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Abstract

In Evans function computations of the spectra of asymptotically constant-coefficient linear operators, a basic issue is the efficient and
numerically stable computation of subspaces evolving according to the associated eigenvalue ODE. For small systems, a fast, shooting algorithm
may be obtained by representing subspaces as single exterior products [J.C. Alexander, R. Sachs, Linear instability of solitary waves of a
Boussinesq-type equation: A computer assisted computation, Nonlinear World 2 (4) (1995) 471–507; L.Q. Brin, Numerical testing of the stability
of viscous shock waves, Ph.D. Thesis, Indiana University, Bloomington, 1998; L.Q. Brin, Numerical testing of the stability of viscous shock
waves, Math. Comp. 70 (235) (2001) 1071–1088; L.Q. Brin, K. Zumbrun, Analytically varying eigenvectors and the stability of viscous shock
waves, in: Seventh Workshop on Partial Differential Equations, Part I, 2001, Rio de Janeiro, Mat. Contemp. 22 (2002) 19–32; T.J. Bridges,
G. Derks, G. Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: A numerical framework, Physica D 172 (1–4)
(2002) 190–216]. For large systems, however, the dimension of the exterior-product space quickly becomes prohibitive, growing as

( n
k
)
, where

n is the dimension of the system written as a first-order ODE and k (typically ∼n/2) is the dimension of the subspace. We resolve this difficulty
by the introduction of a simple polar coordinate algorithm representing “pure” (monomial) products as scalar multiples of orthonormal bases,
for which the angular equation is a numerically optimized version of the continuous orthogonalization method of Drury–Davey [A. Davey, An
automatic orthonormalization method for solving stiff boundary value problems, J. Comput. Phys. 51 (2) (1983) 343–356; L.O. Drury, Numerical
solution of Orr-Sommerfeld-type equations, J. Comput. Phys. 37 (1) (1980) 133–139] and the radial equation is evaluable by quadrature. Notably,
the polar-coordinate method preserves the important property of analyticity with respect to parameters.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A useful tool in the study of stability of traveling waves
is the Evans function, an analytic function whose zeroes
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eigenvalue problems. Thanks also to Thomas Bridges for insightful and useful
feedback. Numerical computations were carried out using STABLAB, an
interactive MATLAB-based stability package developed by J.H.
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correspond to the eigenvalues of the linearized operator about
the wave. More generally, let L be a linear differential operator
with asymptotically constant coefficients along some preferred
spatial direction x , and suppose that the eigenvalue equation

(L − λ)w = 0 (1)

may be expressed as a first-order ODE in an appropriate phase
space:

Wx = A(x, λ)W, lim
x→±∞

A(x, λ) = A±(λ), (2)

with A analytic in λ as a function from C to C1(R, Cn×n) and
the dimension k of the stable subspace S+ of A+ and dimension
n − k of the unstable subspace U− of A− summing to the
dimension n of the entire phase space.

http://www.elsevier.com/locate/physd
mailto:jeffh@math.byu.edu
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Then, one may construct analytic bases of solutions of (1),
say w+

1 , . . . , w+

k and w−

k+1, . . . , w
−
n respectively, spanning the

manifolds of solutions decaying as x → +∞ and −∞ by
essentially initializing them at infinity with values from the
stable (resp. unstable) subspace of A+ (resp. A−) and solving
toward x = 0 using the ODE (2). The Evans function is then
defined as

D(λ) := det
(
W +

1 · · · W +

k W −

k+1 · · · W −
n
)
|x=0 , (3)

where each Wi is the solution of (2) corresponding to wi ;
for details, see, e.g., [1,24,18,34,35] and references therein.
Analogous to the characteristic polynomial for a finite-
dimensional operator, D(·) is analytic in λ with zeroes
corresponding in both location and multiplicity to the
eigenvalues of the linear operator L .

Numerical approximation of the Evans function breaks
into two problems: the computation of analytic bases for
stable (resp. unstable) subspaces of A+ (resp. A−) and the
solution of ODE (2) on a sufficiently large interval x ∈

[0, M] (resp. x ∈ [−M, 0]). In both steps, it is desirable to
preserve the fundamental property of analyticity in λ, which
is extremely useful in computing roots by winding number or
other topological considerations.

A difficulty in the second problem is numerical stiffness for
k, n − k 6= 1, due to the need to resolve modes of different
exponential decay (resp. growth) rates. This may be overcome
in elegant fashion by working in the exterior product space

W +

1 ∧ · · · ∧ W +

k ∈ C( n
k ) (resp. W −

k+1 ∧ · · · ∧ W −
n ∈ C

(
n

n−k

)
),

for which the desired subspace appears as a single, maximally
stable (resp. unstable) mode, the Evans determinant then being
recovered through the isomorphism

det
(
W +

1 · · · W +

k W −

k+1 · · · W −
n
)

∼ W +

1 ∧ · · · ∧ W +

k ∧ W −

k+1 ∧ · · · ∧ W −
n .

The first instance of this “exterior-product method” in the Evans
function context seems to be a computation carried out by
Pego in the Appendix of [3]. The method was subsequently
rediscovered and further developed by Brin et al. [11–13]
and, independently, by Bridges et al. [9,4]. See also, the
earlier “compound-matrix method” introduced by Gilbert and
Backus [19] and also Ng and Reid [28–31] for the numerical
solution of stiff ODE, of which it may be regarded as a
coordinate-independent implementation.

The computation of an initializing analytic basis at plus
(resp. minus) spatial infinity is likewise straightforward in the
exterior-product framework, since it reduces to the calculation
of a single eigenvector. Two quite satisfactory approaches to
this problem were given in [13,9], each of order

( n
k

)3 equal
to the cost of a matrix inversion or the multiplication of two
matrices in dimension

( n
k

)
×
( n

k

)
: negligible compared to the

cost of integrating the exterior-product version of (2).
Together, these two steps give an extremely fast and well-

conditioned shooting algorithm for the computation of the
Evans function, for small values of n. However, for equations
of large dimension n, such as those that arise in complicated
physical systems or through transverse discretization of a multi-
dimensional problem on a cylindrical domain [27], the exterior-
product method quickly becomes impractical, since the typical

value k ∼ n/2 leads to a working dimension
(

n
n/2

)
growing as

nn/2. For example, for the typical values n ∼ 102 found in [27],
this is clearly out of computational range. The development of
new numerical methods suitable for stability analysis of large
systems was cited in a recent A.I.M. workshop on Stability
Criteria for Multi-Dimensional Waves and Patterns, May 2005,
as one of three overarching problems facing the traveling wave
community in the next generation [23].

