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Abstract In Evans function computations of the spectra of asymptotically
constant-coefficient linearized operators of large systems, a problem that becomes
important is the efficient computation of global analytically varying bases for
invariant subspaces of the limiting coefficient matrices. In the case that the invari-
ant subspace is spectrally separated from its complementary invariant subspace,
we propose an efficient numerical implementation of a standard projection-based
algorithm of Kato, for which the key step is the solution of an associated Syl-
vester problem. This may be recognized as the analytic cousin of a Ck algorithm
developed by Dieci and collaborators based on orthogonal projection rather than
eigenprojection as in our case. For a one-dimensional subspace, it reduces essen-
tially to an algorithm of Bridges, Derks and Gottwald based on path-finding and
continuation methods.

1 Introduction

A useful tool in the study of stability of traveling waves is the Evans function,
an analytic function whose zeroes correspond to the eigenvalues of the linear-
ized operator about the wave. More generally, let L be a differential operator with
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asymptotically constant coefficients along some preferred spatial direction x , and
suppose that the eigenvalue equation (L − λ)w = 0 may be expressed as a first-
order ODE in an appropriate phase space:

Wx = A(λ, x)W, lim
x→±∞ A(λ, x) = A±(λ), (1)

with A analytic in λ as a function from an open, simply connected subset � of C to
C1(R, C

n×n) and the dimension k of the stable subspace S+ of A+ and dimension
n − k of the unstable subspace U− of A− summing to the dimension n of the entire
phase space.

Then, one may construct analytic bases of solutionsw+
1 , . . . , w+

k andw−
k+1, . . . ,

w−
n respectively spanning the manifolds of solutions decaying as x → +∞

and −∞ by essentially initializing them at infinity with values from the stable
(resp. unstable) subspace of A+ (resp. A−) and solving toward x = 0 using the
ODE (1). The Evans function is then defined as

D(λ) := det
(
W +

1 · · · W +
k W −

k+1 · · · W −
n

)
, (2)

for details, see, e.g., [2,17,21,32,34] and references therein.
Numerical approximation of the Evans function thus breaks into two prob-

lems: the computation of analytic bases for stable (resp. unstable) subspaces of A+
(resp. A−) and the solution of ODE (1) on a sufficiently large interval x ∈ [0, M]
(resp. x ∈ [−M, 0]). A difficulty in the latter problem is numerical stiffness for
k, n −k �= 1, due to the need to resolve modes of different exponential decay (resp.
growth) rates. This was overcome in an elegant fashion in the 1998 doctoral thesis
of Brin [8–10] by working in the exterior product space W +

1 ∧ · · · ∧ W +
k ∈ C(n

k)
(
resp. W −

k+1 ∧ · · · ∧ W −
n ∈ C

( n
n−k)

)
, for which the desired subspace appears as a

single, maximally stable (resp. unstable) mode.
This “exterior-product method” was rediscovered and further developed by

Bridges et al. [3,7], who pointed out also its mathematical equivalence to the
much earlier “compound matrix method” introduced by Ng and Reid [27–30]
for the numerical solution of stiff ODE, of which it may be regarded as a
coordinate-independent implementation.

An earlier instance of the method may be found in a 1995 Evans function
computation carried out by Pego in the Appendix of [1].

The computation of an analytic basis is likewise straightforward in the exte-
rior-product framework, since it reduces to the calculation of a single eigenvector.
Two quite satisfactory approaches to this problem (described further below) were
given in [10] and [7], each of order

(n
k

)3 equal to the cost of a matrix inversion or
the multiplication of two matrices in dimension

(n
k

) × (n
k

)
: negligible compared to

the cost of integrating the exterior-product version of (1). The “direct” method of
[10] has the advantage of simplicity, featuring a simple structure involving only
calls to standard linear-algebra subroutines, while the method of [7] (only slightly
more difficult to code) has the advantage of greater efficiency in the sense that the
coefficient C in the complexity estimate C

(n
k

)3 is smaller.
Together, these two steps give an extremely fast and well-conditioned shoot-

ing algorithm for the computation of the Evans function, for moderate values of n.
However, for equations of large dimension n, such as those that arise in complicated
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physical systems or through transverse discretization of a multi-dimensional prob-
lem on a cylindrical domain [24], the exterior-product method quickly becomes
impractical, since the typical value k ∼ n/2 leads to a working dimension

( n
n/2

)

growing as nn/2. For example, for the typical values n ∼ 102 found in [24], this is
clearly out of computational range.

