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Fixed Wing UAV Path Following in
Wind With Input Constraints

Randal W. Beard, Jeff Ferrin, and Jeffrey Humpherys

Abstract— This paper considers the problem of fixed wing
unmanned air vehicles following straight lines and orbits.
To account for ambient winds, we use a path following approach
as opposed to trajectory tracking. The unique feature of this
paper is that we explicitly account for roll and flight path angle
constraints. The guidance laws are derived using the theory of
nested saturations, and explicit flight conditions are derived that
guarantee convergence to the path. The method is validated by
simulation and flight tests.

Index Terms— Aircraft Navigation, motion planning, nonlinear
control systems, unmanned systems.

I. INTRODUCTION

MANY applications of small and miniature unmanned
aeriel vehicles (UAVs) require that the vehicle traverse

an inertially defined path. For example, the UAV may be
required to survey a series of geographic features where
the objective is to record images of the features. In these
applications, it is important that the UAV be on the path, but
the time parameterization of the path may not be critical. One
approach to this problem is to impose a time parameterization
of the path and to pose the associated trajectory tracking
problem. However, this approach is not well suited to small
and miniature fixed wing UAVs since the ambient wind can
be a significant percentage of the airspeed of the vehicle.

Fixed wing vehicles are typically designed to fly at a partic-
ular airspeed to maximize fuel efficiency. However, flying at
a constant airspeed is not compatible with trajectory tracking
in wind. For example, consider the case where the desired
path is a circular orbit and there is a strong ambient wind.
If the time parameterization calls for a constant speed with
respect to the ground, then airspeed will need to increase
significantly when the vehicle is heading into the wind, and
will need to decrease significantly when the vehicle is heading
downwind. Not only do these large variations in the airspeed
reduce the fuel efficiency, they can also cause the vehicle to
stall in downwind conditions.

An alternative to trajectory tracking is path following
where the vehicle attempts to regulate its distance from the
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geometrically defined path, as opposed to regulate the error
from a time varying trajectory.

The path-following approach is studied in [1] and [2], where
performance limits for reference-tracking and path-following
controllers are investigated and the difference between them
is highlighted. It is shown that there is not a fundamental
performance limitation for path following for systems with
unstable zero dynamics as there is for reference tracking.

Building on the work presented in [3] on maneuver modified
trajectory tracking, [4] develops an approach that combines the
features of trajectory tracking and path following for marine
vehicles. Similarly, [5] develops an output maneuver method
composed of two tasks: forcing the output to converge to the
desired path and then satisfying a desired speed assignment
along the path. The method is demonstrated using a marine
vessel simulation. Reference [6] presents a path following
method for UAVs that provides a constant line of sight between
the UAV and an observation target.

A path following strategy for UAVs that is becoming
increasingly popular is the notion of a vector field [7]–[9].
The basic idea is to calculate a desired heading based on
the distance from the path. A nice extension of [8] is given
in [10], which derives general stability conditions for vector-
field-based methods. The focus in [10] is circular orbits. An
extension to general paths that are diffeomorphic to a circle
is reported in [11], including 3-D paths. However, the vehicle
model used in [10] and [11] is a single integrator and does not
explicitly consider the nonholonomic kinematic model of the
vehicle or input constraints. In [12], the vector field concept
is extended to velocity following in n-dimensional spaces.
The path to be followed is specified as the intersection of
the level set of n − 1 scalar functions. The control law is
composed of a stabilizing term that renders the path attractive,
and a circulation term that forces the system to progress along
the path. Similar to [10] and [11], the formulation in [12]
does not explicitly consider nonholonomic kinematics or input
constraints.

Another related method is reported in [13], which uses
adaptive backstepping to estimate the direction of the wind
and to track a straight-line path. The techniques in [13] are
only applied to 2-D vehicles following a straight-line path, and
assume skid-to-turn dynamics without actuator constraints.

In [14], a pure pursuit missile guidance law is adapted and
used for UAV path following. The basic idea is to command
the UAV to follow a reference point on the desired path that is
a fixed distance in front of the vehicle. Similar to the missile
guidance literature, an acceleration command is generated to
align the velocity vector with the line-of-sight vector to the
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target point. The full nonlinear guidance strategy is analyzed
using set invariance and Lyapunov theory. There is also an
analysis when the acceleration command is saturated and it
is shown that the region of stability decreases. The method is
demonstrated in flight with two vehicles in a leader follower
configuration. While the acceleration command is explicitly
saturated, for the control strategy to be implemented on the
autopilot, the acceleration constraints need to be converted to
roll angle, flight path, and airspeed constraints. The analytic
relationship between the acceleration and roll angle, flight
angle, and airspeed depends on aerodynamic models of the
aircraft and may not be available, especially for small UAVs.
As an alternative, in this paper, we develop a path following
strategy that directly constrains the roll and the flight path
angles, and where the airspeed is fixed at a constant value.

The main analytical tool that we use in this paper is the
theory of nested saturation, which was introduced in [15]
to control a cascade of integrators with input and state
constraints. The technique was extended in [16] to systems
with nonlinearities in the input channels, and was applied to
the control of a planar vertical take-off and landing aircraft
with bounded thrust and torque. In [17], nonlinear control
strategies based on nested saturation are developed for the
roll and pitch axis of a quadrotor, and experimental results
are reported. The strategy that we develop in this paper is
motivated by the results reported in [16] and [17], and the
need to constrain the roll and the flight path angles for small
scale UAVs. However, the equations of motion of fixed wing
UAVs differs from the systems considered in [16] and [17] in
the sense that rather than working with second-order dynamic
systems, we look at controlling the kinematic equations of
motion where there are nonlinearities between the first and
second integrators of the system. In particular, the theory of
nested saturations is applied to an extended Dubins airplane
model [18]. It turns out that this extension is not trivial.

The objective of this paper is to develop path following
strategies that explicitly account for roll and flight path angle
constraints. Previous work has primarily addressed constant
altitude maneuvers whereas in this paper we also consider
climb maneuvers. This paper focuses on following straight-line
segments and circular orbits. Our motivation for limiting the
focus to these maneuvers is based on the approach described
in [7] where straight-line and circular orbits are concatenated
to create more complicated paths.

