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Abstract— We continue our exploration in the use of option
contracts as a means of managing and controlling inventories in
a retail market. We propose a new class of American put option
contracts on inventories of retail goods, where the retailer can
exercise the option at any time during the contract period,
thus requiring that the option writer purchase any unsold
inventory at a specified strike price. However, to improve
market efficiency this option contract allows the retailer to
freely adjust the sale price of the underlying good throughout
the contract period. As the retailer is expected to select an
optimal pricing policy for the goods, the options can be priced
accordingly.

I. INTRODUCTION

In recent years, the capital markets have evolved consid-
erably in the scope, use, and volume of financial derivatives.
In addition to the usual exchange-traded instruments such as
stocks, bonds, futures, and options, there are also numerous,
and often complex, over-the-counter derivatives and other
investment vehicles used to transfer cash flows and risks
amongst traders around the world. The recent Financial
Crisis of 2008 and the corresponding Global Recession
of 2009, caused in part by the overexposure to poorly-
understood collateralized debt obligations, mortgage-backed
securities, and subprime mortgages, tells us that society
clearly still has much to learn about financial engineering
and the correct quantification of risk. Nonetheless, despite
the ever-growing list of blunders and debacles, businesses in
the aggregate seem to enjoy increasingly greater access to
investment capital, less exposure to market risk, increased
liquidity, and higher productivity as a result of this evolution
in derivative securities and investment banking [4], [5].

In the retail markets, merchants hold inventories of goods
and services much like investors hold portfolios of invest-
ment securities. Although options have been around for
centuries in the financial and commodity markets [6], they
have only recently been suggested for use in a retail environ-
ment [2], [3], [1]. In this paper, we propose a new type of
American retail put option contract, where the retailer (option
holder) has the right, but not the obligation, to sell all her
remaining inventory to the option writer at any time during
the contract period at a predetermined price, called the strike
price. We further allow the retailer the freedom to adjust
the sale price continuously throughout the contract period to
control for demand in an attempt to maximize profits. We
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provide a model for customer purchases as a function of
the retailer’s pricing policy, and determine the option’s value
accordingly. In a companion paper [1], we considered the
European retail put option, which only allowed the retailer
to exercise the contract at the end of the period. The added
flexibility in the American case makes the pricing problem
significantly more complicated since we have to determine
the optimal stopping time for the retailer to exercise the
option.

The American retail put option is particularly useful
when the retailer is overstocked and would be better off
immediately liquidating inventory rather than holding off
until the end of the contract period. This might happen in
situations where the underlying good experiences a substan-
tial change in demand, where the retailer’s profit margins
become smaller than the rate of interest, or where the retailer
needs to acquire cash immediately. The American retail put
option might also be useful in instances where the demand
rates drop, decay, or fluctuate cyclically, as in the case of
perishable, depreciable, and seasonal goods respectively.

In Section II, we present the main result of this paper,
which is an algorithm for determining the risk-neutral val-
uation of an American retail option where the stochastic
demand is a non-homogenous Poisson process with a known
arrival rate that depends on the sale price. Although we
only consider arrivals that depend linearly or log-linearly
on the price, the method presented is quite general. The
algorithm depends first on computing the retailer’s optimal
pricing policy, which in turn gives the Poisson arrival rates.
These are used to calculate the expected remaining revenue at
each point in time, which, when compared with the value of
exercising the option, indicates when early exercise is more
profitable than holding on to the option. In the final step, the
Poisson arrival rates determine the inventory probabilities at
times of early exercise, which we use to price the option; see
Section III. We analyze the sensitivity of the option to input
parameters in Section IV, then in Section V we consider
the benefits of the American put option with variations in
demand rates and payoff policies. We conclude this paper in
Section VI with a discussion of open problems.