In this situation, Sandstede [31] has suggested in place of the high-dimensional
shooting methods described above, to recast (1) as a boundary-value problem with
appropriate projective boundary conditions, which may be solved in the original
space C

n for individual modes by robust and highly accurate collocation/contin-
uation techniques, thus reducing the cost to polynomial order C(n)kn2, where
C(·) counts the number of mesh points required as the number of operations rises.
However, it remains to provide a correspondingly efficient initialization routine
prescribing analytic basis/projection for the stable (resp. unstable) subspace of A+
(resp. A−).

The direct method of [10] admits a straightforward generalization to this case.
Namely, given matrix A, one may efficiently (∼ 32n3 operations; see [18,33])
compute by “ordered” Schur decomposition,1 i.e., Schur decomposition A =
QU Q−1, Q orthogonal and U upper triangular, for which also the diagonal entries
of U are ordered in increasing real part, orthonormal bases of its stable (resp. unsta-
ble) subspaces, and thereby the stable (resp. unstable) eigenprojection P (resp.
I − P). Once these projections are known, the desired analytic basis may be
obtained by solution of a linear analytic ODE

Sλ = B(P(λ))S, (3)

introduced by Kato [(6) below] for a block-diagonalizing unitary transformation
S. However, in the computationally intensive large-n regime, it is desirable also to
generalize the more efficient method of [7].

In this note, we describe such an algorithm based on a reformulation of the stan-
dard ODE construction of Kato by which existence of an analytic basis is usually
proved. More precisely, we derive a Ricatti-type ODE in λ:

Sλ = F(S, λ), (4)

((16)–(17) below) equivalent to (3) for which the computation of F costs fewer
than 3.5n3 operations, for the coordinate transformation S reducing the desired
k-dimensional basis (resp. projection) to the standard Euclidean one. Moreover,
the computations involved are standard matrix operations permitting use of readily
available fast subroutines.

The algorithm so derived is closely related to an algorithm derived from quite
different considerations by Dieci and collaborators [11,13–16] for efficient com-
putation of local, smoothly varying bases of invariant subspaces. More precisely,
both algorithms may be regarded as instances of the same method for numeri-
cally integrating Kato’s ODE (3), with different choices of projection P: analytic
eigenprojection in our case, nonanalytic but uniformly well-conditioned orthog-
onal projection in the case of [11,13–16]. Their development, having its origins
in the work of Beyn [4], proceeds from local principles of “least variation” in the
associated Schur factorization, rather than analytic dependence.

1 Supported, for example, in MATLAB and LAPACK.
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It is somewhat remarkable that these quite different criteria lead to a common
method.

In the special case k = 1, our algorithm reduces essentially to one developed in
[7] based on continuation methods. However, the latter does not appear to directly
generalize in the form given to case k > 1, nor was there made a connection to
Kato’s ODE (6) (a crucial point in verifying analyticity; see Remark 4.1).

Though the relation of (3) to Kato’s ODE seems to be well-known among
experts on smooth continuation, at least in principle (L. Dieci, private communi-
cation), there does not seem to be any explicit discussion in the literature of this
fact, or of the problem of global analytic continuation. Nor, likewise, does there
appear in the Evans function literature reference to the large body of work by Dieci
and others on efficient continuation algorithms [11,13–16]. Thus, it seems useful
to make clearly and explicitly these connections, as we do here without claim to
originality.

2 The algorithm of Kato

We first recall the theorem of Kato on which our algorithm is based.