The specific contributions of this paper are as follows. First,
roll and flight path angle constraints, which are absolutely
necessary for small UAV flight, are explicitly satisfied using
the theory of nested saturation. Second, the nested saturation
technique is extended to the problem of path following, which
is a guidance task as opposed to previous work that considers
dynamic stabilization. This is a nontrivial extension since
we are required to work with kinematic expressions instead
of dynamic equations of motion. The kinematic expressions
contain nonlinearities between the integrators and therefore
pose additional challenges to the use of nested saturation.
Third, we explicitly account for wind and derive conditions
on the magnitude of the wind such that path following is
still guaranteed in the presence of roll and flight path angle

constraints. Fourth, the control strategy for orbit following is
complicated by the fact that the nested saturation controller
is not guaranteed to converge in a region around the center
of the orbit. To account for this, we have introduced a
switching strategy and have derived stability conditions that
show that asymptotic path following is achieved from any
initial configuration (subjected to wind constraints). Finally,
we have implemented the proposed guidance strategies on
a small UAV and demonstrated their effectiveness in flight.
A preliminary version of this paper appeared in [19]. However,
[19] did not address the presence of wind, did not include the
longitudinal controller, did not include analytical proofs for the
results, and did not include flight results, all of which appear
in this paper.

The remainder of this paper is organized as follows. The
kinematic equations of motion for a fixed wing UAV are
listed in Section II. A guidance strategy for straight-line path
following is derived in Section III together with six-degrees-
of-freedom (DOF) simulation results that illustrate the effect of
the parameters used in the guidance law. A guidance strategy
for orbit following, as well as similar simulation studies, is
given in Section IV. Flight test results using a small Zagi style
model aircraft are given in Section V, and some concluding
remarks are given in Section VI.

II. EQUATIONS OF MOTION

If pn and pe are the inertial north and east position of the
vehicle, and h is the altitude, then the kinematic model of a
fixed wing unmanned air vehicle in wind can be given by [7]

ṗn = V cosψ cos γ +wn (1)

ṗe = V sinψ cos γ + we (2)

ḣ = V sin γ +wh (3)

where V is the airspeed, ψ is the heading angle measured
from north, γ is the air mass referenced flight path angle, and
wn , we, and wh are the north, east, and altitude components
of the wind. We will assume that the wind vector is constant.
We will assume throughout this paper the existence of a low
level autopilot that maintains a constant airspeed. We also
assume the existence of a suitable state estimation scheme
that estimates the position (pn, pe, h), the heading ψ , the
airspeed V , the flight path angle γ , and the wind vector
(wn, we, wh) [7].

If we assume coordinated turn conditions, then the kine-
matic equation of motion for the heading angle is given by

ψ̇ = g

V
tan φ (4)

where g is the magnitude of gravity at sea level. We assume
in this paper that the roll and pitch dynamics are much faster
than the heading and altitude dynamics, respectively, which
implies that the roll and flight path angles can be considered
as the control variables. Therefore, (3) and (4) become

ḣ = V sin γ c +wh (5)

ψ̇ = g

V
tan φc (6)
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Fig. 1. This figure shows the configuration of the UAV indicated by (p, ψ),
and the configuration of the UAV relative to Pline indicated by (p̃, ψ̃).

where we will assume that the commanded roll angle is limited
by |φc| ≤ φmax < π/2 and that the commanded flight path
angle is limited by |γ c| ≤ γmax < π/2.

III. STRAIGHT-LINE PATH FOLLOWING

For a straight-line path, we will assume that the path is
described by two vectors in R

3, namely

Pline(s, q̂) = {
r ∈ R

3 : r = s + αq̂, α ∈ R
}

where s = (sn, se, sd )
T is the inertially referenced origin

of the path, and q̂ = (qn, qe, qd)
T is a unit vector whose

direction indicates the desired direction of travel referenced
to the inertial frame. The desired course angle of the path is
defined by

χq̂
�= atan2(qe, qn)

where atan2 is the four quadrant inverse tangent function, and
the desired flight path angle of the path is defined by

γq̂
�= tan−1

(
−qd√

q2
n + q2

e

)

.

Fig. 1 shows the straight-line path Pline(s, q̂), and the
position of the UAV p. The position of the UAV relative to

Pline is given by p̃
�= p − s. The heading of the UAV relative

to Pline is given by ψ̃ = ψ − χq̂, where χq̂ is the inertial
heading of q̂ relative to north. To simplify the notation, we
express the lateral dynamics in the path frame, by defining

(
p̃x

p̃y

)
=

(
cosχq̂ sin χq̂

− sin χq̂ cosχq̂

)(
pn − sn

pe − se

)
.

Differentiating, we obtain

˙̃px = V cos ψ̃ cos γ +wx (7)
˙̃py = V sin ψ̃ cos γ +wy (8)

where p̃x is the projected distance along the path, p̃y is the
cross-track error, wx is the wind along the path, and wy is the
wind in the cross-track direction. We assume throughout this
paper that the wind vector is known.

A. Lateral Guidance Law for Path Following

We will derive the guidance law for following a straight
path by decoupling the lateral and longitudinal motion. For
the lateral motion, we assume that γ is a constant. The lateral
error dynamics are given by (8) and (6).

Our approach is derived using the theory of nested sat-
urations [15], [16]. The objective is to drive p̃y and ˙̃py

to zero while simultaneously satisfying the constraint that
|φc| ≤ φmax. The first step in deriving the control strategy
is to differentiate (8) to obtain

¨̃py = g cos ψ̃ cos γ tan φc.