II. PROBLEM FORMULATION

In this section we formulate the American retail option
pricing problem. We assume throughout that the demand rate
{X(t)}t≥0 is a time dependent non-homogeneous Poisson
process, with arrival rate λ(u(t)), where u(t) is the sale price
set by the retailer at time t. We discretize the contract period
[0, T ] into n equally spaced intervals [t, t+ ∆t), with ∆t =
T/n and n large. If u(t) is fixed on each subinterval, the
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Poisson process is then described by

P(X(t+ ∆t) = p+ q|X(t) = p) (1)

=


1− λ(u(t))∆t+ o(∆t) if q = 0
λ(u(t))∆t+ o(∆t) if q = 1
o(∆t) if q > 1,

where o(∆t) is the standard little-o notation.
We use the notation Ii for the inventory level during period

i; thus I0 represents the initial inventory. Ii is a discrete
valued stochastic process where Ii = (I0 −X(i∆t))+. We
remark that the inventory level is positive and monotonically
decreasing since there are no returns or backlogs allowed in
our model, nor can the retailer order more inventory. This
also implies that the zero state is absorbing i.e., if Ii0 = 0
for some period i0 then Ii = 0 for all i > i0.

A. Inventory Probabilities
Recall that an American put option contract gives the

option holder the right to sell all remaining inventory to the
option writer anytime during the contract period. If the option
holder exercises the option, then the writer pays the buyer
the strike price for each unsold inventory and retrieves it.
To prevent arbitrage, the premium paid to the option writer
must correspond to the risk-neutral expected value of the
put option contract. We will show it can be found using
Pi,j = P(Ii = j), the probability that the inventory level is
j units during period i. Then

∑I0
j=0 Pi,j = 1 for each i and

0 ≤ Pi,j ≤ 1 for all (i, j).
Let ui,j be the sale price during period i for inventory

level j. We can solve for Pi,j for all (i, j) by fixing ui,j

during each period i so that for j > 0

P(Ii+1 = j|Ii = j) = 1− λ(ui,j)∆t+ o(∆t) (2a)
P(Ii+1 = j|Ii = j + 1) = λ(ui,j+1)∆t+ o(∆t) (2b)

P(Ii+1 = j|Ii ≥ j + 2) = o(∆t). (2c)

The law of total probability states that if B0, B1, . . . , Bn

is a partition of a probability space then for any event A,
P(A) =

∑n
m=0 P(A|Bm)P(Bm). Combining these facts, we

get P(Ii+1 = j) =
∑I0

m=0 P(Ii+1 = j|Ii = m)P(Ii = m).
As shown in Figure 1, Pi+1,j is the average of the probabil-
ities of its contributing states weighted by the probabilities
that those states transition to the state (i+ 1, j). Finally,

Pi+1,j =


Pi,0 + λ(ui,1)∆tPi,1 + o(∆t) for j = 0
(1− λ(ui,j)∆t)Pi,j

+λ(ui,j+1)∆tPi,j+1 + o(∆t) for 0 < j < I0

(1− λ(ui,I0)∆t)Pi,I0 + o(∆t) for j = I0,
(3)

since Pi,I0+1 = 0.

B. Expected Remaining Revenue
We define Di to be the (price dependent) demand function

during period i, which by (2) becomes

Di =


0 w prob. 1− λ(ui,j)∆t+ o(∆t)
1 w prob. λ(ui,j)∆t+ o(∆t)
≥ 2 w prob. o(∆t),

(4)

Pi,j+1

Pi,j Pi+1,j

λ(ui,j+1)∆t

1− λ(ui,j)∆t

Fig. 1. Single period branch describing (3).

if the current inventory level Ii is j. Since it is possible for
the demand to exceed the inventory available for sale, we let
S describe the amount of inventory sold during period i. We
define S(Ii, Di) = min{Ii, Di}. We remark that S(0, Di) =
0 for all Di and S(Ii, 0) = 0 for all Ii since no inventory is
sold if there is no inventory or no demand.