Discussion of this problem has so far centered mostly
on boundary-value methods. For example, one may always
abandon the Evans function formulation and go back to direct
discretization/Galerkin techniques, hoping to optimize perhaps
by multi-pole type expansions on a problem-specific basis.
However, this ignores the useful structure, and associated
dimensionality reduction, encoded by existence of the Evans
function.

Alternatively, Sandstede [33] has suggested to work within
the Evans function formulation, but, in place of the high-
dimensional shooting methods described above, to recast
(2) as a boundary-value problem with appropriate projective
boundary conditions, which may be solved in the original
space Cn for individual modes by robust and highly-accurate
collocation/continuation techniques. This would reduce the cost
to polynomial order C(n)kn2, where C(·) counts the number
of mesh points times evaluations per mesh required for system
size n. He points out, further, that if one is interested only in
zeroes of D(·) and not component subspaces, then the cost
may be reduced by a further factor of k by a root-finding
algorithm computing only a single candidate eigenfunction in
each of the unstable (resp. stable) subspaces (the “bordered
matrix” method as described in [7,26]). In [22], there
were presented correspondingly efficient O(n3) initialization
routines prescribing analytic basis/projection for the stable
(resp. unstable) subspace of A+ (resp. A−), also in the original
space Cn without reference to exterior products.

However, up to now, it is not known how to recover
analyticity of the Evans function in numerically well-
conditioned fashion by the above-described collocation
methods. The reason is precisely the (normally advantageous)
property that errors are uniformly spatially distributed for such
methods, whence the relative error near spatial infinity, where
solutions exponentially decay, is prohibitively large to track
dependence on initializing conditions. Likewise, the appealing
simplicity/ease of coding of shooting methods is lost in this
approach.

Motivated by these circumstances, we introduce in this
note an alternative, shooting method designed for large
systems, couched like collocation methods in the original
(relatively) lower-dimensional space Cn but preserving the
useful properties of analyticity, simplicity, and good numerical
conditioning enjoyed by the exterior-product method. Indeed,
being based on standard matrix operations, our method is
substantially easier than the exterior-product method to code,
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and has an inherent parallel structure that may be exploited
in a transparent fashion by the use of a numerical package
incorporating parallel matrix routines; likewise, because it is
carried out in minimal coordinates, there is no need to take
advantage of sparse matrices such as occur in the exterior-
product method.

The basis of the new method is to represent the exterior
products of the columns of W± in “polar coordinates” (Ω , γ )±,
where the columns of Ω+ ∈ Cn×k and Ω− ∈ C(n−k)×k are
orthonormal bases of the subspaces spanned by the columns
of W+ :=

(
W +

1 · · · W +

k

)
and W− :=

(
W −

k+1 · · · W −
n
)
,

W ±

j defined as in (3), i.e., W+ = Ω+α+, W− = Ω−α−, and
γ± := det α±, so that

W +

1 ∧ · · · ∧ W +

k = γ+(Ω1
+ ∧ · · · ∧ Ω k

+),

where Ω j
± denotes the j th column of Ω±, and likewise

W −

k+1 ∧ · · · ∧ W −
n = γ−(Ω1

− ∧ · · · ∧ Ωn−k
− ).

The idea is that the projectivized, angular flow in Ω should
remain numerically well-conditioned since orthonormality is
enforced, whereas the radial equation, being scalar and linear,
is automatically well-conditioned and evaluable by simple
quadrature. Indeed, this turns out to be the case, as described
in the remainder of the paper.

Just as the exterior-product method has ties to the
much earlier compound-matrix method, our polar-coordinate
approach has ties to another well-known method, that of
“continuous orthogonalization”, introduced by Drury [17] and
Davey [16] as an alternative to the compound-matrix technique.
Specifically, our angular equation in principle computes the
same Ω computed in the continuous orthogonalization method.
The new feature of our method is the radial equation, which
restores the important property of analyticity with respect
to parameters with no loss of numerical conditioning. This
represents a subtle but important departure in point of view,
in that we truly compute exterior products and not subspaces
or bases thereof, as in past interpretations of the (standard)
continuous orthogonalization method [8]. As discussed in
Section 3.1, this gives us considerable flexibility in choosing
a numerically optimal implementation.

We point out that Bridges [8] has developed a clever
“biorthogonal” variant of Davey’s continuous orthogonaliza-
tion method that also preserves analyticity (see Remark 9);
indeed, not only the minors of Ω but also individual columns
vary analytically with respect to a parameter. However, this
method does not preserve orthogonality but only biorthogonal-
ity Ω̃Ω = Ik×k with a simultaneously computed “left basis”
Ω̃ , hence, in addition to requiring twice the computation time
due to the doubled variable (Ω , Ω̃), appears to be inherently
less stable than the other methods considered here. As far as we
know, this method has never been implemented numerically;
it was presented in [8] as an interesting “dual” version of the
exterior-product method.

Our numerical experiments indicate that the polar-
coordinate method is quite competitive in mesh-size require-
ment with the exterior-product method. Thus, the break-even
dimension for the polar coordinate vs. exterior product method,
taking into account competing effects of nonlinear function
calls vs. higher dimension, seems to be about n ≥ 6 (n ≥ 8
for optimized exterior product with sparse matrix solver, which
at the moment does not exist). Detailed comparisons are given
in Section 4. As compared to collocation/continuation meth-
ods, we expect as for any shooting method that there is a tran-
sition size n∗ above which the stability advantages of colloca-
tion outweigh the speed and ease of computation of our algo-
rithm. In particular, for “medium-sized” systems such as oc-
cur in large but genuinely one-dimensional systems such as
magnetohydrodynamics (n = 15) or combustion with many
species (n ∼ 10 or 102), we expect (though, so far, no study
has been made for large systems with either method) that our
algorithm is at least competitive with the present alternatives
for root-finding. And, for the moment, it is the only choice
for calculating winding numbers in medium-sized systems or
above.

Finally, we point out that, for ultra-large systems for which
shooting may not be well-advised, our algorithm may equally
well serve as the basis of analyticity-preserving collocation
methods, since uniform errors in orthonormal bases give good
tracking of subspaces along the whole real line. Thus, it seems
perhaps useful in this context as well.