Define W1 = 1/2 ˙̃p2
y and differentiate to obtain

Ẇ1 = ˙̃pyg cos ψ̃ cos γ tan φc (9)

and choose

tan φc = −σM1

(
k1 ˙̃py + σM2(ζ )

g cos ψ̃ cos γ

)

(10)

where σMi is the saturation function

σMi (u)
�=

⎧
⎪⎨

⎪⎩

Mi , if u > Mi

−Mi , if u < −Mi

u, otherwise

k1 > 0, and M1, M2, and ζ will be selected in the discussion
that follows. Substituting (10) into (9), gives

Ẇ1 = − ˙̃pyg cos ψ̃ cos γ σM1

(
k1 ˙̃py + σM2(ζ )

g cos ψ̃ cos γ

)

which is negative when
∣∣ψ̃

∣∣ ≤ ψ̃max < π/2, |γ | ≤ γmax <

π/2, and
∣
∣ ˙̃py

∣
∣ > M2/k1. Therefore, if we guarantee that∣

∣ψ̃
∣
∣ ≤ ψ̃max and |γ | ≤ γmax, then by the ultimate boundedness

theorem [20], there exists a time T1 such that for all t ≥ T1
we have that

∣
∣ ˙̃py

∣
∣ ≤ M2/k1. If we also select M1 and M2 to

satisfy

M1 ≥ 2M2

g cos ψ̃ cos γ
(11)

then for all t ≥ T1, the signal in σM1(·) is not in saturation
and

Ẇ1 = −k1 ˙̃p2
y − ˙̃pyσM2(ζ ). (12)

Define z
�= k1 p̃y + ˙̃py , and W2 = 1/2z2, and differentiate W2

to obtain

Ẇ2 = k1z ˙̃py − zg cos ψ̃ cos γ σM1

(
k1 ˙̃py + σM2(ζ )

g cos ψ̃ cos γ

)

.

If we let ζ = k2z where k2 > 0, then for all t ≥ T1, we have

Ẇ2 = k1z ˙̃py − k1z ˙̃py − zσM2(k2z) = −zσM2(k2z)

which is negative definite. Therefore, we are guaranteed that
z = k1 p̃y + ˙̃py → 0. Using the standard result on input-to-
state stability [20], (12) guarantees that ˙̃py → 0. Since both
z = k1 p̃y + ˙̃py and ˙̃py converge to zero, we can conclude that
p̃y → 0.
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To ensure that |φ|c ≤ φmax, set M1 = tan φmax. To satisfy
(11), we also need to constrain ψ̃ and γ . The constraint
on γ will be discussed in Section III-B. For ψ̃ , note that
if φc = φmax, then ˙̃ψ = g/V tan φmax and ψ̃ increases
monotonically. Similarly, if φc = −φmax, then ψ̃ decreases
monotonically. Therefore, if we can find ψ̃max < π/2 such

that the set Bψ̃max

�= {∣∣ψ̃
∣
∣ ≤ ψ̃max

}
is positively invariant,

then we could use the strategy given in (13), shown at the
bottom of the page, for straight line tracking.

To find ψ̃max, let W3 = 1/2ψ̃2 and differentiate to obtain

Ẇ3 = g

V
ψ̃ tan φc

= − g

V
ψ̃ tan

(

σM1

(
k1(V sin ψ̃ cos γ+wy)+σM2(k2z)

g cos ψ̃ cos γ

))

.

(14)

Equation (14) is negative if
∣
∣k1V sin ψ̃ cos γ

∣
∣ > k1wy,max +

M2, where wy,max is the maximum expected cross-track wind
speed. Assuming that cos γ > 0, this expression is true if

sin ψ̃max = wy,max + M2
k1

V cos γmax
(15)

where γmax is a parameter that will be specified in the
following section.

Since M1 = tan φmax, (11) implies that M2 must be selected
so that

M2 ≤ g

2
tan φmax cos ψ̃ cos γ.

Therefore, we select M2 as

M2 = g

2
tan φmax cos ψ̃max cos γmax.

Substituting into (15) and rearranging gives

−
(

g

2k1
tan φmax cos γmax

)
cos ψ̃max

+ (V cos γmax) sin ψ̃max = wy,max. (16)

Using the trigonometric identity

A cosλ+ B sin λ=C ⇒ λ=− tan−1 A

B
+sin−1 C√

A2 + B2

we obtain

ψ̃max = tan−1
(

g

2k1V
tan φmax

)

+ sin−1

⎛

⎜
⎜
⎝

wy,max

cos γmax

√(
g

2k1
tan φmax

)2 + V 2

⎞

⎟
⎟
⎠. (17)

Fig. 2. Desired altitude along the waypoint path is found by projecting
the position error of the UAV onto the north–east plane. The length of the
projection L is used to find the point on the waypoint path that also projects
onto the north–east plane a distance L from s and using the altitude at that
point.

Therefore, we have the following theorem.
Theorem 3.1: Suppose that k1 > 0, V , φmax, γmax, and

wy,max are such that ψ̃max in (17) is strictly less than π/2,
and suppose that k2, M1 and M2 are selected as:

1) k2 > 0;
2) M1 = tan φmax;
3) M2 = g

2 tan φmax cos ψ̃max cos γmax

then the commanded roll angle given by (13), results in system
trajectories such that

∣∣ p̃y(t)
∣∣+∣∣ ˙̃p(t)∣∣ → 0, and |φc(t)| ≤ φmax.

Note that the constraint that ψ̃max < π/2 essentially limits the
maximum size of the wind that can be asymptotically rejected
using (13). From (16), we observe that the upper bound on
the wind is given by

w̄y,max = V cos γmax

which represents the projection of the velocity vector onto the
horizontal plane, and therefore makes complete intuitive sense.

B. Longitudinal Guidance Law for Path Following

In this section, we develop a longitudinal guidance law for
tracking the altitude portion of the waypoint path, where the
longitudinal kinematics are given by (5).

The desired altitude for the UAV is found by projecting its
current position relative to the waypoint path onto the north–
east plane, as shown in Fig. 2 and finding the distance to this
point, which is given by

L =
√

p̃2
x + p̃2

y .

The position on the waypoint path that, when projected onto
the north–east plane, also results in a distance L is given by

z = s + q̂L tan γq̂.

φc =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φmax, if ψ̃ < −ψ̃max

−φmax, if ψ̃ > ψ̃max

− tan−1

⎡

⎣σM1

⎛

⎝
k1 ˙̃py + σM2

(
k2

(
k1 p̃y + ˙̃py

))

g cos ψ̃ cos γ

⎞

⎠

⎤

⎦, otherwise

(13)
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The down component of this vector is used to obtain the
desired altitude as

hd = −sd − qd L tan γq̂. (18)

The time derivative of hd is given by

ḣd = −qd tan γq̂V
p̃x cos ψ̃ cos γ + p̃y sin ψ̃ cos γ

√
p̃2

x + p̃2
y

−qd tan γq̂
p̃xwx + p̃ywy√

p̃2
x + p̃2

y

. (19)

Define W4 = 1/2(h − hd )2 and differentiate to obtain

Ẇ4 = (h − hd)(ḣ − ḣd )
= (h − hd)(V sin γ c +wh − ḣd).