Because the American put option contract gives the re-
tailer the ability to exercise the option anytime before the
expiration date, solving for the value of the option becomes
a dynamic programming problem. The retailer must assess
at each period i before the option expires whether immediate
exercise will garner more profit than is expected by holding
on to the option. We must consider the retailer’s expected
revenue since her actual revenue is not a predictable process.
Consequently, we will suppose that the retailer automatically
exercises the option at the end of the contract period (at time
T ) on all remaining inventory. Based on that supposition
we will evaluate the retailer’s expected remaining revenue,
which we will update to the immediate payout if early
exercise earns the retailer more profit. We will also presume
that the pricing policy {ui,j} is given, although we will
compute the optimal pricing policy in Section II-E. The total
revenue is

R = K(I0−
n−1∑
l=0

Dl)+ +
n−1∑
k=0

uk,Ik
er(T−k∆t)S(Ik, Dk), (5)

where r is the rate of interest, which we assume is constant,
and K is the unit strike price. For comparison purposes,
the unit sale price is converted into its future value at
time T . We set the total demand D equal to

∑n−1
l=0 Dl

for simplification. Because we wish to model a dynamic
program, it is important that we are able to calculate the
remaining revenue at any period i. We define the remaining
revenue (value function) from period i onward by

R(i) = K(I0 −D)+ +
n−1∑
k=i

uk,Ik
er(T−k∆t)S(Ik, Dk). (6)

We let Ri,j = R(i) when Ii = j. It follows that Ri,0 = 0.
We set Rn,j = jK, the payoff of the option at expiration.

Since P(Di = 1) = λ(ui,j)∆t + o(∆t) is small and n
is large, we can simplify our calculation of the expected
remaining revenue by using the Poisson approximation to
the binomial distribution. Note that ∆t = T/n

n→∞−−−−→ 0.
Thus the o(∆t) function is close to zero for large n so we
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can ignore it. Using the law of total expectation we write

E[Ri,j ] = E[E[Ri,j |Di]] (7)
= E[Ri,j |Di = 1]P(Di = 1) + E[Ri,j |Di = 0]P(Di = 0).

Then when j > 0

E[Ri,j |Di = 1] = KE[(I0 −D)+|Di = 1]

+
n−1∑
k=i

E[uk,Ik
er(T−k∆t)S(Ik, Dk)|Di = 1]

= KE[(I0 −D)+] +
n−1∑

k=i+1

E[uk,Ik
er(T−k∆t)S(Ik, Dk)]

+ ui,Ii
er(T−i∆t)S(Ii, 1).

For Ii > 0, S(Ii, 1) = 1. Thus replacing Ii with j and using
the notation that Ei,j = E[Ri,j ], we get

E[Ri,j |Di = 1] = Ei+1,j−1 + ui,je
r(T−i∆t).

Similarly, E[Ri,j |Di = 0] = Ei+1,j . Note that by assumption
P(Di = 0) = 1− λ(ui,j)∆t and P(Di = 1) = λ(ui,j)∆t so

Ei,j = λ(ui,j)∆t(Ei+1,j−1 + ui,je
r(T−i∆t)) (8)

+ (1− λ(ui,j)∆t)Ei+1,j .

Using the initial condition En,j = jK, we can iterate
backward in time to find the expected remaining revenue
at each (i, j); see Figure 2 for a visual representation of
(8). However, the American put option has a payoff which
may exceed the expected remaining revenue before the
option’s expiration, whereupon the risk-neutral retailer is
certain to exercise. Then the expected remaining revenue is
the immediate payout of exercising the option.

C. Payoff Policy

Given an American option contract, the payoff policy Ki,j

is the amount (in time T dollars) that the option pays out if
executed at time period i when the inventory is j units. In
each example below we assume the payoff policy is

Ki,j = jKer(T−i∆t), (9)

which is the unit strike price K times the inventory level
corrected for the future value at time T . Thus the expected
remaining revenue propagates as a binomial tree in backward
time with the following caveat: if the payoff Ki,j is greater
than Ei,j then we replace Ei,j with Ki,j . At these times and
inventory levels, the retailer expects to earn more profit by

Ei,j Ei+1,j

Ei+1,j−1 + ui,je
r(T−i∆t)

λ(ui,j)∆t

1− λ(ui,j)∆t

Fig. 2. Single period branch illustrating expected remaining revenue.

exercising the option than by attempting to sell the rest of
the inventory. This updates (8), which becomes

Ei,j = max{Ki,j , λ(ui,j)∆t(Ei+1,j−1 + ui,je
r(T−i∆t))

+ (1− λ(ui,j)∆t)Ei+1,j}. (10)

We initialize (10) at time T via En,j = Kn,j , which is the
option payoff at expiration; see discussion following (8).