2. The algorithm

2.1. Derivation

Our starting point is a comment by Chris Jones [23] that
the representation in the exterior-product method of products
W1 ∧ · · · ∧ Wk as the direct sum of products of standard basis
elements is extremely inefficient, since the less than k × n-
dimensional manifold of “pure” (i.e., monomial) products is
quite small in the

( n
k

)
-dimensional space of direct sums, and

one should therefore seek more efficient coordinates for the
computation. A natural choice is to represent exterior products
Λ in “polar coordinates” as (γ,Ω), where radius γ ∈ C
is a complex scalar and angle Ω ∈ Cn×k is a matrix of
orthonormal column vectors Ω∗Ω = Ik×k whose columns span
the subspace spanned by the factors of Λ, with γ chosen so
that the product of γ with the exterior product of the columns
of Ω is equal to Λ. This representation is unique modulo
transformations (γ,Ω) → (γ / det U,ΩU ), where U ∈ Ck×k

is unitary. The set of angles Ω may be recognized as the Stiefel
manifold described in [7], a standard coordinatization of the
Grasmannian manifold of linear k-dimensional subspaces over
Cn .

In these coordinates, our computations have a concrete,
linear-algebraic interpretation in which no reference to exterior
products appears. Hereafter, let RM := (1/2)(M + M∗) denote
the Hermitian part of a matrix M and =M := (1/2)(M − M∗)

the skew-Hermitian part, and ′ denote d/dx . Denoting by W+ ∈

Cn×k and W− ∈ Cn×n−k the matrices (W +

1 , . . . , W +

k ) and
(W −

k+1, . . . , W −
n ) from whose columns the Evans function is

determined by (3), we have

W+ = Ω+α+; det α+ = γ+, (4)
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and likewise for W−. Thus, (3) becomes simply

D(λ) = γ+γ− det (Ω+,Ω−)x=0. (5)

Fix the Ω -evolution by the choice

Ω∗Ω ′
= 0, (6)

removing the ambiguity in representation. This may be
achieved by a unitary transformation Ω → ΩU , U ∈ Ck×k

satisfying U ′
= −Ω∗Ω ′U . (Note that −Ω∗Ωx is skew-

symmetric, since 0 = (Ω∗Ω)x = 2R(Ω∗Ωx ).) This choice
is optimal in the sense of minimizing arc length in the Stiefel
coordinates, as discussed in [7]. It may also be recognized
as the one prescribed by a standard continuation algorithm
of Kato [25] with the orthogonal projection P(λ) := ΩΩ∗;
see [22] or Remark 4 below.

Comparing W ′
= AW = AΩα and W ′

= (Ωα)′ =

Ω ′α + Ωα′, we obtain

AΩα = Ω ′α + Ωα′. (7)

Multiplying on the left by Ω∗ and invoking (6) and Ω∗Ω = I ,
the key equation

α′
= (Ω∗ AΩ)α (8)

relates the two coordinatizations of the desired subspace.
Substituting (8) into (7), multiplying on the right by α−1, and
rearranging, we obtain the angular equation

Ω ′
= (I − ΩΩ∗)AΩ . (9)

As described in the introduction, ODE (9) is exactly the
continuous orthogonalization method of Drury [17].

Finally, by Abel’s equation, we obtain from (8) and
definition γ := det α the radial equation

γ ′
= trace(Ω∗ AΩ)γ (10)

completing our description of the flow.

Remark 1. Equation (10) gives another sense in which Ω is
a minimal, or “neutral” choice of basis; namely, it is the
unique choice for which the generalized Abel formula (10)
holds up to complex phase. (It holds in modulus, i.e., |γ |

′
=

traceR(Ω∗ AΩ)|γ |, for any orthonormal basis choice.)

Rescaled radial flow. Since we ultimately evaluate γ at x = 0,
we may strategically introduce, similarly as in [11–13] for the
exterior-product method, the rescaled variables

γ̃±(x) := γ±(x)e−trace(Ω∗ AΩ)±x (11)

for which the flow near x = ±∞ is asymptotically trivial. Our
complete algorithm thus becomes

Ω ′
= (I − ΩΩ∗)A(x, λ)Ω

γ̃ ′
= trace(Ω∗(A − A−)Ω)γ̃ ,

(12)

with

D(λ) = γ̃+γ̃− det(Ω+,Ω−)x=0. (13)

Summarizing, we have
Proposition 2. For any choice of γ̃ (−∞) and (Ω(−∞))

with columns spanning the unstable subspace U+ of A− :=

limx→−∞ A(x, λ), there are unique solutions of (8) and (12)
such that

lim
x→−∞

Ω(x) = Ω(−∞),

lim
x→−∞

γ̃ (x) = γ̃ (−∞),

lim
x→−∞

α(x)e−trace(Ω∗ AΩ(−∞))x
= γ̃ (−∞)I,

(14)

and these satisfy W = Ωα, γ̃ = e−trace(Ω∗ AΩ(−∞))x det α,
where W is a solution of W ′

= AW .

Proof. Standard asymptotic ODE theory [15] and the above
calculations relating W , (γ,Ω), and γ̃ . �

2.2. Initialization at infinity

To complete the description of our method, it remains
to prescribe the initializing values Ω(±∞), γ̃ (±∞) in
Proposition 2, taking care to preserve analyticity with respect
to λ. Recall the following standard result of Kato.

Proposition 3 ([25, Section II.4.2]). Let P(λ) be an analyt-
ically varying projection on a simply connected domain Ω .
Then, the linear analytic ODE

r ′

j = [P ′, P]r j ; r j (λ0) = r0
j (15)

defines a global analytically varying basis {r j (λ)} of the
associated invariant subspace Range P(λ), where “ ′” denotes
d/dλ and [A, B] := AB − B A the commutator of A and B.
More generally,

S′
= [P ′, P]S; S(λ0) = I. (16)

defines a globally analytic coordinate change such that

S−1 P S ≡ constant = P0. (17)

Proof. Relation (17) follows from (S−1 P S)′ = 0, and may
be established directly by using the key relations P P ′ P = 0
and (I − P)(I − P)′(I − P) = 0, which in turn follow
by differentiation of the projective equation P2