If we select γ c so that

V sin γ c + wh − ḣd = −σM3(k3(h − hd))

or in other words

γ c = sin−1
(

ḣd −wh − σM3(k3(h − hd ))

V

)
(20)

then Ẇ4 = −(h − hd )σM3(k3(h − hd )) is negative definite.
To ensure that |γ c| ≤ γmax, note that

∣
∣
∣ḣd

∣
∣
∣ ≤

∣
∣
∣
∣
∣∣
−qd tan γq̂V

p̃x cos ψ̃ cos γ + p̃y sin ψ̃ cos γ
√

p̃2
x + p̃2

y

∣
∣
∣
∣
∣∣

+
∣
∣
∣
∣∣
∣
−qd tan γq̂

p̃xwx + p̃ywy√
p̃2

x + p̃2
y

∣
∣
∣
∣∣
∣

≤ V
∣∣qd tan γq̂

∣∣ | p̃x |+| p̃y|√
p̃2

x + p̃2
y

+ ∣∣qd tan γq̂
∣∣

√
p̃2

x + p̃2
y

√
w2

x +w2
y

√
p̃2

x + p̃2
y

= √
2V

∣∣qd tan γq̂
∣∣ + ∣∣qd tan γq̂

∣∣
√
w2

x +w2
y

where we have used the fact that ‖·‖1 ≤ √
2 ‖·‖2. Therefore

∣
∣
∣∣
∣
ḣd −wh − σM3

(
k3(h − hd)

)

V

∣
∣
∣∣
∣
≤

∣
∣ḣd

∣
∣

V
+ |wh |

V
+ M3

V

≤ √
2
∣∣qd tan γq̂

∣∣ +
∣
∣qd tan γq̂

∣
∣
√
w2

x +w2
y + |wh |

V
+ M3

V
.

If M3 is selected as

M3 = V sin γmax − √
2V

∣∣qd tan γq̂
∣∣

−
(∣∣qd tan γq̂

∣∣
√
w2

x +w2
y + |wh |

)
(21)

then from (20), we have that |γ c| ≤ γmax. To ensure that
M3 > 0 we require that γmax and γq̂ satisfy

sin γmax>
√

2
∣
∣qd tan γq̂

∣
∣+

∣∣qd tan γq̂
∣∣
√
w2

x +w2
y + |wh |

V
.

(22)

Theorem 3.2 summarizes the results.

TABLE I

SIMULATION PARAMETERS USED FOR LATERAL PATH FOLLOWING

Theorem 3.2: Suppose that γq̂, V , and the wind vector are
such that γmax can be selected to satisfy both (22) and γmax <
π/2, then if the commanded flight path angle is given by (20),
where k3 > 0, ḣd is given by (19), and M3 is given by (21),
then h → hd and |γ c(t)| ≤ γmax, for all t ≥ 0.

C. Simulation Results for Path Following

The simulation results are obtained using six 6 DOF non-
linear dynamic simulation, as explained in [7]. The effects of
the different control parameters on the system response were
tested by systematically increasing one parameter through
10 equally spaced values between the minimum and the
maximum value while holding the other parameters constant.
A description of the behavior is then given for each parameter.
The parameters of interest for the straight-line path following
are k1, k2, φmax, γmax, and k3. The guidance law is tested
using an inclined line starting at the origin. The parameters
for the simulation are shown in Table I. The nominal values
for each parameter when not being tested through the range
are shown in the value column of the table. These nominal
values are the same values that are used on the actual UAV
flight experiments.

1) Effects of Changing k1: The gain k1 affects the com-
manded roll angle φc by multiplying the error terms p̃y

and ˙̃py . The effect of k1 is dependent on the function σM2 .
When the σM2 function is not in saturation, the numerator in
σM1 becomes (k1+k2)( ˙̃py + p̃y), which shows that the gain k1
has equal weight on both the error and the error rate and will
increase the command which will increase the oscillations of
the response. When the function σM2 is in saturation then k1
has a larger effect on the error rate which adds damping to the
lateral response of the vehicle. The gain k1 also affects ψ̃max
in (17) but the contributions are less than the aforementioned
effects. The effect of k1 on φc of the UAV is shown in Fig. 3.
The response time is decreased as k1 increases but this comes
with oscillations in φc.

2) Effects of Changing k2: The gain k2 enters into the
commanded roll equation through the term k2(k1 p̃y + ˙̃py),
which is inside the function σM2 . Thus, the overall effect of
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Fig. 3. (a) Effect of changing the control gain k1 on the commanded roll. (b) Effect of changing the control gain k1 on the path error. For both subfigures,
the dashed line corresponds to k1 = 0.10 and the dotted line corresponds to k1 = 0.55.

k2 is limited in part to the saturation value of M2. The effect
of k2 on the lateral response is also dependent on the value
of k1. If k1 < 1 then k2 has a larger effect on the error rate and
will have an increased damping effect as k2 is increased. If
k1 > 1 then k2 has a larger effect on the lateral error but will
have less effect on oscillations due to the saturation term M2.

3) Effects of Changing φmax: The parameter φmax affects
the value of the saturation term M1 through the term tan φmax.
As φmax increases, M1 also increases which allows the com-
manded roll to increase. This allows for more aggressive
banking to return to the path.

4) Effects of Changing γmax: The term γmax enters into the
commanded roll equation in the saturation terms M2 through
the term cos γmax. As γmax increases, the saturation term M2
also increases. This will add damping to the system if the gains
k1 < 1 and k2 < 1 because the effect of p̃y will be decreased
and the effect of ˙̃py will be increased. γmax also affects the
longitudinal control. It affects the saturation term M3 through
the term V sin γmax. As γmax increases so does M3. This causes
γ c to decrease. Therefore, increasing γmax will decrease the
response of the longitudinal control.

5) Effects of Changing k3: The gain k3 affects the com-
manded flight path angle by multiplying the term h − hd , as
observed in 20. As k3 increases this will cause the commanded
flight path angle to increase and error in height will decrease.
The effect of changing k3 on the longitudinal response is
shown in Fig. 4.