D. Optimal Stopping Times

Once we have the expected remaining revenues, we can
derive the optimal stopping times at which the retailer should
exercise the option: at an inventory level of j units, define

T (j) := inf{i | Ki,j ≥ Ei,j}. (11)

Note that since En,j = Kn,j , we have that T (j) ≤ T for
all j. This is the optimal stopping time, and it represents
the first instance in time that the payoff equals the expected
remaining revenue, hence the moment that a risk-neutral
retailer should exercise the option.

We must revise (3) to include the property that Pi+1,j = 0
if i ≥ T (j) since the option will have been exercised.

E. Optimal Pricing Policy

Although our option pricing solution will evaluate the
situation in which the retailer chooses a suboptimal pricing
policy, we assume by Bellman’s principle of optimality that
the retailer chooses prices to maximize the expected re-
maining revenue on each subinterval. We maximize expected
remaining revenue by differentiating

λ(ui,j)∆t(Ei+1,j−1+ui,je
r(T−i∆t))+(1−λ(ui,j)∆t)Ei+1,j

with respect to ui,j and setting the derivative equal to zero
so

λ′(ui,j)
(
Ei+1,j − Ei+1,j−1

er(T−i∆t)
− ui,j

)
= λ(ui,j). (12)

Solving (12) for ui,j yields the optimal price u∗i,j . Using the
linear demand function λ(u) = b− au, u∗i,j satisfies

u∗i,j =
1
2

(
Ei+1,j − Ei+1,j−1

er(T−i∆t)

)
+

b

2a
. (13)

Using log-linear demand λ(u) = bu−a, a > 1, we get

u∗i,j =
a

a− 1

(
Ei+1,j − Ei+1,j−1

er(T−i∆t)

)
. (14)

Thus the optimal pricing policy {u∗i,j} can be explicitly
determined and incorporated into our algorithm with the
assumption that the retailer is profit maximizing.

III. PRICING THE OPTION

Recall that the risk-neutral price of the option is the
expected value of the put option contract. We derive how
to price the American retail put option contract by finding
its expected payout, first by simulations and then by risk-
neutral evaluation of the contract.
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Fig. 3. Example of optimal price movements for λ = 1 − .3u, I0 = 6,
T = 10, and r = .0133. We have a strike price of (a) K = 1 thus
generating a random walk throughout the entire contract period and (b)
K = 2 usually producing an early exercise of the option.

A. Simulations

We used the inverse transform method to generate n
independent and identically distributed Bernoulli random
variables X1, . . . , Xn with p = λ(u∗(i∆t))∆t. From this
we were able to simulate our Poisson process incorporating
the optimal stopping times {T (j)}I0

j=1. We used rand,
MATLAB’s random number generator, to generate numbers
from a uniform distribution at each time step i. We dropped
the inventory level by one if the random number was less
than p. Otherwise we kept the inventory level constant. If we
reached the optimal stopping time T (j) for inventory j, then
we calculated the payoff Ki,j for that simulation. We set the
option price to be the average payoff of multiple simulations.

In Figure 3, we show how the optimal price, u∗(t), varies
when the strike price K is (a) low, thus leading to sellout
but not early execution and (b) high, producing a nearly
deterministic path where early execution generally occurs. In
the example shown in Figure 3(b), there were only 3 out of
the 15 simulations that bypassed early execution (represented
by the vertical line touching the x-axis at t = 3), selling just
one or two goods before the end of the contract period. In

Figure 3(a) the simulation on top sold out at t = 9.5, and
every run moved extensively through the inventory levels as
goods sold. We used only 15 runs here to get clear graphs.