− P = 0.
Observing that S−1 satisfies the “transpose” ODE,

(S−1)′ = −S−1S′S−1
= −S−1

[P ′, P]SS−1
= −S−1

[P ′, P],

(18)

we have that both S and its inverse satisfy linear analytic ODEs,
hence have global bounded analytic solutions in Ω by standard
analytic ODE theory [15]. Finally, Range P = S Range P0 is
spanned by the columns of S R0, where the columns of R0 are
chosen to span Range P0, verifying (15). �

Remark 4. Let R(λ) =
(
r1 · · · rk

)
∈ Cn×k , be the matrix

of basis vectors of Range P defined by ODE (15) and
L ∈ Ck×n be the matrix whose rows form the dual basis of
Range P∗, L R ≡ Ik ∈ Ck×k . Then (see Preposition 2.5, [22]),
the flow (15) is uniquely determined by the property

L R′
≡ L ′ R ≡ 0. (19)
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Remark 5. From (18) we see that S (hence R) is unitary if
P is self-adjoint (i.e., an orthogonal projection), since in that
case [P ′, P]

∗
= −[P ′, P], so that S∗ and S−1 satisfy the

same ODE with same initial conditions I . Likewise, the relation
P = S P0S−1

= S P0S∗ shows that, for P0 self-adjoint, S is
unitary only if P is self-adjoint for all λ.

Proposition 3 describes a method to generate a globally
analytic matrix W−(λ) (the matrix R(λ) above) with columns
spanning the unstable subspace U− of A−(λ) and similarly
for S+, A+. Efficient numerical implementations are described
in [22].

Likewise, we may efficiently compute a matrix Ω(−∞, λ)

at each λ whose columns form an orthonormal basis for U , for
example by either the SVD or the QR-decomposition. This need
not even be continuous with respect to λ. Equating

Ω(−∞, λ)α̃(−∞, λ) = W−(λ)

for some α̃, we obtain

α̃(−∞, λ) = Ω∗(−∞, λ)W−(λ)

and therefore the exterior product of the columns of W− is equal
to the exterior product of the columns of Ω(−∞) times

γ̃ (−∞) := det(Ω∗(−∞, λ)W−(λ)). (20)

That is, the exterior product represented by polar coordinates
(γ̃ ,Ω)(−∞, λ), with γ̃ (−∞, λ) defined as in (20), is the same
as the exterior product of the columns of W−(λ) appearing in
the definition of the Evans function; in particular, it is analytic
with respect to λ (though coordinates γ̃ and Ω in general are
not).

With these initializing values (γ̃ ,Ω)(−∞, λ), we may then
efficiently solve (12) for Ω from x = ±∞ to x = 0 to obtain
Ω±(0) using any reasonable adaptive Runga–Kutta solver, with
good numerical conditioning. (The reason, similarly as for the
exterior-product method, is that Ω(±∞) is now an attractor
for the flow in the direction we are integrating; see discussion,
[1,18,11–13,9].) Combining, we obtain D(λ) through formula
(13).

3. Further elaborations

3.1. Numerical stabilization

We briefly describe various alternatives to the basic scheme
(12), designed to improve numerical stability in sensitive
situations. In the examples we considered, such additional
stabilization was not essential.

Angular equation. It was reported soon after its introduction
that the basic continuous orthogonalization method (9) can
in some situations suffer from numerical instability, by
Davey [16], who suggested as a variant the use of the
generalized inverse method (now known as the Davey method)

Ω ′
= (I − ΩΩĎ)AΩ , (21)

where ΩĎ
:= (Ω∗Ω)−1Ω∗ denotes the generalized inverse. The

point is that R(Ω∗Ω ′) = 0 for (9) only on the Stiefel manifold,
and so level sets of the error E(Ω) := Ω∗Ω − I are in general
not preserved, the error equation being

E ′
= −2 R(EΩ∗ AΩ). (22)

Davey’s method, on the other hand, is derived precisely from
the global requirement Ω∗Ω ′

= 0, and so preserves all level
sets of E , with associated error equation

E ′
= 0. (23)

That is, (21) corrects for spurious growth modes of (9) in
directions normal to the Stiefel manifold.

Remark 6. With the corresponding modification γ̃ ′
=

trace(ΩĎ(A − A±)Ω)γ̃ of (9) and (21) gives an alternative
implementation of the full polar-coordinate method, valid on
or off the Stiefel manifold.

An alternative stabilization of (9) is the damped Drury
method

Ω ′
= (I − ΩΩ∗)A(x, λ)Ω + cΩ(I − Ω∗Ω), (24)

suggested by [14], with c > 0 chosen sufficiently large with
respect to the matrix 2-norm ‖A‖2 of A. This evidently agrees
with (9) and (10) on the manifold G := {Ω : Ω∗Ω ≡ I },
but, thanks to the new penalty term on the right-hand side of
the Ω equation, has the additional favorable property that G is
not only invariant but attracting under the flow. For, defining
E(Ω) = Ω∗Ω − I as above, we have the error equation

E ′
= −2c(I + E)E − 2 R(EΩ∗ AΩ). (25)

Denoting by ‖M‖F the Frobenius norm of the matrix M ,
noting the elementary inequalities ‖AB‖F ≤ ‖A‖2‖B‖F and
|traceA∗ B| ≤ ‖A‖F‖B‖F coming from Cauchy–Schwartz, and
observing that ‖Ω‖2 = 1 on the Stiefel manifold E = 0, we
readily obtain from (25) that

(1/2)(‖E‖
2
F )′ = trace(E∗E ′)

= −2c trace(E∗(I + E)E)

− 2 trace(E∗R(EΩ∗ AΩ))

≤ −2(c − ‖A‖2‖Ω‖
2
2)‖E‖

2
F + 2c‖E‖

3
F < 0

(26)

for c > ‖A‖2 and ‖E‖F sufficiently small.

Remark 7. A brief calculation reveals that Ω ′
= Ω(I − Ω∗Ω)

is the steepest descent/gradient flow for ‖E‖
2
F (Ω) := trace(I −

Ω∗Ω)2. In this sense, the stabilizing term Ω(I − Ω∗Ω) is the
optimal, least-squares correction, corresponding approximately
with orthogonal projection onto the Stiefel manifold E = 0.

