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EFFICIENT NUMERICAL STABILITY ANALYSIS OF DETONATION

WAVES IN ZND

JEFFREY HUMPHERYS AND KEVIN ZUMBRUN

Abstract. As described in the classic works of Lee–Stewart and Short–Stewart, the numerical
evaluation of linear stability of planar detonation waves is a computationally intensive problem
of considerable interest in applications. Reexamining this problem from a modern numerical
Evans function point of view, we derive a new algorithm for their stability analysis, related to
a much older method of Erpenbeck, that, while equally simple and easy to implement as the
standard method introduced by Lee–Stewart, appears to be potentially faster and more stable.

1. Introduction

As described for example in [20, 21, 22, 34, 44, 45], the numerical stability analysis of detona-
tion wave solutions of the Zeldovich–von Neumann–Döring (ZND), or reactive Euler equations,
is a rich and computationally challenging problem. Planar detonation waves can often change
stability as physical parameters are varied, undergoing interesting bifurcations to pulsating,
spinning, and cellular solutions [12, 23, 2, 32, 35, 29, 47, 48, 49]. This motivates the numerical
study of their stability, originated by Erpenbeck in [20, 21], both for its interest in its own right
and as a benchmark for more general time-evolution codes [12, 45].

Due both to the number of physical parameters (four for a polytropic gas1) and the difficulty of
individual computations, this problem has proven to be numerically intensive. In their classical
1990 paper [34], in which they introduced the algorithm that has become the modern-day
standard, computing accurately for the first time the stability boundaries for one-dimensional
detonations, Lee and Stewart conclude (p. 131 of the reference): “Finally, we point out that
though our scheme is direct and easy to implement, complete investigation of the various regions
of parameter space is computationally intensive. Any equivalent or more efficient numerical
method should be considered a valuable contribution and such approaches are needed to further
explore the parameter regimes of instability.”

Despite these comments, the basic algorithm introduced by Lee-Stewart (or perhaps vari-
ants thereof) as described in the 2006 survey [45] appears still to be the current state of the
art. Of course, computational power has increased tremendously in the interim, making once-
prohibitive computations now accessible. Nonetheless, it seems of interest to explore more
efficient algorithms if they can be found.
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1 Gas constant Γ = γ−1, heat release coefficient q, activation energy EA, and detonation amplitude [20, 34, 55].
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In particular, the computations of [34] were carried out in 1990 on a Cray X-MP/48 super-
computer,2 with several hours required to produce individual figures. (For example, Fig. 9 of
[34] tracking the top 6 unstable eigenvalues of detonations of a polytropic gas with gas constant
γ = 1.2 as activation energy is varied was reported to require 5 hours of computation.) Today,
substantially more computing power is available in a standard desktop PC, and a relatively
inexpensive multi-core workstation offers substantially more.3 Hence, the challenge is trans-
posed from the level of the national lab to the level of individual users, and from feasibility to
practical ease of use. However, the impetus is no less real to reduce computation time from
hours to the minutes required for interactive numerical explorations, and such improvement
would undoubtedly lead to further advances in our understanding of detonation phenomena.

Meanwhile, in parallel development, there has been considerable activity, centered around
the Evans function [1, 39, 25], in the numerical evaluation of stability of viscous shock waves
and other traveling front or pulse and boundary layer solutions arising in a variety of equations
[14, 15, 16, 13, 28, 4, 26, 27, 5, 7, 8, 18, 9], some of which problems- see, e.g., [27, 5, 7, 18]
exhibit complexity rivalling that of detonations. The authors and collaborators have developed
a general model-independent method and set of numerical principles for the treatment of such
problems [28, 54], encoded in the MATLAB-based platform STABLAB [6], which performs
extremely well on all of the above-described applications.

At the same time, there has been a successful push to place detonation stability in a common
framework with stability of shock waves [50, 35, 36, 29, 49, 52, 55]. In particular, in [50, 29,
49, 52, 55], the determination of stability of both viscous (reactive Navier–Stokes) and inviscid
(reactive Euler or ZND) detonations has been reduced to the computation of an Evans function
defined exactly as in the viscous shock and other cases described above. Thus, it is a natural
step to study ZND stability within this common framework, using the general tools of [28, 54].

In this paper, we do exactly that, proposing a new algorithm for the numerical determination
of stability of ZND detonations derived from the point of view of [28, 54]. Surprisingly, though
both are shooting methods, this is quite different from the Lee-Stewart algorithm currently in
standard use, shooting from x = −∞ to x = 0 rather than from x = 0 to x = −∞ as in
[34]; indeed, it is more closely related to the original algorithm of Erpenbeck [21]. The precise
relations between the various methods are described in Section 4.

The advantage of shooting from −∞ to 0 is that we seek generalized eigenfunctions decaying
exponentially at −∞. Thus, in the forward direction (−∞ → 0), the desired solution grows
exponentially, while error modes are exponentially damped. By contrast, integrating in the
backward direction (0 → −∞), the desired solution decays exponentially while error modes
are exponentially amplified, a numerically undesirable situation (“numerical pitfall 1” of [54]).
For this reason, we expect that our algorithm should be faster and better conditioned than the
Lee-Stewart algorithm currently in use. However, there are other aspects that cloud the issue,
in particular the singular perturbation structure that arises in the high-activation energy or
“square-wave” limit in which instabilities are often studied [20, 22, 23, 17, 2]. For this reason,

2A Cray X-MP/48 cost roughly $15-20M dollars in the mid-1980’s, having 2 processors with a 105 MHz clock
speed and a theoretical peak performance about 200 MFLOPS per processor or 400 MFLOPS total.