At first, we used the inverse transform method to price the
options, but these prices matched those given by our algo-
rithm. We only need to compute the inventory probabilities
and optimal exercise times and use these values in the closed
form expression (see below) for the risk-neutral option price.

B. Closed Form Expression

Deferring to the risk-neutral valuation of the contract, the
option value at time T is

p =
I0∑

j=1

KT (j),jPT (j),j . (15)

The payoff policy (9) simplifies (15). Then the option price
in its present value is

p = K

I0∑
j=1

jPT (j),je
−r(T (j)∆t). (16)

IV. ANALYSIS

In this section we explore some particulars with our option
pricing algorithm. We first analyze how the option price
changes as we vary parameters. Then we examine the graphs
of the inventory probability levels of a situation where early
execution can occur.

A. Option Price

In Figure 4(a), we see how the option price changes as we
adjust the initial inventory. Clearly if the initial inventory is
close to zero, then the probability of selling out is very high,
thus the option price is low. In the case that the profit margins
were also low, we would likely find the optimal stopping
time to be T (j) = 0. Barring that, however, the relationship
we see is as anticipated. For large initial inventories, we
see that the option price has a linear relationship. Clearly if
overstocked, the retailer is certain to execute and the payoff
is, as expected, proportional to the inventory.

In Figure 4(b), we see an initially horizontal option price
for short expiration times, followed by a sharp decline. For
short contract periods, the retailer is certain to exercise the
option. However, as the contract period lengthens, the retailer
will be able to reasonably sell out, thus making the option
inexpensive in the limit.

Finally, we consider a varying strike price in Figure 4(c).
In the majority of our investigations we were able to achieve
or negate early execution by adjusting our strike price. Indeed
if the strike price is high, then the retailer is likely to execute
early (usually when t = 0), but if it is low, the retailer would
generally see through the end of the contract period. An
interesting detail is the nearly vertical jump around K = 2 in
our example. This suggests that the strike price has saturation
points beyond which the change in strike price does not
affect when to exercise the option. Notice that the saturation
point on the right corresponds to an optimal stopping point at
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T (j) = 0 whereas the saturation point on the left is unlikely
to see early execution.

In our computations, it was generally difficult to find
an optimal stopping time strictly between T (j) = 0 and
T (j) = T . A likely reason for this is the strong dependence
on strike price consistent with what we see in Figure 4(c).
When far left of the saturation points, the American option is
essentially a European option, with early exercise unlikely.
From the standpoint of the option writer, it may still be
marketable to sell an American option, as the retailer is
willing to pay a premium for the extra flexibility in case of
unexpected low demand. On the right of the saturation points,
the American option is essentially a riskless and useless
security since the retailer would instantly execute the option.
Hence, we suggest that the American option is of most use
in the alternative payoff examples in Section V.

B. Inventory Probabilities

A crucial step in our pricing process is the computing of
the inventory probabilities Pi,j . As an example, in Figure 5,
we explore the dynamics of the inventory probability curves
for options with strike price K = 1 and K = 2. Each curve
represents the probability that the inventory level is j at a
given time t = i∆t. We note that the probability curve for
the initial inventory starts at 1 and decreases monotonically
while the other curves start at zero, hump in the middle, and
then decay over time. The curve representing zero inventory
is not shown here, but it grows to 1 if time on the graph
were extended out, thus demonstrating as expected that the
retailer would sell out if given an infinite amount of time.

Notice that the top curve in Figure 5(b) has a corner,
corresponding to the option execution. This also has an effect
on the other curves as the first can no longer feed into the
second curve, meaning it is less likely to be in all states with
less than 6 inventory.

