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Abstract. We consider the class of viscous-dispersive and higher-
order conservation laws. We generalize the work of Kawashima
& Shizuta, and others, by extending to higher-order the notions
of symmetrizability, strict dissipativity, and genuine coupling. We
prove, for symmetrizable systems, that strict dissipativity is equiv-
alent to both (i) genuine coupling and (ii) the existence of a skew-
symmetric compensating function.

1. Introduction

In recent years, there have been numerous advances in the stability theory of front
propagation for systems of viscous conservation laws

(1) ut + f(u)x = (B(u)ux)x.

In particular, for a very general class of hyperbolic-parabolic systems with degen-
erate viscosities, Zumbrun and collaborators [18, 9], generalizing the earlier work
of [4, 27, 15, 26, 16, 20, 13] and others, have recently proven nonlinear stability
for small-amplitude fronts and have also made considerable progress in the large-
amplitude case [19]. Their work relies heavily on the use of a skew-symmetric com-
pensating function developed by Kawashima in his doctoral thesis and subsequent
work with Shizuta [11, 12, 23, 14] (see also [17]).

Specifically, Kawashima and Shizuta showed that if systems of (1) are:

(i). symmetrizable, that is, there exists a symmetric positive-definite A0(u)
(denoted A0(u) > 0) so that A0(u)df(u) symmetric and A0(u)B(u) is sym-
metric and positive semi-definite (denoted A0(u)B(u) ≥ 0), and

(ii). genuinely coupled, that is, no eigenvector of df(u) is in the kernel of B(u),

then there exists a skew-symmetric compensating function K(u) satisfying

(2) A0(u)B(u) + [K(u), A0(u)df(u)] ≥ θ(u)I > 0,

for some scalar function θ(u) > 0, or in other words, the left-hand side of (2)
is positive-definite. Note that A0(u)B(u) is only positive semi-definite, and it is



2 JEFFREY HUMPHERYS

precisely the addition of the commutator term in (2) that is the key to strict defi-
niteness, thus yielding the coercive expression needed in the energy estimates used
to prove stability (see for example [9, 18]).

Kawashima’s theory develops by considering the second-order constant coeffi-
cient systems

(3) vt = Lv := −Avx + Bvxx, x ∈ R, t > 0, v ∈ Rm,

where A and B are symmetric and B ≥ 0. By taking the Fourier transform, the
evolution of (3) reduces to solving the eigenvalue problem

(4) (λ + iξA + ξ2B)v̂ = 0.

We have the theorem:
Theorem 1.1 (Shizuta–Kawashima [23]). The following statements are equivalent:

(i). L is strictly dissipative, that is, <e(λ(ξ)) < 0 for all ξ 6= 0.
(ii). L is genuinely coupled, that is, no eigenvalue of A is in N (B).
(iii). There exists a skew-Hermitian K such that [K, A] + B > 0.
In this paper, we generalize this theorem by considering the general linear system

(5) vt = Lv := −
n∑

k=0

Dk∂k
xv, x ∈ R, t > 0, v ∈ Rm,

where each m×m matrix Dk is constant. Likewise, by taking the Fourier transform,
the evolution of (5) reduces to solving the eigenvalue problem

(6) λv̂ +
n∑

k=0

(iξ)kDkv̂ = 0.

We simplify by separating out odd- and even-ordered terms in (6) to get

(7) (λ + iξA(ξ) + B(ξ)) v̂ = 0

where

(8) A(ξ) :=
∑

k odd

Dk(iξ)k−1 and B(ξ) =
∑

k even

Dkξk.

We refer to the matrix-valued terms A(ξ) and B(ξ), respectively, as the generalized
flux and generalized viscosity. We have the following definitions:
Definition 1.2.

(i). L is called strictly dissipative if for each ξ 6= 0, we have that <e(λ(ξ)) < 0.
(ii). L is said to be genuinely coupled if no eigenvector of A(ξ) is in N (B(ξ)),

for all fixed ξ 6= 0.
We remark that genuine coupling has physical relevance. In the case of viscous or

relaxed conservation laws, it has been shown in many cases that genuine coupling
implies time-asymptotic smoothing (see [17, 11, 12, 13, 20]). We remark that a
loss of coupling in these instances means that a purely hyperbolic direction exists
whereby discontinuous “shock wave” solutions can persist. Mathematically, it is
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easy to see that genuine coupling is a necessary condition for strict dissipativity.
The main result of this paper tells us that for either symmetric or symmetrizable
systems, it is also a sufficient condition.

2. Main Result

In this section, we state the main result of the paper. Indeed, we show that for
symmetric systems, the properties of strict dissipativity, genuine coupling, and the
existence of a skew-symmetric compensating function K are all equivalent. We
make the following assumptions:

(H1) A(ξ) is symmetric and of constant multiplicity in ξ.
(H2) B(ξ) ≥ 0 (symmetric and positive semi-definite).

Lemma 2.1. Assuming (H1), the distinct eigenvalues {µj(ξ)}r
j=1 of A(ξ) and their

corresponding orthogonal eigen-projections {πj(ξ)}r
j=1 are real-analytic in ξ.