If the wind vector is not known, or if we incorrectly estimate
the wind, then the result will be a steady-state tracking error.
The magnitude of the steady-state error is dependent on the
magnitude of the wind, for example, a 2.2 m/s wind can cause
a lateral off-path error of 6 m in simulation. An integrator
could be added to the guidance law to remove the steady-state
tracking error, when the wind vector is not known.

The simulation results show that the three parameters with
the largest effect on the lateral response of the vehicle are
k1, k2, and φmax. The parameter φmax affects the response
by saturating the command. If φmax is set properly, according

to the airframe performance then the main parameters are k1
and k2. The longitudinal response is dominated by the effect
of the gain k3, as shown in Fig. 4.

D. Path Control Tuning for Straight-Line Path Following

There are five different parameters that are used in the
lateral path control for straight-lines. For tuning purposes,
the parameters ψ̃max, φmax, and γmax are chosen based on
the capabilities of the airframe, leaving k1 and k2 that can be
used to tune the response of the UAV. To start, the value of
k2 should be close to zero (k2 ≈ 0.1), then start with k1 = 1
and if there is oscillation in the commanded roll, this should
be made smaller. If there are no oscillations then the value of
k1 can be made larger. Once the value of k1 has been chosen,
the value of k2 can be made larger until the desired response
is achieved. The larger k2 is, the faster the convergence to the
path.

A similar approach is used for the longitudinal control.
There are two parameters that can be changed to affect the
response in height. These parameters are γmax and k3. The
value for γmax is chosen based on the capabilities of the
airframe, and k3 is tuned to achieve the desired response of the
vehicle. The value of k3 should start at 0.5 and be increased
until the desired response is achieved.

IV. ORBIT FOLLOWING

A. Lateral Guidance Law for Orbit Following

In this section, we derive a guidance law to ensure asymp-
totic tracking of a circular orbit in wind. An orbital path is
described by an inertially referenced center c = (cn, ce, cd )

T ,
a radius ρ ∈ R, and a direction λ ∈ {−1, 1}, as

Porbit(c, ρ, λ)

= {r ∈ R
3 : r = c + λρ

(
cosϕ, sin ϕ 0

)T
, ϕ ∈ [0, 2π)}

where λ = 1 signifies a clockwise orbit and λ = −1 signifies
a counterclockwise orbit. We assume in this section that the
longitudinal controller maintains a constant altitude. We also
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Fig. 4. (a) Effect of changing k3 on the commanded flight path angle. (b) Effect of changing k3 on the altitude error. For both subfigures, the dashed line
corresponds to k3 = 0.2 and the dotted line corresponds to k3 = 2.0.

Fig. 5. Conversion from rectangular coordinates to polar coordinates for
orbit following.

note that since the autopilot maintains a constant airspeed and
since the wind is assumed to be constant, from (5) the air
mass referenced flight path angle is constant and is given by
γ = − sin−1(wh/Va).

The guidance strategy for orbit following is best derived in
polar coordinates. Let

d
�=

√
(pn − cn)2 + (pe − ce)2

be the lateral distance from the desired center of the orbit to
the UAV, and let

ϕ
�= atan2 (pe − ce, pn − cn) (23)

be the phase angle of the relative position, as shown in Fig. 5,
where atan2 is the four quadrant inverse tangent function.
Differentiating d and using (1) and (2) gives

ḋ = (pn − cn) ṗn + (pe − ce) ṗe

d

= (pn − cn)V cosψ cos γ + (pe − ce)V sinψ cos γ

d

+ (pn − cn)wn + (pe − ce)we

d
.

Defining the wind speed W and wind direction ψw so that

W

(
cosψw
sinψw

)
�=

(
wn

we

)

and using (23) gives

ḋ = V cos γ
(pn − cn) cosψ + (pe − ce) sinψ

d

+W
(pn − cn) cosψw + (pe − ce) sinψw

d

= V cos γ

(
pn − cn

d

)
(cosψ + sinψ tan ϕ)

+W

(
pn − cn

d

)
(cosψw + sinψw tan ϕ)

= V cos γ cosϕ (cosψ + sinψ tan ϕ)

+W cosϕ (cosψw + sinψw tan ϕ)

= V cos γ (cosψ cosϕ + sinψ sin ϕ)

+W (cosψw cosϕ + sinψw sin ϕ)

= V cos γ cos(ψ − ϕ)+ W cos(ψw − ϕ).

Similarly, differentiating (23) and simplifying gives

ϕ̇ = V cos γ

d
sin(ψ − ϕ)+ W

d
sin(ψw − ϕ).

The orbital kinematics in polar coordinates are therefore given
by

ḋ = V cos(ψ − ϕ) cos γ + W cos(ψw − ϕ)

ϕ̇ = V

d
sin(ψ − ϕ) cos γ + W

d
sin(ψw − ϕ)

ψ̇ = g

V
tan φc.

As shown in Fig. 6, for a clockwise orbit, the desired
course angle when the UAV is located on the orbit is given by
ψd = ϕ + π/2.

Similarly, for a counterclockwise orbit, the desired angle is
given by ψd = ϕ − π/2. Therefore, in general, we have

ψd = ϕ + λ
π

2
.
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Fig. 6. Desired angle when the UAV is on the orbit is given by ψd .

Defining the error variables d̃
�= d − ρ and ψ̃

�= ψ −ψd , the
orbital kinematics can be restated as

˙̃d = −λV sin ψ̃ cos γ + W cos(ψ − ψw) (24)

˙̃ψ = g

V
tan φc − λ

V

d
cos ψ̃ cos γ − W

d
sin(ψ − ψw). (25)

The control objective is to force d̃(t) → 0 and ˙̃d(t) → 0
while satisfying the input constraint |φc(t)| ≤ φmax.

Our approach to the orbit following guidance strategy is
similar to the method followed in Section III-A with the added
complication that we must deal with the inside of the orbit.

Following the exposition in Section III-A, differentiate (24)
to obtain:

¨̃d = −λV cos ψ̃ cos γ ˙̃ψ + W sin(ψ − ψw)ψ̇

= −λV cos γ cos ψ̃

×
(

g

V
tan φc − λ

V

d
cos γ cos ψ̃ − W

d
sin(ψ − ψw)

)

+W sin(ψ − ψw)
( g

V
tan φc

)

= −
(
λg cos ψ̃ cos γ + g

W

V
sin(ψ − ψw)

)

×
(

tan φc − λ
V 2

gd
cos ψ̃ cos γ

)
.

