
SIAM REVIEW c© 2012 Society for Industrial and Applied Mathematics
Vol. 54, No. 4, pp. 000–000

A Fresh Look at the
Kalman Filter∗

Jeffrey Humpherys†

Preston Redd†

Jeremy West‡

Abstract. In this paper, we discuss the Kalman filter for state estimation in noisy linear discrete-time
dynamical systems. We give an overview of its history, its mathematical and statistical
formulations, and its use in applications. We describe a novel derivation of the Kalman
filter using Newton’s method for root finding. This approach is quite general as it can
also be used to derive a number of variations of the Kalman filter, including recursive
estimators for both prediction and smoothing, estimators with fading memory, and the
extended Kalman filter for nonlinear systems.
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1. Introduction and History. The Kalman filter is among the most notable in-
novations of the 20th century. This algorithm recursively estimates the state variables
in a noisy linear dynamical system as new observations are measured and as the sys-
tem evolves in time. It optimally updates the estimates of the system variables, for
example, the position and velocity of a projectile, by minimizing the mean-squared
estimation error of the current state as noisy measurements are received. Each update
provides the latest unbiased estimate of the system variables together with a measure
on the uncertainty of those estimates in the form of a covariance matrix. Since the
updating process is fairly general and relatively easy to compute, the Kalman filter
can often be implemented in real time.

The Kalman filter is used widely in virtually every technical or quantitative field.
In engineering, for example, the Kalman filter is pervasive in the areas of navigation
and global positioning [39, 25], tracking [29], guidance [49], robotics [35], radar [33],
fault detection [19], and computer vision [34]. It is also utilized in applications involv-
ing signal processing [36], voice recognition [11], video stabilization [10], and automo-
tive control systems [27]. In purely quantitative fields, the Kalman filter also plays
an important role in time-series analysis [15], econometrics [5], mathematical finance
[31], system identification [30], and neural networks [16].
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It has been just over 50 years since Rudolf Kalman’s first seminal paper on state
estimation [22], which launched a major shift toward state-space dynamic model-
ing. This tour de force in mathematical systems theory, together with his two other
groundbreaking papers [24, 23], helped secure him a number of major awards, includ-
ing the IEEE Medal of Honor in 1974, the Kyoto Prize in 1985, the Steele Prize in
1986, the Charles Stark Draper Prize in 2008, and the U.S. National Medal of Science
in 2009.

As is sometimes the case with revolutionary advances, some were initially slow to
accept Kalman’s work. According to Grewal and Andrews [14, Chapter 1], Kalman’s
second paper [24] was actually rejected by an electrical engineering journal, since, as
one of the referees put it, “it cannot possibly be true.” However, with the help of
Stanley F. Schmidt at the NASA Ames Research Center, the Kalman filter ultimately
gained acceptance as it was used successfully in the navigation systems for the Apollo
missions, as well as several subsequent NASA projects and a number of military
defense systems; see [32, 14] for details.

Today the Kalman family of state estimation methods, which includes the Kalman
filter and its many variations, are the de facto standard for state estimation. At
the time of this writing, there have been over 6000 patents awarded in the U.S. on
applications or processes involving the Kalman filter. In academia, its influence is no
less noteworthy. According to Google Scholar, the phrase “Kalman filter” is found in
over 100,000 academic papers. In addition, Kalman’s original paper [22] is reported
to have over 7500 academic citations. Indeed, the last 50 years have seen phenomenal
growth in the variety of applications of the Kalman filter.

In this paper, we show that each step of the Kalman filter can be derived from
a single iteration of Newton’s method on a certain quadratic form with a judiciously
chosen initial guess. This approach is different from those found in the standard
texts [14, 38, 21, 7, 12], and it provides a more general framework for recursive state
estimation. It has been known for some time that the extended Kalman filter (EKF)
for nonlinear systems can be viewed as a Gauss–Newton method, which is a cousin
of Newton’s method [3, 1, 4]. This paper shows that the original Kalman filter and
many of its variants also fit into this framework. Using Newton’s method, we derive
recursive estimators for prediction and smoothing, estimators with fading memory,
and the EKF.

The plan of this paper is as follows: In section 2, we review the statistical and
mathematical background needed to set up our derivation of the Kalman filter. Specif-
ically, we recall the relevant features of linear estimation and Newton’s method. In
section 3, we describe the state estimation problem and formulate it as a quadratic
optimization problem. We then show that this optimization problem can be solved
with a single step of Newton’s method with any arbitrary initial guess. Next, we
demonstrate that, with a specific initial guess, the Newton update reduces to the
standard textbook form of the Kalman filter. In section 4, we consider variations on
our derivation, specifically predictive and smoothed state estimates, and estimators
with fading memory. In section 5, we expand our approach to certain nonlinear sys-
tems by deriving the EKF. Finally, in section 7, we suggest some classroom activities.

