabolic case. We suspect,
further, that ReA0B ≥ 0 can be substituted in (+) for the symmetric, positive
semidefinite assumption on A0B, in both the existence and stability theory, with
little change in the arguments.

Section 2. Preliminaries

We begin by collecting some needed, known results.

Lemma 2.1. Let (+)–(+++) and (H1)–(H2) hold, and let ū(x − st) be a vis-
cous shock solution such that the profile {ū(z)} lies entirely within a sufficently
small neighborhood V ⊂ U of u∗, and the speed s lies within a sufficiently small
neighborhood of ap(u∗). Then, letting ε := |u+ − u−| denote shock strength, and
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δ := max |u± − u∗| the distance from base point u∗, we have bounds

ū′ = O(ε2)e−θε|x|(rp(u∗) +O(δ))

ū′′ = O(ε3)e−θε|x| (2.1)

and
ā′j = O(|ū′|),
ā′′j = O(|ū′′|+ |ū′|2) = o(|ū′|), (2.2)

with, moreover,
ā′p ≤ −θ|ū′| (2.3)

for some uniform constant θ > 0.

Proof. Though the bounds (2.1)–(2.2) are not explicitly stated in [Fre], they follow
immediately from the detailed description of center manifold dynamics obtained
in the proof, exactly as in the strictly parabolic case [MP]. Monotonicity, (2.3)
follows readily from (2.1) and genuine nonlinearity, (H2), together with the Lax
characteristic condition (L). ¤

Lemma 2.2 ([SK]). Assuming condition (+), condition (++) is equivalent to
either of:

(K1) For each u ∈ U , there exists a skew-symmetric matrix K(u) such that

Re (KA + A0B)(u) ≥ θ > 0, (2.4)

A0 as in (+).

(K2) For some θ > 0, there holds

Re σ(−iξA(u)− |ξ|2B(u)) ≤ −θ|ξ|2/(1 + |ξ|2), (2.5)

for all ξ ∈ R.

Proof. For the proof of these and other useful equivalent formulations of (++),
see [SK]. ¤

Lemma 2.3. Given (+)–(+++), the linearized operator L described in (1.5) has
no essential spectrum in {λ : Re λ ≥ 0} \ {0}.

Proof. This follows by a standard argument of Henry [He], once we establish
linearized stability of the constant solutions u ≡ u±; see [GZ,ZH,ZS,Z.1–2] for
further details. But, linearized stability follows immediately from (K2). ¤
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Lemma 2.3 reduces the question of spectral stability to the existence or nonex-
istence of point spectrum in the deleted unstable half-plane

{λ : Re λ ≥ 0} \ {0},

an ODE question. From (1.5), we obtain the linearized eigenvalue equation

λw = Lw = −[(A + E)w]′ + (Bw′)′, (2.6)

where “′” denotes d/dx. What we must show is that there exist no solutions of
(2.6) decaying at ±∞ on the deleted unstable half-plane.

Following [Go.1–2,MN,KM,KMN], consider now the “integrated” equations

Vt = LV := −(A + E)Vx + BVxx (2.7)

governing evolution of the integrated variable

V (x) :=
∫ x

−∞
v(y)dy, (2.8)

and the associated eigenvalue equation

λW = LW = −(A + E)W ′ + BW ′′. (2.9)

Lemma 2.4. Given (+)–(+++), the spectra of L and the “integrated operator”
L agree on the deleted unstable half-plane {λ : Re λ ≥ 0} \ {0}.

Proof. By standard considerations related to those of Lemma 2.3, we have on
{λ : Re λ ≥ 0} that that bounded solutions of either (2.6) or (2.9) in fact decay
exponentially in up to two derivatives as x → ±∞, see e.g. [GZ,ZH,ZS,Z.1–2].
Thus, we find immediately that σ(L) ⊂ σ(L), by differentiation of (2.9). On the
other hand, suppose that there exists an eigenvalue λ 6= 0 of L, Re λ ≥ 0, with
corresponding eigenfunction w ∈ L2. Integrating (2.6) from ∞ to +∞ thus yields

λ

∫
w = 0, (2.10)

hence the “integrated variable”

W (x) :=
∫ x

−∞
w(y)dy (2.11)

lies also in L2, and decays exponentially to zero at ±∞ in up to one derivative.
Moreover, it satisfies (2.9), by integration of (2.6), hence λ is an eigenvalue of L
as well. ¤
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Similarly as in [Go.1-2,MN,KM,KMN], the “integrated operator” L can be
expected to yield more favorable energy estimates, since it is presumably uniformly
stable with regard to point spectrum, having no eigenvalue at λ = 0, or indeed in
a neighborhood of the closed unstable half-plane.