Proposition 2.1 ([22, § II.4.2]) Let P(λ) be an analytically varying projection on
a simply connected domain � ⊂ C. Then, the linear analytic ODE

r ′
j = [P ′, P]r j ; r j (λ0) = r0

j (5)

defines a global analytically varying basis {r j (λ)} of the associated invariant sub-
space Range P(λ), where “ ′” denotes d/dλ and [A, B] := AB − B A the com-
mutator of A and B.

More generally,

S′ = [P ′, P]S; S(λ0) = I. (6)

defines a global analytic coordinate change such that

S−1 P S ≡ constant = P0. (7)

Proof Relation (7) follows from (S−1 P S)′ = 0, as may be established by direct
calculation using the key relations P P ′ P = 0 and (I − P)(I − P)′(I − P) = 0,
which in turn follow by differentiation of the projective equation P2 − P = 0.
Observing that S−1 satisfies the “transpose” ODE

(S−1)′ = −S−1S′S−1 = −S−1[P ′, P]SS−1 = −S−1[P ′, P], (8)

we have that both S and its inverse satisfy linear analytic ODEs, hence have global
bounded analytic solutions in � by standard analytic ODE theory [12]. Finally,
Range P = S Range P0 is spanned by the columns of S R0, where the columns of
R0 are chosen to span Range P0, verifying (5). 
�
Remark 2.2 From (8) we see that S (hence R) is unitary if P is self-adjoint (i.e.,
an orthogonal projection), since in that case [P ′, P]∗ = −[P ′, P], so that S∗ and
S−1 satisfy the same ODE with same initial conditions I . Likewise, the relation
P = S P0S−1 = S P0S∗ shows that, for P0 self-adjoint, S is unitary only if P is
self-adjoint for all λ.
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Definition 2.3 For a given matrix A, a subspace E is A-invariant if AE ⊂ E; a
projection P is A-invariant if P A = AP.

Every spectrally separated A-invariant subspace is the range of a unique
A-invariant projection P; likewise, both range and kernel of an A-invariant pro-
jection are A-invariant.

Corollary 2.4 Let A(λ) ∈ C
n×n be an analytically varying matrix on a simply

connected domain � and E(λ) a spectrally separated A-invariant subspace. Then,
there exists a global analytic basis of E(λ) defined by (5), where P is the unique
A-invariant projection associated with E.

Proof Under the assumption of spectral separation, the A-invariant projection P(λ)
associated with E is analytic, by standard matrix perturbation theory [22]. Applying
Proposition 2.1, we obtain the result. 
�
Remark 2.5 Corollary 2.4 includes Proposition 2.1 as a special case, with A = P
and E = Range P . Thus, there is no loss of generality in working with this matrix-
based formulation, as we shall do throughout the sequel.

The following standard result (proof deferred to the following section) gives a
useful geometric characterization of the basis obtained through (5).

Proposition 2.6 Let R(λ) = (
r1 · · · rk

) ∈ C
n×k , be the matrix of basis vectors of

E(λ) defined by ODE (5) and L ∈ C
k×n be the matrix whose rows form the dual

basis of Ẽ(λ) := Range P∗, L R ≡ Ik ∈ C
k×k . Then,

L R′ ≡ L ′ R ≡ 0. (9)

Remark 2.7 Property (9) is a standard normalization favorable for spectral pertur-
bation calculations; see, e.g., [19,20,25,26]. Thus, the Kato basis is in some sense
optimal. This property, together with A-invariance, uniquely determines the Kato
ODE.

3 Projection-independent version

Let P(λ) denote an analytically varying projection that maps � ⊂ C into C
n×n

with P(λ0) = P0, then we may, without loss of generality, set

P0 =
(

Ik 0
0 0

)
, (10)

where k := dim Range P . Then, we have:

Lemma 3.1 For S satisfying (6), P0 as in (10), the matrix Y := S−1S′ vanishes
on diagonal blocks, i.e.,

Y =
(

0k ∗
∗ 0n−k

)
. (11)
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Proof Multiplying (6) on the left by S−1 and rearranging using (7), we obtain

Y = [S−1 P ′S, P0]. (12)