To close the introduction, we note that while this paper celebrates Kalman’s
original groundbreaking work [22], other people have also made major contributions
in this area. In particular, we mention the work of Thiele [44, 45, 28], Woodbury
[47, 48], Swerling [42, 43], Stratonovich [40, 41], Bucy [24], Schmidt [37, 32], and,
more recently, Julier and Uhlmann [20] and Wan and van der Merwe [46] for their
development of the unscented Kalman filter. We also acknowledge that there are
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important numerical considerations when implementing the Kalman filter which are
not addressed in this paper; see [21] for details.

2. Background. In this section, we recall some facts about linear least squares
estimation and Newton’s method; for more information, see [13, 26]. Suppose that
data are generated by the linear model

(2.1) b = Ax+ ε,

where A is a known m× n matrix of rank n, ε is an m-dimensional random variable
with zero mean and known positive-definite covariance Q = E[εεT ] > 0, and b ∈ R

m

represents known, but inexact, measurements with errors given by ε. The vector
x ∈ R

n contains the parameters to be estimated.
Recall that a linear estimator x̂ = Kb is said to be unbiased if, for all x, we have

x = E[x̂] = E[Kb] = E[K(Ax + ε)] = KAx,

where K is some n×m matrix. The following theorem states that, among all linear
unbiased estimators, there is a unique choice that minimizes the mean-squared error
and that this estimator also minimizes the covariance.

Theorem 2.1 (Gauss–Markov [13]). The linear unbiased estimator for (2.1) that
minimizes the mean-squared error is given by

(2.2) x̂ = (ATQ−1A)−1ATQ−1b

and has variance

(2.3) E[(x̂ − x)(x̂ − x)T ] = (ATQ−1A)−1.

Moreover, any other unbiased linear estimator x̂L of x has larger variance than (2.3).
Thus we call (2.2) the best linear unbiased estimator. It is also called the minimum
variance linear unbiased estimator and the Gauss–Markov estimator.

For a proof of this theorem, see Appendix A. We remark that (2.2) is also the
solution of the weighted least squares problem

(2.4) x̂ = argmin
x

1

2
‖Ax− b‖2Q−1,

where the objective function

J(x) =
1

2
‖Ax− b‖2Q−1 =

1

2
(Ax− b)TQ−1(Ax− b)

is a positive-definite quadratic form. The minimizer is found by root finding on the
gradient of the objective function,

∇J(x) = ATQ−1(Ax− b),

which reduces to solving the normal equations

(2.5) ATQ−1Ax̂ = ATQ−1b.

Note that the Hessian of J(x) is given by

D2J(x) = ATQ−1A
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and is nonsingular by hypothesis; in fact, the inverse Hessian equals the covariance,
and is given by (2.3).

Moreover, since J(x) is a positive-definite quadratic form, a single iteration of
Newton’s method yields the minimizing solution, irrespective of the initial guess, that
is,

(2.6) x̂ = x−D2J(x)−1∇J(x) = x− (ATQ−1A)−1ATQ−1(Ax− b)

for all x. This observation is a key insight that we use repeatedly throughout the
remainder of this paper. Indeed, the derivation of the Kalman filter presented herein
follows by using Newton’s method on a certain positive-definite quadratic form, with
a judiciously chosen initial guess that greatly simplifies the form of the solution.

3. The Kalman Filter. We consider the discrete-time linear system

xk = Fkxk−1 +Gkuk + wk,(3.1a)

yk = Hkxk + vk,(3.1b)

where xk ∈ R
n denotes the state, yk ∈ R

q are the measurements (outputs), uk ∈ R
p is

a known sequence of inputs, and wk and vk are uncorrelated zero-mean random noise
processes with positive-definite covariances Qk > 0 and Rk > 0, respectively. We
assume that the initial state of the system is x0 = μ0 + w0 for some known μ0 ∈ R

n.

3.1. State Estimation. We formulate the state estimation problem: Given m
known observations y1, . . . , ym and k known inputs u1, . . . , uk, where k ≥ m, we find
the best linear unbiased estimate of the states x1, . . . , xk by writing (3.1) as a large
linear system

(3.2)

μ0 = x0 − w0,
G1u1 = x1 − F1x0 − w1,

y1 = H1x1 + v1,
...