Following the philosophy of [ZH,Z.1], we will carry out energy estimates in the
frequency domain, that is, on the eigenvalue equations (2.6), (2.9) rather than the
evolutionary equations (1.5), (2.7). For convenience of the reader, we give here
the elementary computation that plays in the spectral, complex-valued context the
role played by Friedrich’s-type estimates for real-valued time-evolutionary systems
with symmetric coefficients [Fr]. Hereafter, let ‖ · ‖, 〈·, ·〉 denote the standard
complex L2 norm and inner product, | · | and “·” the complex vector norm and
inner product, and

∫
f the integral

∫ +∞
−∞ f(x)dx.

Lemma 2.5. Let f(x) ∈ Cn be an H1, complex vector-valued function, and
H(x) ∈ Cn×n a Hermitian, C1 complex matrix-valued function. Then,

Re 〈f,Hf ′〉 = −Re 〈f, (Hf)′〉 = −(1/2)〈f,H ′f〉, (2.12)

where “′” as usual denotes d/dx. Likewise, if K(x) ∈ Cn×n is an anti-Hermitian
C1 complex matrix-valued function, then

Im〈f,Kf ′〉 = −Im 〈f, (Kf)′〉 = −(1/2)〈f,K ′f〉. (2.13)

Proof. The first equality in (2.12) follows upon integration by parts. Likewise,
integrating by parts, we have

Re 〈f,Hf ′〉 := (1/2)(〈f,Hf ′〉+ 〈Hf ′, f〉)
= (1/2)(〈f,Hf ′〉+ 〈f ′,Hf〉)
= (1/2)(〈f,Hf ′〉 − 〈f, (Hf)〉)
= −(1/2)〈f,H ′f〉,

verifying the second equality. Setting H := −iK, we obtain (2.13) from (2.12). ¤

Section 3. Basic energy estimates

We first derive standard, “Friedrichs-type” estimates for (2.6), (2.9) [Fr].

Lemma 3.1. Suppose that λ is an eigenvalue of L, L, with Re λ ≥ 0, λ 6= 0.
Then, there hold estimates

Re λ‖W‖2 + ‖BW ′‖2 ≤ C

∫
|ū′||W |2, (3.1)
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|Imλ|
∫
|ū′||W |2 ≤ C

∫
|ū′|(η|W |2 + η−1|W ′|2), (3.2)

and

Re λ‖w‖2 + ‖Bw′‖2 ≤ C

∫
|ū′||w|2, (3.3)

for some constant C > 0, any η > 0.

Proof. From (1.6)–(1.7), we have

|A′|, |E| = O(|ū′|). (3.4)

Similarly, by (++), the block structure assumption (+++), and (1.7), we have

v · (A0Bv) ≥ |Bv|2/C, (3.5)

|(A0B)′v| ≤ C|ū′||Bv|, (3.6)

|A0Ev| ≤ C|ū′||Bv|, (3.7)

for any vector v, for some constant C > 0.
Taking the real part of the L2 inner product of A0W against (2.9), applying

(1.7) and (2.12), and integrating the viscous (second-order) term by parts, we thus
obtain

Re λ〈W,A0W 〉 = Re 〈W,A0BW ′′〉 − Re 〈W,A0EW ′〉+ (1/2)〈W, (A0A)′W 〉
= −〈W ′, A0BW ′〉 − Re 〈W, [(A0B)′ −A0E]W ′〉

+ (1/2)〈W, (A0A)′W 〉
= −〈W ′, A0BW ′〉+

∫
O(|ū′|)(|BW ′|2 + |W |2),

and, rearranging, and absorbing O(
∫ |ū′||BW ′|2) = O(ε‖BW ′‖2) into the favor-

able term −〈W ′, A0BW ′〉 ≤ −‖BW ′‖2/C, we obtain the claimed inequality (3.1).
Inequalities (3.2) and (3.3) follow similarly, with the parameter η arising in (3.2)
by an application of Young’s inequality. (Note the appearance of multiplier |ū′| in
the lefthand side of (3.2)). ¤

Corollary 3.2. Suppose that λ is an eigenvalue of L, L, with Re λ ≥ 0, λ 6= 0.
Then, |Re λ| ≤ Cε2, for some constant C > 0.

Proof. Otherwise, the righthand side of (3.1) can be absorbed in the term Re λ‖W‖2,
since |ū′| ≤ Cε2, by (2.1). But, this implies W ≡ 0, a contradiction. ¤
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Section 4. Derivative estimate

Next, we carry out a nonstandard derivative estimate of the type formalized by
Kawashima [Ka.1]. The origin of this approach goes back to [K,MNi] in the context
of gas dynamics; see, e.g., [HoZ.1] for further discussion/references.