3A 2010 Mac Pro 8-core (2 quad-core Xeon processors) for example is a $4-5k system with a 2.5GHz clock
speed and a theoretical peak performance around 10 GFLOPS per core or 80 GFLOPS total. Hence, it has
roughly 200 times the processing power at a five thousandth the price (not even adjusting for inflation).
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careful comparison of methods in physically relevant regimes is an important step before making
conclusions.

In the present paper, we introduce the algorithm, and give some supporting numerical exper-
iments for a simple model equation indicating the advantages of our approach. Followup work
in [10, 11] indicates that, also in physically realistic settings, the algorithm performs favorably
compared to the current standard. Specifically, the standard adaptive-mesh version of the al-
gorithm described here appears to outperform the fixed-mesh algorithm described in [34, 45] by
2-3 orders of magnitude. Much of this improvement appears to be due to the difference between
fixed and adaptive mesh. However, even compared to an adaptive-mesh version of the method
of Lee-Stewart, our algorithm appears to be 1-10 times faster, depending on the parameter
regime: at the least, it is equivalent, and in some situations substantially more efficient.

Plan of the paper. In Section 2, we review the ZND equations and detonation structure. In
Section 3, we give a simple derivation of the Evans/Lopatinski function condition for detonation
stability from a general point of view following [50, 29]. For clarity, we specialize in most of the
discussion to the single-species, ideal gas case with Arrhenius ignition dynamics, working in the
same framework as in [34]. The general case is discussed briefly in Remark 5.1. In Section 4,
we determine the relation between the derived Evans/Lopatinski condition the related stability
determinants of Erpenbeck [20] and Lee-Stewart [34]. In Section 5, we describe a proposed
numerical implementation within the standard STABLAB package developed by the authors
and collaborators. Finally, in Section 6, we present numerical experiments for a simple model
indicating the advantages of integrating in the forward direction and factoring out expected
decay at −∞ as prescribed in [28, 54].

2. ZND detonations

2.1. The model. In Eulerian coordinates the Zeldovich–von Neumann–Döring (ZND) equa-
tions of reacting gas dynamics in one space dimension may be written as

(2.1)

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

(ρẼ)t + ((ρẼ + p)u)x = 0

(ρY )t + (ρuY )x = −ρϕ(T )KY,

where ρ, u, p, Ẽ, T ∈ R
1 represent density, velocity, pressure, total energy, and temperature,

and Y = (Y1, . . . , Yr) ∈ R
r the mass fractions of reactants.4 Here, Ẽ = u2/2 + ẽ is the non-

reacting gas-dynamical energy E = u2/2 + e modified by chemical potential according to

ẽ = e+ qY,

where e is the specific internal energy of the gas and qY is the specific chemical energy. The
matrix K ∈ R

r×r and vector q ∈ R
1×r measure the rates of reaction and the heat released in

reaction, respectively, and ϕ is an “ignition function” that is positive for T above some ignition
temperature Ti and zero for T ≤ Ti, serving to “turn on” the reaction. The matrix −K is
assumed to be stable, i.e., to have spectrum of strictly negative real part, so that reaction in a

4 Alternatively, the equations may be written in terms of progress variables λj = 1− Yj [22, 34, 36].
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quiescent flow indeed proceeds to the completely burned state Y = 0. In the simplest case of a
single-species, exothermic reaction, Y ∈ R

1 is a scalar, and K and q are positive constants.
The system is closed by specifying equations of state (i.e., thermodynamic relations) p =

p(ρ, e, Y ) and T = T (ρ, e, Y ) and the ignition function. Standard assumptions (in particular,
the ones made in [34], etc.) are the ideal gas laws

(2.2) p(ρ, e) = Γρe, T (e) = e/Cv ,

where Γ, Cv > 0 are constants determined by the nature of the gas, and the modified Arrhenius
law

(2.3) ϕ(T ) = exp

(

−
EA

RT

)

β(T ),

where EA is the activation energy, R = γCV is the gas constant, and β is an artificial smooth
cutoff function with the property that β ≡ 1 for T ≥ T i and β ≡ 0 for T ≤ Ti.

5 Under usual
assumptions, the specific form of the function β plays no role in the analysis; see Remark 2.2.

Remark 2.1. More realistic rate laws r(ρ, T, Y ) may be considered in place of the linear law
r = −ρϕ(T )KY with little additional difficulty [34]; however, we lose the explicit form of the
reaction profile (5.3) computed in Section 5.1. In the single-species case, these are equivalent.

2.2. Alternative formulation. Subtracting q times the fourth equation of (2.1) from the
third equation, we obtain the alternative formulation

(2.4)

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

(ρE)t + ((ρE + p)u)x = ρqϕ(T )KY

(ρY )t + (ρuY )x = −ρϕ(T )KY

in terms of the usual gas-dynamical variables ρ, u, E. We alternate between the two formula-
tions as convenient for the analysis.

2.3. Detonation waves. For temperatures T ≤ Ti below igition level, equations (2.1) evi-
dently reduces to the usual Euler equations of nonreactive gas dynamics, with the reactants Y
convected passively by the velocity field u. In particular, so long as T (ρ±, e±, Y0) ≤ Ti, they
support as traveling-wave solutions ordinary gas-dynamical shock waves

(ρ, u,E, Y )(x− st) =

{

(ρ+, u+, E+, Y0) x− st > 0

(ρ−, u−, E−, Y0) x− st ≤ 0

satisfying the Rankine–Hugoniot conditions

(2.5) s[ρ] = [ρu], s[ρu] = [ρu2 + p], s[ρE] = [(ρE + p)u], [Y ] = 0,

or, equivalently,

(2.6) s[ρ] = [ρu], s[ρu] = [ρu2 + p], s[ρẼ] = [(ρẼ + p)u], [Y ] = 0,

5The latter, standard modification circumvents the “cold-boundary difficulty” that the unburned state Y ≡ 1
is not an equilibrium for the exact Arrhenius law β ≡ 1, and so steady traveling detonation waves do not exist.
Though not mentioned, this assumption is also made implicitly in [34], etc.
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where for an arbitrary function h(ρ, u, Ẽ, Y ), [h] := h(ρ+, u+, Ẽ+, Y+) − h(ρ−, u−, Ẽ−, Y−) de-
notes jump across the discontinuity. This also holds if there is no reactant, Y0 = (0, . . . , 0).