Proof. This is a direct consequence of [10, Thm II.6.1, pg. 120]. �

Lemma 2.2. Assuming (H2), we have that L is genuinely coupled iff

(9) θ(ξ) = inf
‖x‖=1

r∑
j=1

〈πj(ξ)x, B(ξ)πj(ξ)x〉.

is positive for all ξ 6= 0.

Proof. Omitted. See [8] for the proof. �

Theorem 2.3 (Symmetric Case). Given (H1) and (H2) above, the following state-
ments are equivalent:

(i). L is strictly dissipative.
(ii). L is genuinely coupled.
(iii). There exists a real-analytic skew-Hermitian matrix-valued K(ξ) such that

[K(ξ), A(ξ)] + B(ξ) > 0 for all ξ 6= 0.
The proof is given in Section 4.

3. Lemmata from Linear Algebra

In this section we state four key lemmata used in our analysis (see [8] for the proofs).
We generalize the work of Ellis and Pinsky [2] and Shizuta and Kawashima [23] (see
also [6, 17]) by developing, in the language of eigen-projections, the spectral decom-
position of the commutator operator [A, ·]. This allows for the compensating func-
tion K, developed by Kawashima, to be expressed in closed form as a Drazin inverse
[1] of the commutator operator. By considering symmetric real-analytically vary-
ing matrices A(ξ), we likewise obtain the corresponding real-analytically varying
compensating function K(ξ), which is the key to extending Kawashima’s program
to arbitrarily higher-order symmetrizable systems.
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Let Mn denote the set of n×n matrices over C with the Frobenius inner product

〈X, Y 〉 = tr (X∗Y ).

Given A ∈ Mn, we define the commutator or Ad operator on Mn as

AdA(X) = [A,X].

Lemma 3.1.

(i). Linearity:

AdA(aX + bY ) = a(AdAX) + b(AdAY ).

(ii). Leibniz Rule:

AdA(BC) = (AdAB)C + B(AdAC).

(iii). Jacobi Identity:

Ad[A,B] = AdAAdB −AdBAdA.

(iv). Adjoint preservation:

(AdA)∗ = AdA∗ .

Lemma 3.2. Let A be semi-simple. Denote the distinct eigenvalues of A as
{µj}r

j=1 with corresponding eigen-projections {πj}r
j=1. Then AdA is also semi-

simple, with eigenvalues of the form µi − µj and corresponding eigen-projections

(10) πij(X) := πiXπj .

Moreover, the following hold

(i). Idempotence and independence:

(11) πij(πmn(X)) = δimδjnπij(X).

(ii). A-invariance:

(12) AdA(πij(X)) = πij(AdA(X)) = (µi − µj)πij(X).

(iii). Completeness:

(13)
∑
i,j

πij(X) = X.

Lemma 3.3. Let A be semi-simple. Define following linear operator on Mn:

(14) ΠA(X) :=
∑
i=j

πij(X) =
r∑

j=1

πjXπj .

The following hold:

(i). ΠA is the projection onto N (AdA) along R(AdA).



ON THE STABILITY OF VISCOUS-DISPERSIVE FRONTS 5

(ii). For each B ∈ Mn there exists K ∈ Mn such that

(15) B = ΠA(B) + AdA(K).

Moreover the canonical solution K, which we call the compensating matrix,
is of the form

(16) K =
∑
i 6=j

πij(B)
µi − µj

.

This is the Drazin inverse [1] (or reduced resolvent) of the AdA operator.
Lemma 3.4. Assume A and B are Hermitian and B ≥ 0. Then:

(i). ΠA(B) is Hermitian.
(ii). ΠA(B) ≥ 0.
(iii). The canonical solution K given in (16) is skew-Hermitian.

4. Proof of Theorem 2.3

The proof goes as follows:
(i) ⇒ (ii): Suppose for some fixed ξ 6= 0 that A(ξ)v = µ(ξ)v and v ∈ N (B(ξ)).

Then
(iξA(ξ) + B(ξ))v = iξµ(ξ)v.

Hence, <eλ(ξ) = <e(−iξµ(ξ)) = 0, which contradicts (i).
(ii) ⇒ (iii): Let ξ 6= 0 be fixed. By Lemmas 3.3 and 3.4, there exists a skew-

Hermitian K(ξ) satisfying

B(ξ) = ΠA(ξ)(B(ξ)) + AdA(ξ)(K(ξ)).

In addition, we know that ΠA(ξ)(B(ξ)) is Hermitian and positive semi-definite.
Note that ΠA(ξ)(B(ξ)) ≥ θ(ξ)I. Since genuine coupling implies that θ(ξ) > 0,
strict positive-definiteness directly follows. To show that K(ξ) is real-analytic, we
need only apply Lemma 2.1 to the canonical choice of K(ξ) given in (16). Note
that

K(ξ) =
∑
i 6=j

πi(ξ)B(ξ)πj(ξ)
µi(ξ)− µj(ξ)

is well-defined for all ξ 6= 0 and real-analytic in ξ. Note that constant multiplicity
is used here to keep the denominator of K(ξ) bounded away from zero.