Lemma 4.1. Suppose that λ is an eigenvalue of L, L, with Re λ ≥ 0, λ 6= 0.
Then,

‖W ′‖2 ≤ C(|Re λ|η‖W‖2 +
∫
|ū′||W |2 + ‖BW ′′‖2/η), (4.1)

for some constant C > 0 and η > 0, ε2/η sufficiently small.

Proof. Taking the real part of the L2 inner product of W ′ against K times (2.9),
where K is as in (K1), applying (2.13), and using Young’s inequality repeatedly,
we obtain

Re (〈W ′,KAW ′〉 = Re
(− λ〈W ′,KW 〉 − 〈W ′,KEW ′〉+ 〈W ′,KBW ′′〉)

≤ |Re λ|〈|W ′|, |KW |〉+ |Im λ|〈|W |, |K ′W |〉
+ 〈|W ′|, |KEW ′|〉+ 〈|W ′|, |KBW ′′|〉

≤ C
[|Re λ|(‖W ′‖2/η + η‖W‖2) + |Im λ|

∫
|ū′||W |2

+ ε2‖W ′‖2 + (η‖W ′‖2 + ‖BW ′′‖/η)
]
.

Recalling that |Re λ| ≤ Cε2 by Corollary 3.2, and

‖W ′‖2 ≤ C
(
Re 〈W ′,KAW ′〉+

∫
|ū′||W |2),

by (K1) combined with (3.1), we find for η, ε2/η sufficiently small that the terms
|Re λ|‖W ′‖2/η, Cε‖W ′‖2, and Cη‖W ′‖2 can up to a term of order

∫ |ū′||W |2 be
absorbed in the left hand side, yielding

‖W ′‖2 ≤ C
(|Re λ|η‖W‖2|Im λ|+

∫
|ū′||W |2 + ‖BW ′′‖2/η

)
. (4.2)

Applying bound (3.2) and recalling that |ū′| ≤ Cε2, we find for η, ε2/η sufficiently
small that the term C|Im λ| on the righthand side may be absorbed in the lefthand
side and C

∫ |ū′||W |2, giving the result. ¤

Corollary 4.2. Suppose that λ is an eigenvalue of L, L, with Re λ ≥ 0, λ 6= 0.
Then,

λ‖W‖2 + ‖W ′‖2 + ‖BW ′′‖2 ≤ C

∫
|ū′||W |2 (4.3),

for some constant C > 0, for all ε sufficiently small.

Proof. Adding C times (3.1), C/η times (3.3), and (4.1), with C > 0 sufficiently
large, and η sufficiently small, we obtain the result. (Recall that BW ′′ = Bw′). ¤
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Section 5. Weighted energy estimate

At this point, we have reduced the problem essentially to the situation of the
strictly parabolic case. Evidently, the main issue here, as there, is to control the
term C

∫ |ū′||W |2 on the righthand side of (4.3). This we can accomplish using
the weighted energy method of Goodman [Go.2] with a bit of extra care.

Lemma 5.1. Assuming (+)–(+++) and (H1)–(H2), there exist smooth, real
matrix-valued functions R̃(u), L̃(u), L̃R̃ = I, such that

L̃AR̃ =


 A− 0 0

0 ap 0
0 0 A+


 , (5.1)

where A− ≤ a− < 0 and A+ ≥ a+ > 0 are symmetric, and

L̃BR̃ ≥ 0 (5.2)

is symmetric, positive semi-definite.

Proof. As we observed in the introduction, (+) implies that (A0)1/2A(A0)−1/2 is
symmetric, and likewise (A0)1/2B(A0)−1/2 is symmetric, positive semidefinite. By
(H1), there is spectral separation between eigenvalue ap and the positive and neg-
ative spectra of matrix (A0)1/2A(A0)−1/2, hence it can be block diagonalized by
a real, orthogonal transformation O(A0)1/2A(A0)−1/2Ot, Ot = O−1, which like-
wise preserves symmetry, and semidefinite positivity of (A0)1/2B(A0)−1/2. Setting
R̃ = (A0)−1/2Ot, L̃ = O(A0)1/2, we are done. ¤

Lemma 5.2. Assuming (+)–(+++) and (H1)–(H2), there exist smooth, real
matrix-valued functions R(u), L(u), LR = I, such that

LAR =


 A− 0 0

0 ap 0
0 0 A+


 , (5.3)

where A− ≤ a− < 0 and A+ ≥ a+ > 0 are symmetric,

(LR′)pp = (L′R)pp = 0, (5.4)

and
Re LBR ≥ −Cε (5.5)

for some constant C > 0.
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Proof. Set R := ΓR̃, L := Γ−1L̃, with