Though (24) in principle remains stable in numerically
sensitive regimes where (21) may fail, in practice, the large
value of c that is required for stability introduces numerical
stiffness imposing unreasonable restrictions on mesh size; see
Section 4. A more attractive alternative in this situation is the
damped Davey method

Ω ′
= (I − ΩΩĎ)AΩ + cΩ(I − Ω∗Ω) (27)
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obtained by combining the above two stabilization techniques,
which is globally exponentially attracting for any c > 0, with
error equation

E ′
= −2c(I + E)E (28)

yielding (1/2)(‖E‖
2
F )′ ≤ −2c‖E‖

2
F + O(‖E‖

3
F ), which is

attracting near the Stiefel manifold.
Alternatively, one might employ the damped Bridges–Reich

method

Ω ′
= −2=[(I − ΩΩ∗)A(x, λ)]Ω + cΩ(I − Ω∗Ω), (29)

proposed in [10], for which the Stiefel manifold G likewise is
attracting for any c > 0. This agrees with (9) on G, since

[(I − ΩΩ∗)A]
∗Ω = A∗(I − ΩΩ∗)Ω = 0;

moreover, the undamped Bridges–Reich method obtained by
setting c = 0 has a skew-Hermitian form favorable for
geometric integrators preserving Lie group structure [10]. On
the other hand, off of the Stiefel manifold, these methods do
not preserve the desired subspace, since they are not of the
canonical form

Ω ′
= AΩ + Ω B, (30)

where B = α′α−1, obtained by multiplying (7) on the right by
α−1; thus, they are in some sense trading errors in the normal
direction for new errors tangential to the Stiefel manifold.

Finally, we mention the polar factorization method, a
discrete orthogonalization method introduced by Ascher, Chen,
and Reich [5] and later by Higham [20], which is based on
the observation that the factor Ω in the polar factorization
W = Ω H of a matrix W , Ω orthonormal and H symmetric,
is the closest point (in the usual Frobenius matrix norm) to W
on the Stiefel manifold. In this split-step method, single steps
of an explicit scheme approximating the original, linear flow
W ′

= AW are alternated with projection via polar-factorization
onto the Stiefel manifold. Though we did not test this scheme,
Higham [20] reported superior performance in numerically
sensitive situations, as compared to geometric integrator-based
continuous orthogonalization methods. For further discussion
of the continuous orthogonalization method and its variants,
see [4,8,10] and references therein.

Remark 8. In applying this split-step method to Evans
function computations, we expect that it is important to
substitute for W ′

= AW the asymptotically trivial rescaled
ODE, W ′

= (A − trace(Ω∗ AΩ(±∞))I )W , similarly as for
the exterior-product method [11–13] or the radial equation in
(12). In this approach, γ̃ is obtained as the product Π j det H j
of determinants of symmetric factors H in the projection steps
W = Ω H → Ω . Alternatively, one could integrate Drury’s
ODE (9) for the ODE step and track γ̃ by the usual, continuous
ODE (12).

Remark 9. An analytic variant of Davey’s method is the bi-
orthogonal method

Ω ′
= (I − Ω(Ω̃∗Ω)−1Ω̃∗)AΩ ,

Ω̃ ′
= −(I − Ω̃(Ω∗Ω̃)−1Ω∗)A∗Ω̃ ,

(31)
introduced by Bridges [8]. Here, the matrix Ω , and likewise
Ω̃∗, is analytic along with its k × k minors. This scheme has
the property of Davey’s method that level sets of Ω̃∗Ω are
preserved; in particular, Ω̃∗Ω ≡ Ik×k is an invariant manifold.
However, analyticity of Ω and Ω̃∗ is incompatible with Ω̃ = Ω ,
and so Ω̃∗Ω = Ik×k does not enforce good conditioning of
Ω . Apparently, the requirement of analyticity of individual
columns is overly rigid for purposes of numerical stabilization;
the advantage of the polar coordinate method is the flexibility
to choose optimally the angular evolution equation.

In our numerical experiments, the best and fastest
performance was exhibited by the original, undamped Drury
method (9); see Section 4. Indeed, our results indicate that the
examples considered lie in the numerically insensitive regime
for which normal instabilities remain small. However, the
stability issues discussed above should be important for other,
more numerically taxing problems.

Radial equation. Likewise, since they are scalar quantities,
we could more stably solve for radial variables γ̃±(0) by
quadrature, using formulae

γ̃−(0) = e
∫ 0
−∞

trace(Ω∗ AΩ(x)−Ω∗
− A−Ω−)dx γ̃ (−∞),

γ̃+(0) = e
∫

+∞

0 −trace(Ω∗ AΩ(x)−Ω∗
+ A+Ω+)dx γ̃ (+∞).

(32)

However, in practice, this does not seem necessary, as the
Ω -equation appears to be the limiting factor determining
accuracy/allowable mesh size in (12). The rescaling (11) on the
other hand is critical for good numerical performance, as is the
analogous rescaling for the exterior-product method [11–13],
giving a speedup on the order of the spectral radius of A(x, λ).

In cases where exponential asymptotic convergence of
coefficients does not hold, for example in the case of degenerate
traveling-wave profiles [21] or boundary value problems on a
finite interval [8], the formulation as a quadrature seems crucial
for feasible computations. Alternatively, defining θ := log γ ,
we may solve

θ ′
= trace(Ω∗ AΩ), (33)

initializing as θ(x) ∼ trace(Ω∗ AΩ)±x as x → ±∞,
recovering

γ±(0) = γ̃±(0) = eθ±(0)γ̃ (±∞).

This results in an algorithm equally simple as (12) and not
limited to the case of exponentially convergent coefficients. In
practice, this turned out to be also slightly more efficient; thus,
we recommend this modification in all cases.

Remark 10. An additional, numerical advantage of (33) over
(12)(ii) is that it circumvents the loss of significance that occurs
due to cancellation in the coefficient trace(Ω∗(A − A±)Ω) for
large |x |. Thus, one may integrate on an unnecessarily large
computational interval with no penalty, eliminating the need to
determine an optimal length. Algorithm (12) on the other hand
exhibits large errors as the length of the computational interval
is taken to infinity.
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3.2. Continuous initialization

Though the initializing step at plus and minus spatial infinity
is a one-time cost, hence essentially negligible, we point out
that this step too may be carried out more efficiently by an
evolution scheme in λ parallel to the one carried out in x in
Section 2.1. Defining W− := W−(−∞, λ), γ− := γ (−∞, λ),
and Q := [P ′, P], recall that the λ evolution of W− is again
given by a linear ODE,

W ′
− = Q(λ)W−.