If, on the other hand, Y0 6= (0, . . . , 0), and T+ ≤ Ti but T− ≥ Ti, with u± < s (alternatively,
T+ ≥ Ti and T− ≤ Ti, with u± > s), then there appears a different type of traveling-wave
solution known as a strong detonation, given by (z = x− st)

(2.7) (ρ, u,E, Y )(z) =

{

(ρ+, u+, E+, Y0) z > 0

(ρ̄, ū, Ē, Ȳ )(z) z ≤ 0,

where Ȳ (z) satisfies the smooth traveling-profile ODE

(2.8) (ρ̄(ū− s)Ȳ )′ = −ρ̄ϕ(T̄ )KȲ

on (−∞, 0], with initial condition Ȳ (0) = Y0, decaying to the completely burned state (0, . . . , 0)
as z → −∞, with (ρ̄, ū, Ē) = (ρ̄, ū, Ē)(Ȳ ) determined through the generalized Rankine–
Hugoniot relations

(2.9)

sρ̄− ρ̄ū = (sρ− ρu)±

sρ̄ū− (ρ̄ū2 + p̄) = (sρu− (ρu2 + p))±

sρ̄ ¯̃E − (ρ̄ ¯̃E + p̄)ū = (sρẼ − (ρẼ + p)u)±

obtained by integrating the remaining traveling-profile equations

(2.10)

(sρ̄− ρ̄ū)′ = 0

(sρ̄ū− (ρ̄ū2 + p̄))′ = 0

(sρ̄ ¯̃E − (ρ̄ ¯̃E + p̄)ū)′ = 0

from 0 to z (where z < 0) and recalling the Rankine–Hugoniot conditions (2.6) satisfied across
the jump at z = 0.

That is, strong detonations moving to the right with respect to fluid velocity u (i.e., u < s,
where s is the speed of the detonation) have the structure of an initiating gas-dynamical shock
called the Neumann shock, which rapidly compresses the gas, raising temperature to the point
of ignition, followed by a reaction zone (the profile (ρ̄, ū, Ē, Ȳ )) resolving to the final burned
state. This characteristic “detonation spike” in temperature and pressure profiles agrees well
with observed features in laboratory experiments.

Substituting into (2.8) the first relation in (2.9) and introducing the constant m := (ρ(s −
u))±, we obtain the simplified reaction equation

(2.11) Y ′ = m−1ρϕ(T )KY

that we will actually use to solve for the profile. Further simplifying (2.9), we obtain

(2.12)

sρ̄− ρ̄ū = (sρ− ρu)±

sρ̄ū− (ρ̄ū2 + p̄) = (sρu− (ρu2 + p))±

sρ̄Ē − (ρ̄Ē + p̄)ū+mqȲ = (sρE − (ρE + p)u+mqY )±.

An application of the Implicit Function Theorem reveals that (2.9) (as, likewise, the original
ODE (2.10)) may be solved for (ρ̄, ū, Ē) in terms of Ȳ so long as the gas-dynamical state (ρ̄, ū, Ē)
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remains noncharacteristic with respect to speed s, or, equivalently, the Rankine–Hugoniot re-
lation (2.12) remains full rank in (ρ̄, ū, Ē). For typical reactions and equations of state, in
particular ideal gas dynamics with single exothermic reaction, this condition holds for all so-
lutions of (2.12) with Ȳj ≥ 0, except for special limiting values of s for which the asymptotic
state Ȳ = 0 is characteristic, or “sonic”; see, e.g., [35]. These limiting, characteristic waves
are called Chapman–Jouget detonations, and have a special place in the theory. The usual,
noncharacteristic type are called overdriven detonations.

For our present purposes, the main import of characteristicity is that the eigenvalue equation
becomes singular at x→ −∞ in the coordinates we use here, complicating the discussion. For
simplicity, we restrict hereafter to the overdriven case. The Chapman–Jouget case may be
treated similarly using ideas of [34]; see Remark 5.1.

Remark 2.2. For the modified Arrhenius ignition function (2.3), a standard assumption is
that T̄ ≥ T i, all x ≤ 0, T+ ≤ Ti, so that β ≡ 1 for x ≤ 0 and β ≡ 0 for x ≥ 0. Under this
assumption, the specific form of the cutoff β plays no role in the analysis.

3. Linearized stability analysis: the Evans–Lopatinski determinant

We now carry out a linearized interface analysis, loosely following [29].6 Setting V :=
(ρ, u, e)T , write (2.4) in abstract form as

(3.1) F 0(W )t + F 1(W )x = R(W ),

W , F j , R ∈ R
3+r, where

(3.2) W :=

(

V
Y

)

, F j :=

(

f j(W )
Y gj(V )

)

, R :=

(

QKY ψ(W )
−KY ψ(W )

)

,

(3.3)

f0 :=





ρ
ρu

ρ(e+ u2/2)



 , f1 :=





ρu
ρu2 + p(ρ, e, Y )

(ρ(e + u2/2) + p(ρ, e, Y ))u



 ,

g0 := ρ, g1 = ρu, Q :=

(

0 · · · 0
q1 · · · qr

)

, ψ := ρφ(T (ρ, e, Y )).

with V , f j ∈ R
3, Y ∈ R

r, gj , ψ ∈ R
1, Q ∈ R

3×r.