Γ :=


 Ip−1 0 0

0 γ 0
0 0 In−p


 , (5.6)

and define γ by the linear ODE

γ′ = −l̃pr̃
′
pγ; γ(0) = 1, (5.7)

where l̃p, r̃p denote the pth row and column, respectively, of L̃, R̃. Clearly, L and
R still block-diagonalize A in the manner claimed, while

(LR′)pp = γ−1 l̃p(γr̃p)′ = γ−1 l̃p(γ′r̃p + γr̃′p)

= γ−1(γ′ + γ(l̃pr̃′p)) = 0,

by (5.7). On the other hand, |r′p| ≤ C|ū′|, whence we obtain by direct integration
of (5.7) the bound

γ(x) = e

∫ x

0
−`pr′p = e

O(
∫ +∞
−∞ |ū′|)

= eO(ε) = 1 + O(ε),

yielding bound (5.5) by (5.2) and continuity. ¤

Lemma 5.3. Let there hold (+)–(+++) and (H1)–(H2), and suppose that λ is
an eigenvalue of L, L, with Re λ ≥ 0, λ 6= 0. Then,

Re λ‖W‖2 +
∫
|ū′||W |2 ≤ Cε‖W ′‖2 (5.8)

for some constant C > 0, for all ε sufficiently small.

Proof. By the construction described above, we have, clearly:

|L′|, |R′| = O(ū′),

|L′′|, |R′′| = O(|ū′′|+ |ū′|2). (5.9)

Setting Z := LW , and left multiplying (2.9) by L, we thus obtain

λZ + (Ā + Ē)Z ′ + M̄Z = (B̄Z ′)′ (5.10)

where Ā := LAR is as in (5.3), B̄ := LBR > −Cε, Ē defined by

Ēv := LBR′v − L′BRv + L(dBūx)Rv − L(dBRv)ūx
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satisfies
Ē = O(|ū′|), Ē′ = O(|ū′′|+ |ū′|2) = O(ε|ū′|), (5.11)

and M̄ defined by

M̄v := ĀLR′v + L(dBūx)R′v − L(dBR′v)ūx − L(BR′)′v

satisfies
|M̄ | = O(ū′), |M̄pp| = O(|ū′′|+ |ū′|2) = O(ε|ū′|), (5.12)

the second estimate following by normalization (5.4). Clearly, to establish (5.8),
it is sufficient to establish the corresponding result in Z coordinates.

Following [Go.2], define weight αp ≡ 1, and define weights α± by ODE

α′± = −C|ū′|α±/ā±, α±(0) := 1, (5.13)

whence
α±(x) = e

∫ x

0
C|ū′|/ā± = 1 +O(C

∫ ∞

−∞
|ū′|)

= 1 +O(Cε) = O(1),
(5.14)

α′j = O(|ū′|), j = −, p,+. (5.15)

Here, C is a sufficiently large constant to be chosen later, and ε is so small that
O(Cε) < 1. Set α := diag{αj}.

Now, take the real part of the complex L2 inner product of αZ with (5.10), to
obtain the energy estimate (after integration by parts)

Re λ
∑ ∫

αj |Zj |2 −
∑

〈Zj , (ajαj)′Zj〉+ Re
∫
〈Z ′, αB̄Z ′〉 =

Re
∫
〈Z,αM̄Z〉 − Re

∫
〈αZ, ĒZ ′〉 − Re

∫
〈α′Z, B̄Z ′〉,

(5.16)
where j is summed over −, p,+, and Z =: (Z−, Zp, Z+)t. Noting that


(αpāp)′ = ā′p < −θ|ū′|,
(αj āj)′ = α′j āj + αj ā

′
j

< −Cθ|ū′| for j 6= p,

where C may be chosen arbitrarily large, and that Re αB̄ > −Cε by continuity,
for ε sufficiently small, and using estimates (5.11)–(5.12) to absorb all terms in
the righthand side, we obtain the result. More precisely, we have used Young’s
inequality to bound the second and third terms on the righthand side of (5.16) by

C

∫
|ū′||Z||Z ′| ≤ C

2
(
∫
|ū′|3/2|Z|2 +

∫
|ū′|1/2|Z ′|2)

≤ C

2
(ε

∫
|ū′||Z|2 + ε

∫
|Z ′|2),
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a contribution that is clearly absorbable on the lefthand side. The first term on
the righthand side is bounded by

C2(ε
∫
|ū′||Zp|2 +

∫
|ū′||Z±|2),

where C2 is some fixed constant, hence it is also absorbable. ¤

Section 6. Proof of Theorem 1.3

The proof of Theorem 1.3 is now straightforward. Adding Cε times (4.3) to (5.8),
we obtain

Re λ‖W‖2 +
∫
|ū′||W |2 ≤ 0, (6.1)

whence W ≡ 0, a contradiction. ¤
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