(iii) ⇒ (i): We suppose that for some fixed ξ there is a λ and v satisfying (7).
We combine two spectral energy estimates. First, by taking the inner product of
(7) with v and taking the real part, we get the following standard Friedrichs-type
estimate [3]:

(17) <e(λ)‖v‖2 + 〈v,B(ξ)v〉 = 0.

We also have

(18) <e(λ)‖v‖2 +
1

‖B(ξ)‖
‖B(ξ)v‖2 ≤ 0.
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Note that both (17) and (18) imply that <e(λ) ≤ 0. For the second estimate, we
multiply (7) by the Hermitian matrix 2iξK(ξ) and take the inner product with v
to get

(19) 2ξ2〈v,K(ξ)A(ξ)v〉 = 2iλξ〈v,K(ξ)v〉+ 2iξ〈v,K(ξ)B(ξ)v〉

Taking the real part and using Young’s inequality yields

2ξ2〈v, [K(ξ), A(ξ)]v〉
= 4iξ<e(λ)〈v,K(ξ)v〉+ 2iξ〈v, (K(ξ)B(ξ) + B(ξ)K(ξ))v〉
≤ 4|<e(λ)||ξ|‖K(ξ)‖‖v‖2 + 4|ξ|‖v‖‖K(ξ)‖‖B(ξ)v‖

≤ 4|<e(λ)||ξ|‖K(ξ)‖‖v‖2 + θ(ξ)ξ2‖v‖2 + 4
‖K(ξ)‖2

θ(ξ)
‖B(ξ)v‖2,

where [K(ξ), A(ξ)] + B(ξ) ≥ θ(ξ)I > 0. Multiplying 2ξ2 by (17) and adding gives

ξ2θ(ξ)‖v‖2 + 4<e(λ)|ξ|‖K(ξ)‖‖v‖2 ≤ 4
‖K(ξ)‖2

θ(ξ)
‖B(ξ)v‖2.

Using (18) to cancel the right-hand side yields

ξ2θ(ξ)‖v‖2 + 4<e(λ)|ξ|‖K(ξ)‖‖v‖2 + 4<e(λ)
‖K(ξ)‖2

θ(ξ)
‖B(ξ)‖‖v‖2 ≤ 0.

Hence

(20) <e(λ) ≤ −ξ2θ(ξ)2

4|ξ|‖K(ξ)‖θ(ξ) + 4‖K(ξ)‖2‖B(ξ)‖
.

Thus <e(λ(ξ)) ≤ 0 for all ξ 6= 0. This completes the proof.

5. Symmetrizability

In both viscous and relaxed conservation laws, symmetrizability has been proven,
repeatedly, to be important (see for example [11, 17]). Pego [21, 22] was the first
to consider symmetrizability in the general higher-order case. Indeed he found
necessary conditions for the admissibility of term-wise symmetrizable systems. We
remark, however, that Slemrod’s model (given below) is not term-wise symmetriz-
able, but by extending our notion of a symmetrizer from a positive-definite matrix
to a positive-definite differential operator, we are able to symmetrize it.

Slemrod’s model [24, 25, 5] for a compressible isentropic gas with capillarity is
defined as

vt − ux = 0,

ut + p(v)x = (b(v)ux)x + dvxxx,
(21)

where physically, v is the specific volume, u is the velocity in Lagrangian coordi-
nates, p(v) is the pressure law for an ideal gas, that is, p′(v) < 0 and p′′(v) > 0,
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b(v) is the viscosity, satisfying b(v) > 0, b′(v) ≤ 0, and the capillarity term d < 0 is
constant. The Fourier-transformed constant coefficient case is given as

vt − iξu = 0,

ut − iξ(c2 − dξ2)v + ξ2bu = 0,
(22)

where p′(v) = −c2 and b > 0. Note that (22) can only be symmetrized by permitting
a ξ-valued symmetrizer, namely,

(23) A0(ξ) =
(

c2 − ξ2d 0
0 1

)
,

which is symmetric and positive-definite, as required. Left multiplying (22) by
A0(ξ) yields

λA0(ξ)
(

v
u

)
+ iξ

(
0 −c2 + ξ2d

−c2 + ξ2d 0

) (
v
u

)
= ξ2

(
0 0
0 b

) (
v
u

)
,

which is symmetrized, and thus satisfies (H1) and (H2) above. Hence, we propose
the definition:
Definition 5.1. L is called symmetrizable if there exists a symmetric, real-analytic
matrix-valued function A0(ξ) > 0 such that both A0(ξ)A(ξ) and A0(ξ)B(ξ) are
symmetric, and A0(ξ)B(ξ) ≥ 0.

With this definition of symmetrizability, its easy to see that Theorem 2.3 extends
from the symmetric to the fully symmetrizable case. We remark also that extending
the idea of a symmetrizer to a differential operator has profound consequences as
to what it means to have a convex entropy for higher-order systems. We further
explore this topic and others in [8].
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