Remark 3.1. A minor departure from [19, 20, 50, 29] is to admit the possible dependence of
pressure and temperature on chemical makeup of the gas (Y ), an important feature in realistic
modeling of reactive flow.

To investigate solutions in the vicinity of a discontinuous detonation profile, we postulate
existence of a single shock discontinuity at location X(t), and reduce to a fixed-boundary
problem by the change of variables x → x − X(t). In the new coordinates, the problem
becomes

(3.4) F 0(W )t + (F 1(W )−X ′(t)F 0(W ))x = R(W ), x 6= 0,

6See also the related [50, 35, 36], and the original treatments in [19, 20, 34], etc.
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with jump condition

(3.5) X ′(t)[F 0(W )]− [F 1(W )] = 0,

[h(x, t)] := h(0+, t)− h(0−, t) as usual denoting jump across the discontinuity at x = 0.

3.1. Linearization. Without loss of generality, suppose for simplicity that the background
profile W̄ is a steady detonation, i.e., s = 0, hence (W̄ , X̄) = (W̄ , 0) is also a steady solution of
(3.4)–(3.5). Linearizing (3.4)–(3.5) about the solution (W̄ , 0), we obtain the linearized equations

(3.6) A0(Wt −X ′(t)W̄ ′(x)) + (A1W )x = CW,

(3.7) X ′(t)[F 0(W̄ )]− [A1W ] = 0, x = 0,

(3.8) Aj := (∂/∂W )F j , C := (∂/∂W )R.

3.2. Reduction to homogeneous form. As pointed out in [29], it is convenient for the
stability analysis to eliminate the front from the interior equation (3.6). Therefore, we reverse
the original transformation to linear order by the change of dependent variables

(3.9) W →W −X(t)W̄ ′(x),

following the calculation

W (x−X(t), t)) −W (x, t) ∼ X(t)Wx(x, t) ∼ X(t)W̄ ′(x).

approximating to linear order the original, nonlinear transformation. Substituting (3.9) in
(3.6)–(3.7), and noting that x-differentiation of the steady profile equation F 1(W̄ )x = R(W̄ )
gives

(3.10) (A1(W̄ )W̄ ′(x))x = C(W̄ )W̄ ′(x),

we obtain modified, homogeneous interior equations

(3.11) A0Wt + (A1W )x = CW

agreeing with those that would be obtained by a naive calculation without consideration of the
front, together with the modified jump condition

(3.12) X ′(t)[F 0(W̄ )]−X(t)[A1W̄ ′(x)]− [A1W ] = 0

correctly accounting for front dynamics.
The reduction to homogeneous interior equations puts the linearized problem in a standard

linear boundary-value-problem format for which stability may be investigated in straightforward
fashion by the construction of an Evans/Lopatinski determinant. Besides simplifying consider-
ably Erpenbeck’s original derivation of his equivalent stability function [20], the homogeneous
format makes possible the application of standard numerical Evans function techniques for its
evaluation. This useful reduction was first carried out, in slightly different form, in [29]. The
transformation (3.9) is of general use in interface problems, comprising the “good unknown” of
Alinhac [3]. A similar discussion in the simpler context of shock waves may be found in [24];
however, in this case, W̄ ′(x) ≡ 0, and so the transformation (3.9) does not make itself evident,
nor do front dynamics modify (3.12).
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3.3. The stability determinant. Seeking normal mode solutionsW (x, t) = eλtW (x), X(t) =
eλtX, W bounded, of the linearized equations (3.11)–(3.12), we are led to the generalized
eigenvalue equations

(A1W )′ = (−λA0 + C)W, x 6= 0,

X(λ[F 0(W̄ )]− [A1W̄ ′(x)])− [A1W ] = 0,

where “′” denotes d/dx, or, setting Z := A1W , to

(3.13) Z ′ = GZ, x 6= 0,

(3.14) X(λ[F 0(W̄ )]− [A1W̄ ′(x)]) − [Z] = 0,

with

(3.15) G := (−λA0 + C)(A1)−1.

Here, we are implicitly using the following elementary observation.

Lemma 3.2. A1(W̄ (x)) is invertible for all x such that ∂f/∂V is invertible (i.e. V is non-
characteristic as a gas-dynamical state with Y held fixed).

Proof. Similarly as in the discussion of existence of steady profiles, we may by subtracting Y
times the first row of A1 from the block Y -row, reduce A1 to block upper-triangular form, with
diagonal blocks ∂f/∂V and g1(V, Y )Ir×r with g1(V, Y ) = ρu 6= 0. �

Remark 3.3. As discussed in Section 2.1, this assumption is essentially necessary already for
existence of a steady profile. In particular, it is satisfied for the usual ideal gas equation of state.

We require also the following fundamental properties.

Lemma 3.4 ([19, 20, 29]). On ℜeλ > 0, the limiting (3 + r) × (3 + r) coefficient matrices
G± := limz→±∞G(z) have unstable subspaces of fixed rank: full rank 3 + r for G+ and rank
2 + r for G−. Moreover, these subspaces have continuous limits as ℜeλ→ 0.

Proof. Straightforward calculation using the fact that G± are block upper-triangular in (V, Y );
see, e.g., [19, 20, 50, 29] in the case that f , g depend only on V . �

Corollary 3.5 ([50, 29]). On ℜeλ > 0, the only bounded solution of (3.13) for x > 0 is the triv-
ial solution W ≡ 0. For x < 0, the bounded solutions consist of an (r+2)-dimensional subspace
Span {Z+

1 , . . . , Z
+
r+2}(λ, x) of exponentially decaying solutions, analytic in λ and tangent as

x→ −∞ to the subspace of exponentially decaying solutions of the limiting, constant-coefficient
equations Z ′ = G−Z; moreover, this subspace has a continuous limit as ℜeλ→ 0.