Define W5 = 1/2 ˙̃d 2 and differentiate to obtain

Ẇ5 = − ˙̃d
(
λg cos ψ̃ cos γ + g

W

V
sin(ψ − ψw)

)

×
(

tan φc − λ
V 2

gd
cos ψ̃ cos γ

)
(26)

and choose φc as

φc = tan−1
[
λ

V 2

gd
cos γ cos ψ̃

+ σM4

(
k4

˙̃d+σM5(ζ )

λg cos ψ̃ cos γ+g W
V sin(ψ−ψw)

)]
(27)

where k4 > 0 is a control gain, and M4, M5, and ζ will be
selected in the following discussion. Substituting (27) into (26)

gives

Ẇ5 = − ˙̃d
(
λg cos ψ̃ cos γ + g

W

V
sin(ψ − ψw)

)
σM4

×
(

k4
˙̃d + σM5(ζ )

λg cos ψ̃ cos γ + g W
V sin(ψ − ψw)

)

which is negative when
∣∣ ˙̃d∣∣ > M5/k4. Therefore, by the

ultimate boundedness theorem [20] there exists a time T3 such
that for all t ≥ T3, we have

∣
∣ ˙̃d∣

∣ ≤ M5/k4. If we select M4 and
M5 to satisfy

M4 ≥
∣
∣
∣
∣
∣

2M5

λg cos ψ̃ cos γ + g W
V sin(ψ − ψw)

∣
∣
∣
∣
∣

(28)

then for all t ≥ T3, the signal σM4 is not in saturation and

Ẇ5 = −k4
˙̃d2 − ˙̃dσM5(ζ ). (29)

Define z2 = k4d̃ + ˙̃d and W6 = 1/2z2
2, and differentiate W6

to obtain

Ẇ6 = z2k4
˙̃d − z2

(
λg cos ψ̃ cos γ + g

W

V
sin(ψ − ψw)

)
σM4

×
(

k4
˙̃d + σM5(ζ )

λg cos ψ̃ cos γ + g W
V sin(ψ − ψw)

)

. (30)

If we let ζ = k5z2, where k5 > 0 is a control gain, then for
all t ≥ T3, we have

Ẇ6 = −z2σM5(k5z2) (31)

which is negative definite. Therefore, we are guaranteed that
z2 = k4d̃ + ˙̃d → 0. Using the standard result on input-to-state
stability [20], (29) guarantees that ˙̃d → 0. We can therefore
conclude that d̃ → 0.

To satisfy the input saturation constraint, from (27), we
require that

tan φmax ≥ V 2

dg
|cos γ | ∣∣cos ψ̃

∣∣ + M4.

If we ensure that when (27) holds, that d ≥ dmin and
that

∣
∣ψ̃

∣
∣ ≤ ψ̃max, then a sufficient condition to avoid input

saturation is that

tan φmax ≥ V 2

dming
cos γmax cos ψ̃max + M4.

Therefore, select

M4 = tan φmax − V 2

dming
cos γmax cos ψ̃max (32)

where to ensure that M4 > 0 we require that φmax, dmin, ψ̃max
be selected so that

tan φmax >
V 2

dming
cos γmax cos ψ̃max. (33)

To satisfy constraint (28) select M5 as

M5 = 1

2
M4g

∣
∣∣
∣cos ψ̃max cos γmax − W

V

∣
∣∣
∣ (34)
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where the windspeed is required to satisfy

W < V cos ψ̃max cos γmax. (35)

From (33), we observe that the roll command (27) can only
be active when

∣
∣ψ̃

∣
∣ ≤ ψ̃max and d ≥ dmin. The basic strategy

will be to command a zero roll angle when d < dmin and
to saturate the roll angle at ±φmax when

∣
∣ψ̃

∣
∣ > ψ̃max in the

direction that reduces
∣
∣ψ̃

∣
∣. Therefore, let

φc =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if d < dmin

−λφmax, if (d ≥ dmin) and (λψ̃ ≥ ψ̃max)

λφmax, if (d ≥ dmin) and (−λψ̃ ≥ ψ̃max)

[Equation (27)], otherwise.

(36)

The convergence result is summarized in the following
theorem.

Theorem 4.1: If the commanded roll angle is given by (36),
where:

1) k4 > 0;
2) φmax, γmax, and ψ̃max are positive and strictly less than

π/2;
3) dmin and ρ satisfy

V 2 + V W

g tan φmax
< dmin < ρ; (37)

4) the magnitude of the wind satisfies (35);
5) M4 is given by (32);
6) M5 is given by (34);

then |φc(t)| ≤ φmax, and (d, ḋ) → (ρ, 0).
Proof:

The orbital dynamics of the system can be written as

ḋ = −V sin(λψ̃) cos γ + W cos(ψ − ψw) (38)

λ ˙̃ψ = g

V
tan(λφc)− V

d
cos ψ̃ cos γ−λW

d
sin(ψ−ψw) (39)

where φc is given by (36). We will trace the trajectories
of the system using the state variables (d, λψ̃) because the
control action is explicitly defined with respect to these
variables in (36). Note, however, that the equilibrium is at
(d, ḋ)� = (ρ, 0)�. Therefore, in the state variable (d, λψ̃)
the equilibrium is actually time-varying. In particular, from
(31) we note that the manifold define by z0 = 0 is positively
invariant, and that on the manifold ˙̃d = −k4d̃ , which implies
that d̃ → 0, which implies that

−V sin(λψ̃) cos γ + W cos(ψ − ψw)+ k4(d − ρ) = 0.

Solving for λψ̃ on the interval λψ̃ ∈ [ − ψ̃max, ψ̃max
]

and
noting that ψ̃max < π/2 gives

λψ̃ = sin−1
(

k4(d − ρ)+ W cos(ψ − ψw)

V cos γ

)
. (40)

Therefore, in equilibrium, i.e., when d = ρ, we have

λψ̃∗(t) = sin−1
(

W cos(ψ(t) − ψw)

V cos γ

)
. (41)

Fig. 7. State space for orbit following. Regions discussed in the proof are
labeled Ri , and boundaries between regions are labeled Bi .