...
Gmum = xm − Fmxm−1 − wm,

ym = Hmxm + vm,
Gm+1um+1 = xm+1 − Fm+1xm − wm+1,

...
...

Gkuk = xk − Fkxk−1 − wk.

In abbreviated form, (3.2) is written as the linear model

bk|m = Ak|mzk + εk|m,

where

zk =

⎡
⎢⎣
x0

...
xk

⎤
⎥⎦ ∈ R

(k+1)n

and εk|m is a zero-mean random variable whose inverse covariance is the positive-
definite block-diagonal matrix

Wk|m = diag(Q−1
0 , Q−1

1 , R−1
1 , . . . , Q−1

m , R−1
m , Q−1

m+1 . . . , Q
−1
k ).



A FRESH LOOK AT THE KALMAN FILTER 5

Thus, the best linear unbiased estimate ẑk|m of zk is found by solving the normal
equations

AT
k|mWk|mAk|mẑk|m = AT

k|mWk|mbk|m.

Since each column of Ak|m is a pivot column, it follows that Ak|m is of full column
rank, and thus AT

k|mWk|mAk|m is nonsingular—indeed, it is positive definite. Hence,
the best linear unbiased estimator ẑk|m of zk is given by the weighted least squares
solution

(3.3) ẑk|m = (AT
k|mWk|mAk|m)−1AT

k|mWk|mbk|m.

As with (2.1), the weighted least squares solution is the minimizer of the positive-
definite objective function

(3.4) Jk|m(zk) =
1

2
‖Ak|mzk − bk|m‖2Wk|m ,

which can also be written as the sum

Jk|m(zk) =
1

2
‖x0 − μ0‖2Q−1

0

+
1

2

m∑
i=1

‖yi −Hixi‖2R−1
i

+
1

2

k∑
i=1

‖xi − Fixi−1 −Giui‖2Q−1
i

,

(3.5)

sinceWk|m is block diagonal. In the following, we derive the Kalman filter and some of
its variants using Newton’s method. Since the state estimation problem is reduced to
minimizing a positive-definite quadratic form (3.5), one iteration of Newton’s method
determines our state estimate ẑk|m. Moreover, we show that with a judiciously chosen
initial guess, we can find a simplified recursive expression for (3.3).

3.2. The Two-Step Kalman Filter. We now consider the state estimation prob-
lem in the case that m = k, that is, when the number of observations equals the
number of inputs. It is of particular interest in applications to estimate the current
state xk given the observations y1, . . . , yk and inputs u1, . . . , uk. The Kalman filter
gives a recursive algorithm, which is the best linear unbiased estimate x̂k|k of xk in
terms of the previous state estimate x̂k−1|k−1 and the latest data uk and yk up to
that point in time.

The first step of the Kalman filter, called the predictive step, is to determine
x̂k|k−1 from x̂k−1|k−1. For notational convenience throughout this paper, we denote

ẑk|k as ẑk, x̂k|k as x̂k, and Jk|k as Jk. In addition, we define Fk =
[
0 · · · 0 Fk

] ∈
R

n×kn, with the entry Fk lying in the block corresponding to xk−1, so that Fkzk−1 =
Fkxk−1. Using this notation, we may write Jk|k−1 recursively as

(3.6) Jk|k−1(zk) = Jk−1(zk−1) +
1

2
‖xk −Fkzk−1 −Gkuk‖2Q−1

k

.

The gradient and Hessian are given by

∇Jk|k−1(zk) =

[∇Jk−1(zk−1) + FT
k Q−1

k (Fkzk−1 − xk +Gkuk)
−Q−1

k (Fkzk−1 − xk +Gkuk)

]
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and

(3.7) D2Jk|k−1(zk) =

[
D2Jk−1(zk−1) + FkQ

−1
k Fk −FT

k Q
−1
k

−Q−1
k Fk Q−1

k

]
,

respectively. Since D2Jk|k−1 is positive definite, a single iteration of Newton’s method
yields the minimizer

(3.8) ẑk|k−1 = zk −D2Jk|k−1(zk)
−1∇Jk(zk)

for any zk ∈ R
(k+1)n. Now, ∇Jk−1(ẑk−1) = 0 and Fkẑk−1 = Fkx̂k−1, so a judicious

initial guess is

zk =

[
ẑk−1

Fkx̂k−1 +Gkuk

]
.