Observing that a commutator with the block-diagonal matrix P0 (or any block-
diagonal matrix whose diagonal blocks are multiples of the identity) vanishes on
diagonal blocks, we are done. 
�
Proof of Proposition 2.6 By coordinate-independence of (6), we may without loss

of generality take (10), whence R =
(

S11
S21

)
, L = (

(S−1)11 (S−1)12
)
, and (9) fol-

lows from (11). 
�
Remark 3.2 For applications, it is more convenenient to substitute for the nor-
malization (10), involving an additional change of coordinates, the more general
algorithm

S′ = [P ′, P]S; S(λ0) = S0, (13)

with normalization S−1
0 P0S0 =

(
Ik 0
0 0

)
, or, equivalently,

S−1
0 A0S0 =

(
α0 0
0 β0

)
. (14)

It is easily seen that the conclusion of Proposition 2.1 then holds with (7) replaced
by

S−1 P S ≡ constant =
(

Ik 0
0 0

)
,

with the desired analytic basis given by the first k columns of S.

3.1 The algorithm

Let S, P be as in (13), (14), with P an A-invariant projection (i.e., AP = P A)
with spectrally separated range E , associated with some analytically varying matrix
A(λ),

so that

S−1 AS =
(

α(λ) 0
0 β(λ)

)
. (15)

Then, we have:

Proposition 3.3 The matrix S defined in (13) is uniquely determined by

S′ = SY, Y =
(

0 Y12
Y21 0

)
, (16)

where Y satisfies the Sylvester problem

Y

(
α 0
0 β

)
−

(
α 0
0 β

)
Y =

(
0 (S−1 A′S)12,

(S−1 A′S)21 0

)
. (17)
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Remark 3.4 As discussed in the introduction, ODE (16), (17) is quite similar to
the one developed by Dieci and collaborators for the purpose of generating local,
smoothly varying bases. In place of our similarity transform S diagonalizing A,

they seek a unitary matrix Q effecting the decomposition Q∗ AQ =
(

R11 R12
0 R22

)
,

leading to the 1-1 block of (16) for Y := Q−1 Q′ = Q∗Q′, with Q substituted
for S and R11 and R22 substituted for α, β; see (1)–(3) of [16]. Blocks Y11 and
Y22 are again set to zero, while Y21 = −Y ∗

12 is forced by the fact that Q∗Q′ is
skew-symmetric.

The resulting (orthonormal) basis � := Q(I, 0)T thus satisfies

�∗�′ = Y11 = 0,

which, by Remark 2.7, is the property uniquely characterizing the Kato ODE for
projection P̃ defined as orthogonal projection. Thus, we may conclude that the
algorithm of Dieci et al. is exactly the Kato algorithm generated by orthogonal
projection.

Proof of Proposition 3.3 Differentiating the relation (15), we obtain

−S−1S′S−1 AS + S−1 AS′ = −S−1 A′S +
(

α′ 0
0 β ′

)
, (18)

or, appealing to (15),

Y

(
α 0
0 β

)
−

(
α 0
0 β

)
Y = S−1 A′S −

(
α′ 0
0 β ′

)
, (19)

for Y := S−1S′. Noting that the left-hand side of (19) vanishes on diagonal blocks,
as a commutator of a a block-diagonal matrix and a matrix (Y ) with vanishing cor-
responding diagonal blocks, we obtain the result. 
�

The linear operator in Y determined by the left-hand side of (17) is invertible
and numerically well-conditioned if and only if α and β have disjoint spectrum.
Thus, when E is spectrally separated from its complementary A-invariant sub-
space, (16), (17) together give the desired projection-independent algorithm for
the computation of S and the basis r j (λ) = S(λ)e j . If needed, the projection P(λ)
may be recovered through (7) and (10) as

P = RL = S

(
Ik 0
0 0

)
S−1. (20)

Since the Sylvester problem is known to be of complexity O(n3) (see, e.g., [18]),
as is the matrix multiplication involved in the calculation of the right-hand side,
Proposition 3.3 yields an O(n3) algorithm as claimed.