Fig. 8. In regions R2 and R4, the roll angle is zero and the vehicle drifts
in the wind at a constant rate.

Of course this makes sense physically because the UAV must
continuously change its crab angle as it transitions around the
orbit to adjust for the wind.

Letting d = dmin in (40) gives

λψ̃†(t)
�= sin−1

(
k4(dmin − ρ)+ W cos(ψ − ψw)

V cos γ

)
. (42)

Divide the state space into six regions, as shown in Fig. 7,
where Ri denotes open regions of the state space, and
Bi denote boundaries between the regions. We denote the
closure of Ri as R̄i .

The proof amounts to a careful accounting of all possible
trajectories of the system by showing the following statements.
Fact 1: All trajectories starting in R̄1, enter R2

⋃
R3

⋃
R6 in

finite time.
Fact 2: All trajectories starting in, or entering R2 through

boundary B2, exit R4 through B5 in finite time, where
B2, B4, and B5 intersect at (dmin, λψ̃

∗).
Fact 3: All trajectories starting in, or entering R3, either

converge to (ρ, 0), or enter R2 in finite time.
Fact 4: All trajectories starting in, or entering R5, enter R6

in finite time.
Fact 5: All trajectories starting in, or entering R6, converge

to (ρ, 0).
Therefore, all trajectories in the system, converge to the
equilibrium (d, ḋ)� = (ρ, 0)�.
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Fig. 9. (a) Effect of changing dmin on the commanded roll. (b) Effect of changing dmin on the path error. For both subfigures, the dashed line corresponds
to dmin = 40 and the dotted line corresponds to dmin = 100.

TABLE II

SIMULATION PARAMETERS USED FOR LATERAL PATH FOLLOWING

Proof of Fact 1: In R̄1, we have

λ ˙̃ψ = − g

V
tan φmax − V

d
cos(λψ̃) cos γ − λ

W

d
sin(ψ − ψw).

Maximizing λ ˙̃ψ on R̄1 over all possible values for γ ∈
(−π/2, π/2) and ψ − ψw ∈ (−π, π] gives

max
R̄1

λ ˙̃ψ = − g

V
tan φmax + V

dmin
+ W

dmin
.

Condition 37 ensures that maxR̄1
λ ˙̃ψ is bounded above by

a negative constant. Therefore, all trajectories starting in R̄1
leave R̄1 in finite time.

Proof of Fact 2: In R2 and R4, the roll command is φc = 0,
which implies that the heading rate is zero. The drift angle due
to wind is given by (41). The geometry is shown in Fig. 8,
where it can be observed that when the vehicle enters dmin,
we have ϕ + ψ̃(t1) = π/2, and when it exits dmin, we have

TABLE III

PROPERTIES OF THE STRAIGHT-LINE PATH AND CONTROL

PARAMETERS USED FOR EXPERIMENTAL TESTS

ϕ + λψ̃∗ − λψ̃(t2) = π/2, therefore

λψ̃(t2) = −λψ̃(t1)+ λψ̃∗.

This implies that trajectories in R2 and R4 are symmetric about
boundary B4, and therefore all trajectories entering or starting
in R3 enter R4 and then leave R4 through B5 in finite time.

Proof of Fact 3. In R3, the trajectories of the system are
given by (38) and (30). Using the argument immediately
following (30), we know that trajectories that stay in R3
will eventually converge to (d, ḋ)� = (ρ, 0)�. Therefore,
trajectories either converge to (ρ, 0)� or leave R3 in finite
time. Since by the proof of Fact 1 trajectories that leave R3
cannot enter R1, and by the proof of Fact 2 they cannot
enter R4, and since the invariance of B7 prevents trajectories
entering into R6, all trajectories that do not converge to (ρ, 0)�
must enter R2 in finite time.

Proof of Fact 4: Similar to the proof of Fact 1.
Proof of Fact 5: The argument is similar to the proof of

Fact 2 with the exception that trajectories cannot leave R6
through B3 (proof of Fact 1), B5 (proof of Fact 2), or B6
(proof of Fact 4). Therefore, all trajectories in R6 converge to
(ρ, 0).
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Fig. 10. (a) Small UAV used for testing. (b) Autopilot used for control.

Fig. 11. (a) Desired versus actual path of the UAV. The desired path is dashed. (b) Estimated wind during flight. Dashed line shows the north wind, and
solid line shows the east wind.

B. Simulation Results for Orbit Following

The effects of different control parameters for orbit fol-
lowing are tested similar to straight-line following discussed
in Section III. The plots are not shown here because of
the similarity of effects with the parameters used in the
line following. A short discussion follows for clarity. The
parameters of interest are k4, k5, ψ̃max, φmax, and dmin. If we
choose φmax and ψ̃max as parameters then dmin must be chosen
such that (33) is satisfied. The value of dmin is chosen as
a percentage of the orbit radius while still satisfying the
inequality. Table II shows the orbit parameters and the nominal
control parameters used in the simulation. The nominal values
are the same values that are used on the actual UAV flight
experiments. The orbit is a flat orbit with constant desired
velocity.

1) Effects of Changing Parameters: The effects of changing
the parameters for the orbit control have similar effects on the
UAV response as those of the parameters for the line control as
explained above in Section III-C. The effects of changing gain
k4 for the orbit control is similar to the effect of k1 for line
control, k5 is similar to k2 and the angles also have similar
effects (φmax and γmax). The parameter ψ̃max has the same

effect on the response as the parameter γmax. However, the
parameter dmin is not used in the straight-line path control so
this parameter will be discussed in more detail here.

2) Effects of Changing dmin: The parameter dmin affects the
commanded roll in two ways. First, the commanded roll is
zero if the UAV is inside dmin. Therefore, if dmin is increased
closer to the actual orbit radius ρ the UAV will not start to turn
until it is closer to the orbit and will therefore overshoot the
orbit. The second way that dmin enters into the commanded
roll equation is through the saturation term M4 in (32). As
dmin is increased it will also increase the saturation term M4
and will increase the overall commanded roll. This increase
in commanded roll will increase the rate of convergence to
the path. The effects of dmin on the response of the UAV are
shown in Fig. 9. As shown in the plot, having a large dmin will
increase the rate of convergence but simultaneously starts to
increase the overshoot by delaying the point at which the UAV
starts to turn. Therefore, as dmin continues to increase above
70% the rate of convergence increases but the overall quality of
the response declines because of the increase in overshoot. As
dmin approaches 100%, anytime the UAV is inside the orbit the
commanded roll will be set to zero. This creates undesirable
effects as the UAV will oscillate in and out of the orbit due
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Fig. 12. (a) Desired versus actual roll angles of the UAV. Dashed line shows the desired roll. (b) Path error of the UAV during flight.