Thus, we may apply exactly the same steps as in the previous
section to obtain a well-conditioned Ck evolution scheme for
(Ω−, γ̃−) of

Ω ′
− = (I − Ω−Ω∗

−)Q(λ)Ω− + c(‖Q‖)Ω−(I − Ω∗
−Ω−),

γ̃ ′
− = trace(Ω∗

−QΩ−)γ̃−, (34)

initializing (γ̃−0,Ω−0) = (1,Ω−0) at some base point λ0.
With this modification, equations (32) simplify to

γ̃−(0) = e
∫ 0
−∞

trace(Ω∗ AΩ(x)−Ω∗
− A−Ω−)dx γ̃ (−∞),

γ̃+(0) = e
∫

+∞

0 − trace(Ω∗ AΩ(x)−Ω∗
+ A+Ω+)dx γ̃ (+∞).

(35)

Note that the above calculation gives the interesting
information of the winding number of γ̃− over one circuit
around a closed λ-contour, which is not necessarily zero, or
even an integer.

Remark 11. A similar, but more complicated scheme could
be used to restore analyticity in general collocation methods,
by further tracking in x the values of γ̃ relating the bases
obtained by Kato’s algorithm applied in variable λ with
respect to orthogonal projection; for, the associated x-evolution
depends only on the associated subspace, which can be well-
approximated, rather than exterior product or directions of
individual solutions, which cannot. Combined with the above
computation relating analytic bases at x = ∞ to those obtained
through orthogonal projection, we obtain an analytic scheme
for which the only information required is knowledge (to
reasonable tolerance) of subspaces at each x . Of course, as
pointed out in the introduction, a simpler solution would be to
use a collocation scheme based on the algorithm of this paper,
for which no such corrections would be necessary.

3.3. Adjoint formulation

For k < n/2, a standard improvement (see, e.g., [32,2,6]) is
to rewrite the Evans function as a Gramian determinant

D(λ) = det(W ∗
+ · W ⊥

− ),

where W ⊥
− is a k × n matrix whose columns span the

orthogonal complement of the span of the columns of W− with
det(W−, W ⊥

− ) = 1, or equivalently

D(λ) = det(W ∗
+ · Y−), (36)

where Y− is a k × n matrix whose columns are a basis
of the k-dimensional subspace of solutions of the adjoint
ODE Yx = −A∗(x, λ)Y , decaying as x → −∞. This
reduces the number of computations from n to 2k < n
solutions.

With this change, (13) becomes

D(λ) = γ̃+η̃− det(Ω∗
+ · Ω̂−)x=0, (37)

where Y− = η̃−Ω̂− and η̃−(x) := η−(x)etrace(Ω̂∗ A∗Ω̂)−x is the
corresponding rescaled radial variable and Ω̂− is the adjoint
polar variable.

4. Numerical comparisons

In this section, we compare our new method for
Evans function computation with the exterior-product method
described in Section 1, and afterward, briefly, with various
alternative continuous orthogonalization methods substituted in
the angular equation.

As a test system, we first consider solitary waves of the
“good” Boussinesq equation

ut t = uxx − uxxxx − (u2)xx , (38)

which have the form (ξ = x − st)

ū(ξ) =
3
2
(1 − s2)sech2

(√
1 − s2

2
ξ

)
, (39)

where the wave speed s satisfies |s| < 1. We remark that this is
the same system studied in [3], and is known to be stable when
1
2 < |s| < 1 and unstable when |s| < 1/2.

By linearizing (38) about the traveling wave (39), we arrive
at the eigenvalue problem

λ2u − 2sλu′
= (1 − s2)u′′

− u′′′′
− (2ūu)′′, (40)

which can be written as a first-order system (2), where

A(x, λ)

=


0 1 0 0
0 0 1 0
0 0 0 1

−λ2
− 2ūxx 2λs − 4ūx (1 − s2) − 2ū 0

 .

(41)

For λ in the right-hand plane, we have that (41) spectrally
separates into two growth and two decay modes, that is, k = 2.
Thus, this model captures the numerical obstacle of multi-mode
growth and decay in the left and right subspaces, respectively,
that motivated the development and use of the exterior-
product and continuous orthogonalization methods in the first
place.

4.1. Algorithms

Using the exterior-product method, we lift A(x, λ) into
exterior-product space to get
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Fig. 1. We evaluate the Evans function of the “good” Boussinesq system for the unstable pulse having wave speed s = 0.4. We compute (a) the graph of the Evans
function along real axis from λ = 0 to λ = 0.2 and (b) the image of the closed contour Γ (t) = 0.16 + 0.05e2π it , where 0 ≤ t < 1.
A(2)(x, λ)

=



0 1 0 0 0 0
0 0 1 1 0 0

2λs − 4ūx (1 − s2) − 2ū 0 0 1 0
0 0 0 0 1 0

λ2
+ 2ūxx 0 0 (1 − s2) − 2ū 0 1

0 λ2
+ 2ūxx 0 −2λs + 4ūx 0 0

 .

(42)

To maintain analyticity, we use Kato’s method (Proposition 3,
see also [13,9]) for analytically choosing the (simple)
eigenvectors r+(−M) and r−(M), which correspond to the
largest growth and decay modes, respectively, at the numerical
approximates of negative and positive infinity, ±M (we used
M = 8), where the eigenprojection P is obtained as (l∗r)−1rl∗

for any left and right eigenvectors l and r for the eigenvalue
of (42) of smallest (resp. largest) real part, obtained through a
standard matrix routine. To integrate (15) we use Euler’s first-
order method for convenience. We then evolve these vectors
from x = ±M to x = 0 using a standard numerical ODE
solver (RKF45) and compute the Evans function via the wedge
product at x = 0 as in (3).

With our new method, we similarly evolve, analytically in
λ, the eigenvectors at the numerical end states ±M so that we
can determine the det(Ω∗W ±) multipliers in (32). We likewise
use Kato’s method, where the eigenprojection P is obtained as
(L∗ R)−1 RL∗ for any matrices L and R with columns forming
orthonormal bases for the left and right stable (resp. unstable)
subspace of A, obtained by the singular-value decomposition
(SVD). For a more efficient, but slightly more complicated
algorithm, see [22].