Proof. The first observation is immediate, using the fact that G is constant for x > 0. The
second follows from asymptotic ODE theory, using the “gap” or “conjugation” lemmas of
[25, 30], [38] together with the fact that G decays exponentially to its end state as x → −∞.
See [29, 52, 55] for details. �
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Definition 3.6. We define the Evans–Lopatinski determinant

(3.16)
D(λ) := det

(

Z−

1 (λ, 0), · · · , Z−

r+2(λ, 0), λ[F 0(W̄ )]− [A1W̄ ′(x)]
)

= det
(

Z−

1 (λ, 0), · · · , Z−

r+2(λ, 0), λ[F 0(W̄ )] +A1W̄ ′(0−)
)

,

where Z−

j (λ, x) are as in Corollary 3.5.

The function D is exactly the stability function derived in a different form by Erpenbeck [20];
see Section 4.2 below. The formulation (3.16) is of the standard form arising in the simpler
context of (nonreactive) shock stability [37, 19]. Evidently (by (3.14) combined with Corollary
3.5), λ is a generalized eigenvalue/normal mode for ℜeλ ≥ 0 if and only if D(λ) = 0.

Remark 3.7. As noted in [52, 55], consideration of the traveling-wave equation F (W )′ =
AW ′ = R(W ) yields the simpler formula

(3.17) D(λ) = det
(

Z−

1 (λ, 0), · · · , Z−

r+2(λ, 0), λ[F 0(W̄ )] +R(W̄ (0−))
)

.

3.4. Dual formulation. The (n + r) × (n + r) determinant (3.17) may be expressed more
succinctly in dual form

(3.18) D(λ) = Z̃−(λ, 0) · (λ[F 0(W̄ )] +R(W̄ (0−)),

where Z̃−(λ, x) is the cross product Z−

1 ∧ · · · ∧ Z−

r+2(λ, x) defined by

Z̃− · x = det
(

Z−

1 , · · · , Z−

r+2, x
)

.

The vector Z̃− may alternatively be characterized directly as the unique up to constant factor
bounded solution on x ≤ 0 of the adjoint ODE

(3.19) Z̃ ′ = −G∗Z̃,

which, as x → −∞ is both exponentially decaying and tangent to the corresponding expo-
nentially decaying one-dimensional subspace of bounded solutions of the limiting constant-
coefficient equations Z̃ ′ = −G∗

−Z̃. It may be specified analytically in λ by the additional
requirement

(3.20) Π̃(Z̃−)conj(−M) = ℓ(λ),

M > 0, where ℓ is an analytically chosen left eigenvector of G−(λ) associated with the unique

eigenvalue g−(λ) of negative real part and Π̃ the associated eigenprojection. Here, and else-

where, conj denotes complex conjugate. By (3.20) together with the tangency property, Z̃− is
well-approximated at x = −M , for M > 0 sufficiently large, by

(3.21) Z̃−(−M) = ℓconj(λ).

This reduces the approximate evaluation of D(·) to the straightforward and extremely well-
conditioned numerical problem of integrating a single exponentially growing (in forward direc-
tion) mode from x = −M to x = 0. The stability of the computation derives from the fact that
errors lying in other, exponentially decaying modes, are exponentially damped [54].

Alternate initialization. Alternatively, following [14, 15, 16, 13], Z̃− may be specified by
boundary conditions at −∞, via

(3.22) lim
x→−∞

eg
conj
−

xZ̃−(x) = ℓconj(λ),



10 JEFFREY HUMPHERYS AND KEVIN ZUMBRUN

whence (3.21) becomes

(3.23) Z̃−(−M) = e−gconj
−

Mℓconj(λ).

This is the method that we prescribe here. It has the advantage of removing the dependence
of Z̃− on the artificial parameter M , allowing the flexible choice of M in different parameter
regimes, as dictated by numerical considerations, while preserving analyticity. However, in
practice, there is usually not much difference between (3.21) and (3.23). In particular, if, as in
[34], one is not interested in analyticity, then one may vary M freely in (3.21) as well.

4. Relations to other methods

4.1. Relation to the method of Lee and Stewart. Denoting by Z0 the solution on x ≤ 0
of the forward eigenvalue ODE (3.13) with initial conditions Z0(0) := λ[F 0(W̄ )] + R(W (0−)),
we have by standard duality properties that

(4.1) Z̃− · Z0(λ, x) ≡ D(λ)

is independent of x ≤ 0, or (Z̃− ·Z0)
′(λ, x) ≡ 0. Taking x = −M and recalling (3.21), we arrive

at the alternative Evans–Lopatinski approximation

(4.2) D(λ) ∼ ℓconj(λ) · Z0(λ,−M)

used by Lee and Stewart [34], where ℓconj · Z0(−M) = 0 is their “nonradiative condition”
enforcing boundedness of Z0. The solution of Z0 from x = 0 to x = −M , on the other hand, is
numerically comparatively ill-conditioned in the vicinity of roots of D(·), since Z0 in this regime
is approximately exponentially decaying in the backward direction while errors are exponentially
growing.7 The version (3.18) is therefore much preferable from the numerical point of view, at
least when used (as here, and in [34]) as a shooting method.

4.2. Relation to the method of Erpenbeck. Erpenbeck [21] computes Z̃− in much the
same way as we do here. However, in place of the homogeneous duality relation (4.1), he uses
the “inhomogeous Abel relation”

(4.3) (Z̃− · Ẑ0)
′(λ, x)) = Z̃ ·λW̄ ′(x),

valid for the solution Ẑ0 of the inhomogeneous equation Z ′ = GZ + λW̄ ′(x) with initial data

Ẑ0(0) := λ[W̄ ] deriving from the unmodified equations (3.6)–(3.7), together with W̄ ′(−∞) = 0,
to evaluate

D(λ) =

∫ 0

−∞

Z̃−(y) · λW̄ ′(y)dy + Z̃−(0) · λ[W̄ ].