Fig. 13. (a) Desired versus actual path of the UAV. Dashed line shows the desired path, and solid line shows the actual path. (b) Estimated wind during
flight. North wind is dashed and east wind is solid.

to the value of dmin being close to the orbit radius ρ. This
behavior is shown for the two larger values of dmin where the
commanded roll is immediately set to zero in Fig. 9(a).

C. Path Control Tuning for Orbit Path Following

Similar methods are used to tune the orbit path controller,
as were described in Section III-D, where the effects of k4 on
the orbit control are similar to the effects of k1 and the effects
of k5 are similar to that of k2 and the other parameters are
chosen based on the vehicle airframe.

V. EXPERIMENTAL RESULT

The nested saturation control law was tested on the UAV
shown in Fig. 10(a). The UAV is equipped with a Lock-
heed Martin Procerus Technologies Kestrel autopilot shown
in Fig. 10(b), a uBlox GPS receiver, and another separate

processor, which contains the control algorithm that communi-
cates with the autopilot. The onboard autopilot communicates
with a ground station computer using Virtual Cockpit 3-D.
The communication between the UAV and the ground station
is done using the Lockheed Martin Procerus Technologies
Ground Control Station with Microhard Nano modems which
use a frequency of 900 MHz. The desired velocity, altitude
and other path information is controlled by the user at the
ground station and is transmitted to the UAV during flight. The
autopilot uses the GPS signal, the onboard inertial measure-
ment unit, differential and absolute pressure sensors, and the
onboard magnetometer to calculate the position, orientation,
heading, and flight path angle of the vehicle, as well as the
components of the wind. We note that to estimate the wind
vector the vehicle must maneuver with respect to the air mass.
If the mission scenario does not require such maneuvering,
then the wind may need to be estimated prior to the start
of the mission. The state information along with the desired
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Fig. 14. (a) Desired versus actual roll angles of the UAV. Dashed line shows the desired path, and solid line shows the actual path. (b) Path error of the
UAV during flight.

Fig. 15. (a) Desired versus actual path of the UAV. Dashed line shows the desired path, and solid line shows the actual path. (b) Estimated wind during
flight. Dashed line shows the north wind, and solid line shows the east wind.

path information is passed to the processor running the control
algorithm. The nested saturation control law is then used
to calculate the desired velocity, desired roll angle, and the
desired flight-path angle. These commanded values are then
sent to the autopilot, which performs the low-level control.

The controller was tested on the hardware for both straight-
line paths and circular orbits. All of the paths tested were a
constant altitude of 100 m above ground level while the desired
velocity was a constant 15 m/s. A variety of initial conditions
were tested to evaluate the response of the proposed control
method.

A. Path Following Results

The properties of the straight-line path and the control
parameters used for the flight are shown in Table III. For the
experimental results, the wind speed was assumed to be zero,
which will result in steady-state tracking errors.

Figs. 11 and 12 show the results from the UAV flying
the along the straight-line. The vehicle was initially flying
along the line in the positive north and east directions. The
commanded direction along the same line was then reversed
and the vehicle had to switch directions and return to the
desired line. Fig. 12(a) shows the desired and actual roll
angles.

B. Orbit Following Results

The orbit properties and corresponding control parameters
used to fly the orbit are shown in Table IV.

Two different initial conditions were used in the experiments
for orbit following. In the first case, the initial position is
outside the desired orbit and the heading is opposite the desired
heading. The results for this case are shown in Figs. 13 and 14.
In the second case, the initial position is inside the desired
orbit and is inside dmin. The results for this case are shown in
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Fig. 16. (a) Desired versus actual roll angles of the UAV. Dashed line shows the desired path, and solid line shows the actual path. (b) Path error of the
UAV during flight.

TABLE IV

PROPERTIES OF THE ORBIT AND CONTROL PARAMETERS

USED FOR EXPERIMENTAL TESTS

Figs. 15 and 16. The UAV starts inside the radius of dmin and
flies straight until it reaches dmin at which point φc = φmax
until the course angle of the UAV is closer to the desired
course angle of the orbit. The UAV then converges onto the
orbit.

As shown in Figs. 12(a), 14(a), and 16(a) there are sig-
nificant oscillations in the commanded roll of the vehicle. In
the case of the line, the value of k2 should be increased to
add damping to the lateral response of the UAV. The value
of k5 should be increased to likewise add more damping. The
controller can be tuned on the specific platform to remove
these oscillations. It is noted here that the controller indeed
could have been tuned to perform better. During validation,
the responses were not able to be tuned during flight because
the only information that was available during flight was the
desired and the actual trajectories, which made it difficult to
determine that the controller damping was too low.

VI. CONCLUSION

This paper has considered the problem of following straight-
lines and orbits in wind using fixed wing unmanned air
vehicles where the roll angle and flight path constraints are
explicitly considered. The guidance strategies are derived
using a kinematic model of the aircraft and using the theory
of nested saturations. The resulting strategies are continuous
and computationally simple. The contributions of this paper
include the following. The guidance laws represented by (13),
(20), and (36) explicitly constrain the roll and the flight
path angle constraints, and specific conditions on the wind
are derived where the guidance laws guarantee asymptotic
tracking. In Sections III-A and IV, the nested saturation
technique is extended to the problem of path following. This
is a nontrivial extension due to the nonlinearities between
the integrators. The control strategy for orbit following is
complicated by the fact that the nested saturation controller
is not guaranteed to converge in a region around the center of
the orbit. In Theorem 4.1, we have derived specific conditions
for when a simple switching strategy can be used to guaran-
teed global asymptotic convergence to the orbit. Finally, we
have demonstrated the effectiveness of the proposed strategies
through simulation and flight tests results.

REFERENCES
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