We next determine orthonormal bases Ω(±∞) at each λ for
the stable (resp. unstable) subspace of A+ (resp. A−) via the
SVD and initialize γ̃ (±M) through (20). Finally, we evolve
(Ω , γ̃ ) from x = ±M to x = 0 (via RKF45) and compute the
Evans function as the determinant (5) as described in Section 2,
or, alternatively, using the adjoint formulation, as the Gramian
determinant (36) as described in Section 3.3.
4.2. Results

In Fig. 1, we compute the Evans function for the unstable
pulse with s = 0.4. We perform two Evans function
computations for each contour, using our new method and the
exterior-product method. We then compare results. In Fig. 1(a),
we compute the graph of the Evans function along the real axis
from λ = 0 to λ = 0.2. From this we see that the graph
crosses through zero near λ = 0.155, indicating an unstable
eigenvalue there. We remark that the graphs for both methods
were plotted, however since they are virtually indistinguishable,
it only appears as though one curve is present. In Fig. 1(b),
we compute the Evans function about the contour Γ (t) =

0.16 + 0.05e2π it , where 0 ≤ t < 1, and plot its image. The
interior of this contour contains the above-mentioned unstable
eigenvalue, and so we expect the origin to be contained in the
interior of the image, as it is. This is a second verification of
the unstable eigenvalue. In this second test, both methods are
likewise graphed and overlap to the point that they are also
indistinguishable. Indeed the two graphs differ by an absolute
difference of 1.4×10−9 and a relative difference of 4.6×10−5.
In both old and new shooting algorithms, the absolute and
relative tolerances are set to 10−8 and 10−6, respectively.

4.3. Performance

Function evaluation for (12) requires as many as five
matrix–matrix multiplications, whereas the exterior-product
method requires a single matrix–vector multiplication. Because
of this, our new method is actually slower for the “good”
Boussinesq, which is a relatively small system. To leading
order, the operational count for our method grows as 2kn2

+

3k2n. By contrast, the exterior-product method grows as
( n

k

)2,
and is faster than our method when n = 4 and k = 2. Indeed for
k ∼ n/2, we expect the break-even point to be at around n = 6.

We remark that A(k)(x, λ) becomes sparse as n gets large
(k ∼ n/2). We can show that the number of non-zero entries
(and hence operations for a sparse matrix–vector evaluation)
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Table 1
A comparison of methods

Method c ‖E‖F Mesh Time Abs. Rel.

Damped Drury (24) 0 1.8(-10) 58 6 7.3(-12) 2.3(-9)
1 5.0(-11) 58 6 7.0(-12) 2.2(-9)
5 1.6(-10) 59 7 9.8(-12) 3.2(-9)

10 2.2(-7) 77 9 3.4(-10) 1.1(-7)
15 1.2(-6) 101 12 2.2(-9) 7.1(-7)
20 1.8(-6) 124 15 3.8(-9) 1.2(-6)

Damped Davey (27) 0 5.3(-10) 58 8 1.7(-11) 5.6(-9)
1 1.2(-10) 58 8 8.8(-12) 2.9(-9)
5 1.9(-11) 58 8 6.9(-12) 2.2(-9)

10 1.6(-10) 58 8 6.6(-12) 2.1(-9)
15 1.6(-7) 71 10 1.5(-10) 4.9(-8)
20 1.1(-6) 95 13 1.1(-9) 3.5(-7)

Bridges-Reich (29) 0 5.4(-10) 64 7 7.2(-9) 2.3(-6)
1 1.3(-10) 64 7 2.0(-9) 6.4(-7)
5 1.9(-11) 67 7 3.4(-10) 1.1(-7)

10 1.4(-10) 74 8 8.6(-11) 2.8(-8)
15 8.2(-10) 90 10 7.0(-10) 2.3(-7)
20 1.8(-9) 109 13 9.1(-10) 2.9(-7)

The third column measures the maximum distance ‖E‖F from the Stiefel
manifold. The fourth column “Mesh” corresponds to the average (and typical)
number of mesh points integrating from x = ±M to x = 0. The “Time” column
measures the run-time (in seconds) for computing the 20 Evans function values
along the contour γ (t) = 0.16+40i+0.15e2π it . The last two columns measure
the maximum absolute and relative difference along the contour compared to
the values returned using the exterior-product method to high accuracy.

is exactly (k(n − k) + 1)
( n

k

)
. Even though a sparse-matrix

package would offer substantial computational savings over a
non-sparse one, the size is still prohibitive for large systems.
In fact, with a sparse improvement, the break-even point for
function evaluation relative to our method should be extended
only to around n = 8.

4.4. Other methods

In Table 1 we compare the different continuous orthogonal-
ization methods discussed in Section 3.1 and examine overall
performance and accuracy. Specifically, we measure (i) how
closely the trajectories “stick” to the Stiefel manifold by com-
puting the distance ‖E‖F (in Frobenius norm) of Ω at x = 0
to the Stiefel manifold, (ii) the number of mesh points that
are needed for our adaptive ODE solver to maintain tolerance
(AbsTol = 1e–8 and RelTol = 1e–6), (iii) the run-time needed
to compute the Evans function, and finally (iv) the absolute and
relative errors compared with the exterior-product method taken
to high accuracy. See Table 1 for the results. We remark that
these numerical experiments were performed using the adjoint
formulation of the Evans function as described in Section 4.1.

According to the data, both the original undamped Drury
method (12) and the damped Davey method (27) (with c
between 5 and 10) performed very well. Two observations are
immediate: both methods become less accurate and more time
consuming as the damping constant c gets large. The latter
observation is expected due to numerical stiffness. The former
appears to be a manifestation of the property, discussed in [5],
Theorem 3.1, that stabilization techniques deform the invariant
Stiefel manifold to an order depending on the accuracy of the
scheme (and of course also the magnitude of the damping
coefficient). We also remark that, while the Bridges-Reich
method (29) did not perform as well as either the Drury or
Davey methods, the undamped method was actually designed
for use in geometric integrators, and the damping term was only
introduced to facilitate less sophisticated numerical integration
methods. Indeed the use of geometric integrators seems like a
very good direction to explore for Evans function computation,
and we intend on pursuing this issue in future work.

Finally, we note that when λ is real, the two stable (resp.
unstable) eigenvalues of A(x, λ) form a conjugate pair, and thus
have no spectral separation. It is precisely because of this fact
that we chose a contour far from the real axis with =(λ) around
40. In this regime, the decay rates are −0.025 and −6.36,
yielding a spectral separation of over 6. Hence, this example
exhibits essentially the full numerical stiffness possible for a
system of its dimension.