Though it is mathematically equivalent to the homogeneous scheme described above, this has
the disadvantage that it is difficult to implement adaptive control on truncation error simul-
taneously for the ODE and quadrature steps. Indeed, the method is in general a bit more
cumbersome to implement and understand than either of the previous two described methods.
As a one-time cost, the latter is a rather minor point. However, the implications of the for-
mer for performance appear to be significant. Our experience in similar Evans function-type

7 More precisely, they solve the inhomogeneous equations Z′

0 = GZ0+λW̄ ′(x) with initial data Ẑ0(0) := λ[W̄ ],

and compute ℓconj(λ) · Z0(λ,−M) ∼ ℓconj(λ) · Ẑ0(λ,−M), which is numerically equivalent. Here we are using

Ẑ0 − Z0 = W̄ ′(x) → 0 as x → −∞.
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shooting computations [16, 28, 4, 26] of spectra of asymptotically constant-coefficient opera-
tors is that a fixed-step scheme can be orders of magnitude slower than a comparable adaptive
scheme; see [54] for a general discussion of performance of numerical Evans/Lopatinski solvers.

Moreover, even in the solution of Z̃ alone, the use of an adaptive solver without factoring out
expected decay is much less effective in our experience (“numerical pitfall 3” of [54]).

4.3. Expression as boundary-value solver. We mention in passing an alternative “local
Evans function” formulation in the spirit of [34], suggested by Sandstede [41] as a general
method for numerical Evans function investigations using collocation/continuation rather than
shooting. By the analysis of the previous subsections, we may recast the eigenvalue equation
(3.13)–(3.14) as in [34] as an overdetermined two-point boundary-value problem Z ′ = GZ with
r + 4 boundary conditions

(4.4) Z(0) := λ[F 0(W̄ )] +R(W̄ (0−)), lim
x→−∞

ℓconj · Z(x) = 0.

Relaxing at random one of the r + 3 conditions at x = 0, say the requirement on the jth
coordinate, we generically obtain a well-posed boundary-value problem with the correct number
r + 3 of boundary conditions; one of the coordinates will always suffice. More, the projective
boundary-condition at x = −∞ is numerically “correct”, making this problem extremely well-
conditioned for solution by collocation/continuation methods (see, e.g., [40]). Defining Z(λ, x)
to be the solution of this relaxed problem, we may then define a local, analytic Evans function

D̃(λ) := ej · (Z(λ, 0)− (λ[F 0(W̄ )] +R(W̄ (0−))))

that is numerically well-conditioned and vanishes if and only if λ is an eigenvalue. This gives a
second way to convert (4.4) into a numerically well-conditioned problem, though the speed and
simplicity of shooting is lost in this approach, along with global analyticity useful for winding
number calculations. We shall not investigate this method here, but note that it could be useful
in extreme conditions such as the ultra-high activation energy limit [17].

5. Numerical implementation

We now describe in detail the numerical algorithm proposed to compute (3.18), following the
general approach set out in [16, 28, 53, 54].

5.1. Computing the profile. In Evans function computations, a delicate aspect is often the
computation of the background nonlinear profile. We sidestep this issue by the explicit so-
lution technique used in [19, 20, 34], modified slightly to accomodate the multi-species case
(specifically, the simplified uniform ignition one considered here).

Introducing the new variable y defined by

(5.1) dy/dx = m−1ρϕ(T ), y(0) = 0,

where m := (ρ(s − u))±, we reduce the reaction equation (2.11) to

(5.2) dY/dy = KY, Y (0) = Y0,

obtaining an explicit solution

(5.3) Y (y) = eKyY0
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from which the full profile can be recovered through (2.12), either by explicit calculation, as
carried out for ideal gas dynamics in Appendix B, or, more generally, by Newton iteration.

Remark 5.1. In the single-species case, (5.2) reduces to the change of coordinates x → y :=
log Y used in [34]; general, nonlinear rate laws, or Chapman–Jouget waves, may be accomodated
by a change of variables x→ Y r for appropriate r, as discussed in [34].

5.2. Computing the stability determinant. The linearized stability analysis can then be
carried out in the variable y defined in (5.1), using the instantaneous change of variables formula

(5.4) dx/dy = m/(ρ̄ϕ(T̄ )), y ≤ 0.

Remark 5.2. Since the righthand side of (5.4) is uniformly positive and bounded, the variables
x and y are equivalent in the sense that Cx ≤ y ≤ x/C for x, y ≤ 0, for some C > 0.

Specifically, we solve from y = −M to y = 0 the ODE (d/dy)Z̃ = −m/(ρ̄ϕ(T̄ ))G∗(y)Z̃, with

initial condition Z̃−(−M) = e−gconj
−

(λ)M ℓconj(λ),M > 0 sufficiently large, where the vector ℓ(λ)
and limiting eigenvalue g1 = (u− + c−)

−1 are as computed in eqs. (A.2) and (A.3) of Appendix
A, the coefficient G(λ, V̄ , Ȳ ) is as described in eqs. (3.15), (3.8), and (3.2)–(3.3), and the profile
(V̄ , Ȳ )(y) is as computed in Appendix B. As prescribed in (3.18), we may then compute the

stability determinant D(λ) = Z̃−(λ, 0) · (λ[F 0(W̄ )] +R(W̄ ′(0−))).
More precisely, we may solve the numerically more advantageous equations

(5.5) (d/dy)Ẑ = −(m/ρ̄ϕ(T̄ ))(G(y) + g−(λ)I)
∗Ẑ,

with initial conditions Ẑ(y) := e−(mgconj
−

/ρ̄ϕ(T̄ )yZ̃(y), and compute

D(λ) = Ẑ−(λ, 0) · (λ[F 0(W̄ )] +R(W̄ (0−))).