More precisely, if A is n × n, B is m × m, and both X and C are n × m, then
problem AX + X B = C may be solved with 4mn(m +n) operations [18], yielding
cost 4n(n − k)k. Likewise, it is easily calculated that the multiplications in the
calculation of SY and the right-hand side of (17) together cost 2n3 + 2n(n − k)k,
for a total cost of

2n3 + 6nk(n − k) ≤ 3.5n3, (21)

with equality in the worst (and typical) case k = n/2.
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3.2 Proposed implementation

A typical application (cf. [7–10]) is to compute the winding number of the Evans
function about a large closed contour � in the non-stable complex half plane �λ ≥
0, thus determining the number of unstable eigenvalues enclosed in �. The requisite
initialization at spatial infinity may be efficiently accomplished by (i) computing a
starting value S0 = (

E0 F0
)

for the transformation S at a base point λ0 by ordered
Schur decomposition as discussed in the introduction, where the columns of E0 and
F0 are bases for the A0-invariant subspace E(0) and its A-invariant complement
F(0), then (ii) advancing these values analytically by the ODE algorithm described
in section 3.2 above.

Specifically, in step (ii) we solve an ODE

S′ = F(S, λ) = SY (S, λ),

where Y is determined by the property that it must vanish on diagonal blocks
together with the off-diagonal blocks of Sylvester problem (17). To determine the
off-diagonal blocks of (17), we must invert S, then compute the diagonal blocks
α, β of S−1 AS and the off-diagonal blocks of S−1 A′S. These steps, solution of
the resulting pair of Sylvester problems corresponding to the off-diagonal blocks,
and the multiplication SY (taking account that Y vanishes on off-diagonal blocks)
together cost ∼ 3.5n3 operations, as described in the previous subsection, This is
the cost of each functional evaluation of F .

The ODE may then be integrated by a standard Runga–Kutta or Euler method,
for a total cost of O(n3 N ) operations, where N denotes the number of mesh points
involved in the prescribed contour. (Note: since the ODE has analytic coefficients,
it may be solved by an extremely high-order accuracy scheme for further savings.)

Remark 3.5 One might also think of evolving S−1 by the associated ODE
(S−1)′ = −Y S−1. However, this would be more expensive (3.5n3 vs. n3/3 opera-
tions) and, due to accumulated roundoff error, less accurate than the direct matrix
inversion prescribed above.

Remark 3.6 Alternatively, (17) might be viewed as an N × N system of linear
equations in the N := k2 + (n − k)2 nonzero entries of Y , which is invertible when
E, F are spectrally separated. However, the cost of solution by this method would
be order N 3 = n6 � n3.

Remark 3.7 Defining R ∈ C
n×k and L ∈ C

k×n as in Proposition 3.1, we may
obtain from the first block of (16) an evolution equation

β̄ R′ − R′α = (I − RL)A′ R,

L ′β̄ − αL ′ = L A′(I − RL)
(22)

in R, L alone, where α = L AR, β̄ := (I − RL)A(I − RL), and L R′ = L ′ R = 0k .
This is likewise a Sylvester problem, and so well-conditioned when E is spectrally
separated. However, this reduction seems to be mainly of theoretical interest, since
the solution of (22) appears to require either inversion of an enlarged (kn) × (kn)
system analogous to that described in Remark 3.6 or else coordinatization of F
and F̃ by the calculation of bases orthogonal to Ẽ and E .
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3.3 Stability

Finally, we comment briefly on stability of the proposed algorithm. An inherent
limitation of the method, both numerically and analytically, is that the spectra of
α and β, i.e., the spectra of A associated with the invariant subspace E to be com-
puted and its invariant complement F , must remain separated in the domain of
computation. This condition is essentially always satisfied in the Evans function
context, where E and F are the stable and unstable subspaces of A and �λ ≥ 0
is the computational domain; indeed, it is a consequence of the standard, “consis-
tent splitting” assumption (see, e.g., [2,17,32]), roughly equivalent to linearized
stability of the limiting endstates of the traveling wave under study as a constant
solutions of the underlying evolution equation, that A(λ) possess no pure imaginary
eigenvalues on �λ ≥ 0.