V. ALTERNATIVE DEMAND RATES AND PAYOFF
POLICIES

The American option is of the most value in a situation
where the retailer is overstocked and would be better off
liquidating inventory, rather than holding on until the end
of the contract period and then liquidating. This might
happen in situations where the underlying goods experience
a significant change in demand, say at the end of a holiday
season where there is a transition from a period of high
demand to one of low demand. For example we might have
an explicitly time-dependent stochastic demand rate

λ(u, t) =

{
b1u
−a1 t ∈ [0, t∗]

b2u
−a2 t ∈ (t∗, T ],

where a1, a2 > 1. In this scenario, we still get (14), but a
changes depending on time.

American options may also be useful in situations where
the profit margins are smaller than the rate of interest, or
where the retailer is experiencing cash-flow disruptions.

Retail options can also be used for inventories that perish
or depreciate. Perishable inventories are those that drop

(a)

(b)

(c)
Fig. 4. Option price as we vary (a) the initial inventory, (b) the expiration
time, and (c) the strike price.

significantly in value after a specified period of time and
can usually only be sold for scrap at some salvage value;
see for example [7]. Examples of perishable goods include
magazines, bakery goods and produce items, but can also
include electric power, theater tickets, and airline seats. By
contrast, depreciable inventories decay in value over time.
Consumer goods, such as cars, electronics, and computers
fit this description. In either case, we can adjust the strike
price of the option at the contract’s expiration to reflect the
good’s future value or even throughout the contract period
to model a varying rate of depreciation.
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Fig. 5. Probability curves for different inventory levels. The parameters
are λ = 1 − .3u, I0 = 6, T = 10, r = .0133, and ∆t = .01. In (a) we
have K = 1 and in (b) K = 2. Note that the higher strike price results in
the option having an early execution at t = 3.

One might also factor in storage and/or transportation costs
to account for business expenses. Then seasonality of goods
such as coats, swimwear, or umbrellas can be analyzed and
the profits compared of storing the goods until next year
versus liquidating the inventory now. We might model the
demand rate as follows:

λ(u, t) = a− bu+ ξ cos(γt+ φ).

Another variation could be dealer incentives, such as is
common in the automobile industry. This could be modeled
as a translation u → u + u0. However, if the incentive was
time dependent, say if it was only for a short period of time,
then the dynamics would change.

A final consideration might be blackout periods for exer-
cising the option. We could set K = 0 during those times.

These are interesting areas for further investigation.

VI. DISCUSSION

We conclude with a brief discussion. There are many
directions to take this portfolio view of inventory control

theory. Several recent results exist for managing portfolios
of options over multiple periods upon which we could
expand; see for example [8]. We could also explore risk-
management strategies including value-at-risk, cash-flow-at-
risk, etc. Another direction is the use of more exotic options.
Variations on floors, caps, Asian options, Bermuda options,
etc., should all be considered for “retail possibilities.”

Another area of interest is pricing an option when dealing
with an incompetent retailer. Note that the option price
proposed here requires that the retailer continually adjust
prices to maximize profits; however, if the retailer isn’t
regulating them optimally, then the writer will be forced
to buy more unsold inventory than necessary. While the
existence of a Nash equilibrium should preclude such events
theoretically, assuming symmetric information, market effi-
ciency, etc., in practice, prices may be set badly. Room for
such incompetence may need to be priced in the option.

Although the literature on retail options is fairly new,
there has been an extensive “contracts” literature in inventory
management going back a few decades, e.g., “buy-back”
and “re-order” contracts; see [9] for a review. It would be
interesting to study the relative merits of these contracts
compared with those described here and elsewhere.

A final consideration is to explore whether it is better
for the retailer to liquidate all inventory or just some when
exercising the option early. Perhaps there are situations where
the retailer wants to reduce inventory to a more profitable
level. This is a current area of exploration for our group.

With the current global economic climate, there may be
an opportunity for wholesalers, importers, and even govern-
ments to make use of options in a retail environment. The
added security may reduce the reluctance with which a re-
tailer is willing to hold more inventory with such uncertainty
in the consumption, foreign exchange, and credit markets.
Introducing American put options into retail environments
may mitigate undesirable risk in inventory management.
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