This may readily be computed with good results by an adaptive solver such as the standard
RK45; see [16, 28, 54] for further discussion.

5.3. Determination of stability: winding number vs. stability curves. With an Evans
solver in hand, stability may be checked either by winding number computations as in [21, 4, 26],
or by root-following methods based on the Implicit Function Theorem, as in [34]. In the first
method, a large semicircle S centered at the origin and lying in ℜλ ≥ 0 is mapped by D, and
the number of zeros of D (unstable normal modes) lying within S computed using the principle
of the argument, making use of the underlying analyticity of D. Unstable modes lying outside
S may be excluded by a separate, asymptotic, argument based on high-frequency behavior of
D [14, 15, 26]; for implementations in the context of ZND, see [55, 33] (analytical) or [10, 11]
(numerical). In the second method, individual roots are followed, avoiding the need to compute
around a contour, but typically requiring an extra Newton iteration with each change in model
parameters; see, for example, [34, 44]. Both are by now completely standard.

6. A simple model problem

We conclude by an examination of efficiency within the context of a simple but illustrative
model problem. Consider the ODE

(6.1) y′ = A(x, λ)y, A(x, λ) = λ

(

1
2 0

1
ce

2x −1
2

)
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defined on −∞ < x ≤ 0, x ∈ R, λ ∈ C, y ∈ C
2, with boundary conditions y ∼ eλx/2(1, 0)T

as x → −∞ and y(0) = (1, 0)T , modeling a variable-coefficient eigenvalue problem of the form
arising in ZND, where the coefficient c 6= 0 encodes rapidity of exponential decay. As for
ZND, the coefficient matrix is exponentially asymptotically constant as x → −∞, with size
growing linearly in λ, and has a unique decaying mode as x → −∞ for all ℜλ > 0, extending
continuously to ℜλ = 0. Thus, we may expect somewhat similar behavior, at least away from
the high-activation energy “square-wave” regime.

In this context, our proposed algorithm consists of factoring out the expected decay eλx/2

from the solution to obtain a “neutral” equation

(6.2) ŷ′ = Â(x, λ)ŷ, Â(x, λ) = λ

(

0 0
1
ce

2x −1

)

,

y := ŷeλx/2, then solving (6.2) from x = −M to x = 0 and checking whether ŷ(0) lies parallel
to (1, 0)T . For reasonable values of c, a computational domain of M = 5 is sufficient. The
method of Lee-Stewart, consists roughly of integrating the original equation (6.1) from x = 0
to x = −M ; the method of Erpenbeck consists roughly of integrating (6.1) from x = −M to
x = 0 without first factoring out expected exponential decay. For comparison, we considered
also a worst-case scenario with maximum amplification of error modes, integrating (6.2) from
x = 0 to x = −∞.

We computed all with the adaptive-mesh RK45 algorithm (ode45) supported in MATLAB,8

with error tolerance set at the standard level 10−5 used for Evans computations [26, 5, 7,
8], measuring efficiency by the number of mesh points/function calls required to complete
the computation. Extreme cases are λ real- the “best” case, with a spectral gap between
exponentially growing and exponentially decaying modes at −∞- and λ imaginary- the “worst”
case from our standpoint, with neither spectral gap nor exponential decay. From the standpoint
of the Lee-Stewart method, the best and worst cases would appear to be reversed.

The results, displayed in Tables 1 and 2 for a typical value c = 10, indicate that the proposed
new algorithm performs 1-5 times faster than (adaptive versions of) either the Erpenbeck or
Lee-Stewart methods, depending on the value of λ, with particular improvement as |λ| becomes
large. It should be noted, moreover, that this is only a comparison of speed (number of mesh
points) for the various methods to produce output with fixed truncation error. If we consider
also accuracy, i.e., convergence error, then the results could be expected to be more dramatic,
since both Lee-Stewart and Erpenbeck methods are numerically less well-posed than the forward
“neutral” algorithm that we propose.

Appendix A. Calculation of ℓ

In this appendix, we show how to calculate for general equations of state the initializing
vector ℓ(λ) used in (3.21), the unique stable left eigenvector of the limiting coefficient matrix
(A.1)

G− = (−λA0
− + C−)(A

1
−)

−1 =





−λf0V−
(f1V−

)−1 (λf0V−
(f1V−

)−1f1Y−
+QKψ−)(g

1
−)

−1

0 (−λg0− −Kψ−)(g
1
−)

−1



 ,

8 In practice, faster than corresponding fixed-mesh methods [54, 10, 11].
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mesh points
forward integration backward integration

λ c = 10 100 1000 c = 10 100 1000
1.0+ 0i 19 14 12 26 24 19
4.0+ 0i 43 29 19 94 92 88
16.0+ 0i 107 76 51 363 361 357
64.0+ 0i 261 191 138 1438 1436 1432

256.0+ 0i 657 519 427 3177 3186 3192
0.4+ 0i 14 12 11 17 14 11
0.4+ 1i 17 13 12 30 27 18
0.4+ 4i 43 29 19 100 97 73
0.4+16i 111 77 51 385 382 296
0.4+64i 317 224 177 1528 1523 1185

0.4+256i 1088 870 827 6104 6086 4738
Table 1. Runs for Eq. (6.2). Forward corresponds to our proposed method,
with expected decay factored out. Backward is a worst-case scenario not corre-
sponding to any of the methods considered.