Numerical well-conditioning requires, further, that, possibly after precondi-
tioning by an appropriate coordinate transformation, (i) the spectra of α and β
remain uniformly separated relative to the norm of A, and (ii) the spaces E and
F remain uniformly transverse. These conditions are satisfied quite generally in
applications for high frequencies |λ| � 1. For example, a general second-order
parabolic evolution equation in one dimension, ut + f (u, ux ) = (B(u)ux )x , B
symmetric, linearized about a constant solution u ≡ uo, yields an eigenvalue
equation Bu′′ + Cu′ + Du = λu, which, written as a first-order equation after
the parabolic rescaling x → |λ|1/2x, u′ → |λ|−1/2u′, appears as an ODE U ′ =
AU, U = (uT, u

′T)T, for which the coefficient matrix

A =
(

0 I
B−1λ/|λ| 0

)
+ O(|λ−1/2|)

satisfies (i), (ii) for |λ| � 1, assuming uniform ellipticity B ≥ θ > 0.
For low frequencies and large n, it is often the case that, when consistent split-

ting can be verified, it can be verified by an energy estimate yielding at the same
time (i) and (ii). However, clearly (i), (ii) amount to additional structural conditions
on the equations, which in general may be violated as n → ∞.

For the specific examples considered in [24], arising through transverse discret-
ization of a multi-dimensional second-order parabolic evolution equation problem
on a cylindrical domain, higher modes correspond to higher transverse frequen-
cies, and we can conclude, similarly as in the large |λ| case that (i), (ii) are satisfied
assuming only uniform ellipticity of the second-order term. Thus, at least in our
main motivating example, the problem is indeed numerically feasible by the method
we propose.

4 The algorithm of Bridges, Derks and Gottwald

In the one-dimensional case k = 1, (17) reduces to a pair of standard matrix
equations of dimension (n − 1) × (n − 1):

Y12(β − α In−k) = (S−1 A′S)12,

(β − α In−k)Y21 = −(S−1 A′S)21.
(23)
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We may compare this to the (2n + 1) × (2n + 1) system
(

A − α −R
−L 0

)(
R′
α′

)
=

(−A′ R
0

)
,

(24)(
L ′ α′)

(
A − α −R
−L 0

)
= (−L A′ 0

)
,

proposed by Bridges et al. in [7] as an alternative to Kato’s ODE, motivated by
similar methods used in continuation [23]. The cost of either algorithm is mainly
that of a single matrix inversion, of dimension (n − 1) and (n + 1), respectively.
From the relation L R′ = 0, we see that (24) is equivalent to Kato’s ODE and thus
to (23). The link between the two algorithms is the standard relation α′ = L A′ R.

Remark 4.1 Global solubility of (16), (17) or the related one-dimensional algo-
rithms (23), (24) follows from the corresponding property of Kato’s ODE (6).
However, it is not immediately apparent from the original formulation, since the
associated ODE are (at least apparently) nonlinear and so not necessarily uniformly
Lipshitz in the respective arguments S and (R, L , α).

In the scalar case (23), (24), we may alternatively observe directly that

(
A − α −R
−L 0

)−1

=
(

(A − α + P)−1(I − P) −R
−L 0

)
,

where P(λ) denotes the eigenprojection of A(λ) associated with eigenvalue α(λ),
hence (24) reduces to α′ = L A′ R and equations

R′ = −(A − α + P)−1(I − P)A′ R,

L ′ = −L A′(I − P)(A − α + P)−1 (25)

(a special case of (22)) that, considering α as a known globally analytic function
of λ, are linear in (R, L), hence globally soluble. This repairs a minor omission in
[7], proof of Lemma 5.1, p. 202, which cites the theorem that an ODE (4) with F
globally Lipshitz in S on compact sets of λ and analytic in λ is globally analyti-
cally soluble on a simply connected domain �, but without verifying or explicitly
stating the condition that F be globally Lipshitz. (For F locally Lipshitz, an easy
counterexample is the complex Ricatti equation S′ = S2.)

5 Further comments

Matrices A coming from PDE are often sparse as well, so it is desirable also to
design algorithms exploiting this property. This has been studied, for example,
in [5,6].
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