4.5. Other systems

The success of the Drury method is unexpected as it has been
reported to be numerically unstable in some cases. One might
conjecture that its success in the above example is due to some
special structure of n = 4 and k = 2. To further investigate
these variations of continuous orthogonalization, we compute
the Evans function for solitary waves of the 5th-order KdV
equation (see [9]) given by

ut + (u p+1)x = −uxxx + uxxxxx ,

which have the form

u(x, t) = A1/psech4/p(B(x − ct)),

where

c =
4(p + 2)2

(p2 + 4p + 8)2 , A =
(p + 4)(3p + 4)(p + 2)

2(p2 + 4p + 8)2 ,

B2
=

p2

4(p2 + 4p + 8)
.

Rather than examine the onset of instability, as was done nicely
in [9], we compute the Evans function in a more extreme
parameter regime for the purpose of comparing the different
variations of continuous orthogonalization and the exterior-
product method, see Table 2. According to the data, which is
obtained by computing the Evans function around the high-
frequency contour γ (t) = 1000+400 000i+999e2π it , both the
original undamped Drury method (12) and the damped Davey
method (27) (with c ≈ 10) performed very well. As in the
previous example, both methods become both less accurate and
more time consuming as the damping constant c gets large. It is
interesting that Drury still performs well. One possible reason
is that the instability does not have time to grow as indicated
by the fact that ‖E‖F remains small. This would appear to be
more a commentary on the inherent well-conditioning of Evans
computations for low-dimensional systems than on the relative
merits of Drury vs. other schemes, however, and one should
not expect such success in the more numerically challenging
context of high-dimensional systems.
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Table 2
A comparison of methods similar to the previous table: In this case, 20 Evans
function values along the contour γ (t) = 1000 + 400 000i + 999e2π it were
computed

Method c ‖E‖F Mesh Time Abs. Rel.

Damped Drury (24) 0 2.3(-13) 306 39 1.0(-14) 3.1(-9)
1 1.1(-6) 321 43 1.9(-13) 5.7(-8)
5 6.2(-7) 418 56 6.8(-13) 2.0(-7)

10 1.8(-6) 538 71 1.7(-12) 5.2(-7)
15 1.7(-6) 658 88 1.5(-12) 4.6(-7)
20 1.9(-6) 778 103 2.1(-12) 6.1(-7)

Damped Davey (27) 0 9.2(-11) 297 47 1.7(-13) 5.0(-8)
1 1.3(-12) 306 47 1.1(-14) 3.3(-9)
5 1.9(-13) 306 47 9.8(-15) 2.9(-9)

10 1.3(-13) 306 47 9.6(-15) 2.9(-9)
15 9.6(-7) 355 56 1.1(-11) 3.3(-6)
20 1.3(-6) 473 75 4.5(-12) 1.3(-6)

Bridges-Reich (29) 0 1.3(-10) 333 50 2.6(-7) 7.9(-2)
1 3.3(-12) 335 50 5.9(-9) 1.7(-3)
5 3.1(-12) 345 52 1.5(-9) 4.5(-4)

10 9.7(-13) 368 56 1.0(-9) 3.0(-4)
15 6.1(-13) 410 63 6.9(-10) 2.1(-4)
20 6.9(-13) 501 77 4.8(-10) 1.4(-4)
50 7.3(-13) 1210 170 2.9(-10) 8.7(-5)

We remark that this contour was also taken far from the real
axis in order to achieve a significant spectral separation. Unlike
the Boussinesq equation above, which has a λ2 term in A(x, λ),
this system is only linear in λ and thus only reports (maximally
separated) decay modes of −7.8 and −12.6, or a spectral
separation of slightly under 5, despite the extreme values of
=(λ). Again, this appears to be the typical separation that one
would encounter in practical computations for systems of this
dimension. For systems of large dimension, one would expect
substantially larger separation, with corresponding increased
numerical stiffness. In particular, for the multidimensional
systems considered in [27], the spectral separation (coming
mainly from the action of the Laplacian on different
frequencies) is of order M2

∼ 36, where M ∼ 6 is the number
of transverse Fourier modes being computed and n = 8M ∼

48 (see p. 1447, [27]). For medium-sized one-dimensional
systems such as viscous magnetohydrodynamics or complex
reaction–diffusion systems, n ∼ 101, and medium frequencies
|λ| ∼ 102, we expect, rather, a more reasonable separation of
order 101.

Remark 12. Note that a separation of order 102, though
numerically challenging, is well within computational range
of continuous orthogonalization methods, which have been
successfully applied to Orr–Sommerfeld applications with
spectral separation on the order of the fluid-dynamical
Reynolds number. In particular, separation 102 over an interval
of length 101 (by rescaling) is numerically equivalent to the
situation treated in [10] of separation 100 on an interval of
length 103.
5. Concluding remarks

The numerical results show that the above-described polar-
coordinate algorithm is indeed feasible, and compares favorably
in performance even for low-dimensional systems to the
exterior-product method that is the current standard. Due to
better dimensional scaling, it should work well also for large
systems, whereas the exterior-product method quickly becomes
dimensionally infeasible. As test problems of medium size,
we intend next to investigate stability of traveling waves in
magnetohydrodynamics and detonation with large number of
reactant species (n ∼ 15). A longer term project might be
to implement polar-coordinate based collocation methods for
extremely large systems.

It seems worth emphasizing a philosophical point associated
with the new algorithm that is simple but possibly of wider
use, concerning the apparently conflicting goals of numerical
well-conditioning vs. maintaining analyticity. Namely, in
the context of exterior products, an optimal strategy is to
projectivize, choosing the most numerically convenient basis
for the associated subspace (Grasmannian), then correct for
the resulting loss of analyticity by an appropriate scalar
factor. Because scalar equations are always numerically well-
conditioned, the final step costs essentially nothing. That is, we
may recover analytic continuation of subspaces by a simple,
well-conditioned post-processing step appended to a more
standard Ck continuation routine.

Finally, we point out that our experiments indicate that
essentially any existing continuous orthogonalization method
should suffice for stability computations in low- and per-
haps some medium-dimensional systems. For high-dimensional
computations, or medium-dimension computations in numeri-
cally sensitive regimes, we expect that it will be necessary to
use the more stable schemes described in Section 3.1. Here,
we may draw on the resource of the very active community
studying numerical continuous orthogonalization.
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