mesh points
forward integration backward integration

λ c = 10 100 1000 c = 10 100 1000
1.0+ 0i 23 19 15 19 17 15
4.0+ 0i 61 58 56 52 50 49
16.0+ 0i 181 181 181 186 184 183
64.0+ 0i 719 719 719 723 721 721
256.0+ 0i 2868 2868 2868 2873 2871 2870
0.4+ 0i 16 13 12 17 13 12
0.4+ 1i 20 17 15 20 17 15
0.4+ 4i 55 52 50 54 52 50
0.4+16i 196 194 193 197 195 193
0.4+64i 765 765 765 775 771 765
0.4+256i 3055 3055 3055 3084 3074 3055

Table 2. Runs for Eq. (6.1). Forward corresponds to Erpenbeck method,
backward to Lee–Stewart method.

where for a general function h(V, Y ), we use h− to denote h(V−, Y−). Here, we have strongly
used Y− = 0 to obtain the simple upper block-triangular form.

By the upper block-triangular form of G−, and the fact that the lower right-hand block
has spectrum of positive real part for ℜeλ > 0 (since g0 > 0 always, g1 < 0 for right-moving
detonations, and −K is assumed to have spectrum of negative real part), we find that ℓT must
be of form (ℓTV , ℓ

T
Y ), where ℓV is the unique unstable eigenvector, associated with eigenvalue α,
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of the purely gas-dynamical matrix f0V−
(f1V−

)−1, and

(A.2) ℓTY = ℓTV (λf
0
V−(f

1
V−)

−1f1Y− +QKψ−)(λ(g
0
− − αg1−)I +Kψ−)

−1.

To determine α, ℓV , and thereby ℓY , we observe that f0V−
(f1V−

)−1, is related by similarity

tranform M → (f0V−
)−1Mf0V−

to the inverse (f1V−
)−1f0V−

of the hyperbolic convection matrix

(f0V )
−1f1V of the nonreactive Euler equations Vt + (f0V )

−1f1V Vx = 0 written in nonconservative
form in V coordinates with Y ≡ 0. Thus, α−1 is an eigenvalue of (f0V )

−1f1V , i.e., a hyperbolic

characteristic speed of the non-reactive Euler equations, and ℓTV = ℓ̃T (f0V−
)−1, where ℓ̃ is the

associated left characteristic direction (eigenmode).
Noting that α−1, as the unique positive characteristic at state V = V−, must be the largest

characteristic speed, we have by standard formulae [46, 42, 43, 35, 51] or direct calculation

(A.3) ℓTV = ℓ̃T (f0V−)
−1 = (pρ − cu+ ρ−1pe(u

2/2− e), c − ρ−1peu, ρ
−1pe),

determining ℓT (λ) = (ℓTV , ℓ
T
Y )(λ) through (A.2). Note that ℓV is independent of λ. For Y -

independent equations of state, (A.2) simplifies considerably, to ℓTY = ℓTVQKψ−(λ(g
0
−−αg1−)I+

Kψ−)
−1.

Remark A.1. Noting that the e-component ρ−1pe of ℓV does not vanish in (A.3), we may
alternatively rescale by ρ/pe to obtain an analytic choice of form ℓT = (∗, ∗, 1, ∗) convenient for
numerical solution.

A.1. Alternative, numerical computation. Alternatively, an analytic choice of ℓ may be
determined numerically by solution of Kato’s ODE [31] as described in [16, 28, 53, 54]. For ℜλ
bounded from zero, this involves finding numerically at each λ-value the unique stable left and
right eigenvectors of G− and computing the associated eigenprojection for use in the Kato ODE
as in the general problem-independent method of [16, 28, 53, 54]. At or near ℜλ = 0, however,
this method must be modified, since the stable eigenvector becomes neutral at ℜλ = 0. A
simple resolution is to notice that, there, the eigenvalues of G− consist of a single eigenvalue
with strictly positive real part, which may be discarded, and three eigenvalues of form gj = αjλ,
where αj (see above) are hyperbolic characteristic speeds for the non-reactive Euler equations,
of which the one for which gj/λ = αj < 0 is the one associated with ℓ.

Appendix B. Ideal gas profile

In this appendix, we explicitly solve (2.12) for the case of an ideal gas. Restricting to a
steady shock, s = 0, and using the ideal gas law (2.2), we may rewrite (2.12) as

(B.1)

ρ̄ū = ρ±u± := −m

ū+ Γ
ē

ū
= u± + Γ

e±
u±

:= b

ū2

2
+ (Γ + 1)ē+ qȲ =

u2±
2

+ (Γ + 1)e± + qY± := c.
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Combining the second two equations and simplifying gives (Γ+2)ū2−2(Γ+1)bū+2Γ(c−qȲ ) = 0.
Solving using the quadratic formula, we obtain

(B.2) ρ̄ = −
m

ū
, ē =

bū− ū2

Γ
, ū =

Γ + 1

Γ + 2
b±

√

(

Γ + 1

Γ + 2

)2

b2 +
2Γ(qȲ − c)

Γ + 2
,

where we have chosen the negative solution branch for ū in accordance with the fact that [u] > 0,
or, equivalently, [ρ] < 0, for a right-moving gas-dynamical shock, so that ū(0−) < u+. (Recall
that ū(0−) and u+ are the two branches of the square root for Y = 1, corresponding to the
solutions of the Rankine–Hugoniot conditions for a nonreacting gas-dynamical shock.) With
(5.3), (B.2) gives an explicit expression for the profile as a function of variable y.

For a given Neumann shock, there is a one-parameter family of possible endstates (ρ, u, e)−
determined by the value of q, the maximum value of q corresponding to a Chapman–Jouget
wave, for which the argument of the square root vanishes for y = 0.
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