With this starting point, the gradient reduces to ∇Jk|k−1(zk) = 0, that is, the optimal
estimate of xk given the measurements y1, . . . , yk−1 is the bottom row of ẑk|k−1 and

the covariance, Pk|k−1, is the bottom right block of the inverse Hessian D2J−1
k|k−1,

which by Lemma B.2 in Appendix B is

Pk|k−1 = FkPk−1F
T
k +Qk,(3.9a)

x̂k|k−1 = Fkx̂k−1 +Gkuk.(3.9b)

After measuring the output yk, we perform the second step, which corrects the
prior estimate-covariance pair (x̂k|k−1, Pk|k−1) giving a posterior estimate-covariance
pair (x̂k, Pk); this is called the update step. In analogy to Fk, we introduce the
notation Hk =

[
0 · · · Hk

] ∈ R
q×n(k+1), with the entry Hk lying in the block

corresponding to xk, so that Hkzk = Hkxk. The objective function now becomes

(3.10) Jk(zk) = Jk|k−1(zk) +
1

2
‖yk −Hkzk‖2R−1

k

and the gradient and Hessian are, respectively,

∇Jk(zk) = ∇Jk|k−1(zk) +HT
k R

−1
k (Hkzk − yk) = ∇Jk|k−1(zk) +HT

k R
−1
k (Hkxk − yk)

and

D2Jk(zk) = D2Jk|k−1 +HT
k R

−1
k Hk.

The Hessian is clearly positive definite. Again, applying a single iteration of Newton’s
method yields the minimizer. If we choose the initial guess zk = ẑk|k−1, then, since
∇Jk|k−1(ẑk|k−1) = 0, the gradient becomes

∇Jk(ẑk|k−1) = HT
KR−1

k (Hkx̂k|k−1 − yk).

The estimate x̂k of xk, together with its covariance Pk, is then obtained from the
bottom row of the Newton update and the bottom right block of the covariance
matrix D2Jk(zk)

−1. Again, using Lemma B.2, this is

Pk = (P−1
k|k−1 +HT

k R
−1
k Hk)

−1,(3.11a)

x̂k = x̂k|k−1 − PkH
T
k R

−1
k (Hkx̂k|k−1 − yk).(3.11b)
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In some presentations of the Kalman filter, the update step is given as

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1,(3.12a)

x̂k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1),(3.12b)

Pk = (I −KkHk)Pk|k−1,(3.12c)

where Kk is called the Kalman gain. We remark that (3.11) and (3.12) are equivalent
by Lemma B.4.

We refer to (3.9) and (3.11) as the two-step Kalman filter. The Kalman filter is
often derived, studied, and implemented as a two-step process. However, it is possible
to combine the predictive and update steps into a single step by inserting (3.9) into
(3.11). This yields the one-step Kalman filter

Pk = [(Qk−1 + Fk−1Pk−1F
T
k−1)

−1 +HT
k R

−1
k Hk]

−1,(3.13a)

x̂k = Fk−1x̂k−1 +Gk−1uk−1− PkH
T
k R

−1
k [Hk(Fk−1x̂k−1 +Gk−1uk−1)− yk].(3.13b)

We can also derive (3.13) directly by considering the objective function

Jk(zk) = Jk−1(zk−1) +
1

2
‖xk −Fkzk−1 −Gkuk‖2Q−1

k

+
1

2
‖yk −Hkxk‖2R−1

k

and then applying Newton’s method with the same initial guess used in the predictive
step; see [18] for details.

An alternate derivation, which closely resembles the derivation presented origi-
nally by Kalman in 1960 [22], is given in Appendix C. This approach, which assumes
that the noise is normally distributed, computes the optimal estimates by tracking
the evolution of the mean and covariance of the distribution of xk under iteration of
the dynamical system.

4. Variations of the Kalman Filter. The Kalman filter provides information
about the most recent state given the most recent observation. Specifically, it pro-
vides the estimates x̂k−1, x̂k, x̂k+1, etc. In this section we derive some of the standard
variations of the Kalman filter, which primarily deal with the more general cases x̂k|m;
see [21, 38] for additional variations.

4.1. Predictive Estimates. We return to the system (3.2) and now consider the
case that the outputs are known up to time m and the inputs are known up to time
k > m. We show how to recursively represent the estimate x̂k|m of the state xk in
terms of the previous state estimate x̂k−1|m and the input vector uk. This allows
us to predict the states xm+1, . . . , xk based on only the estimate x̂m and the inputs
um+1, . . . , uk.

We begin by writing the positive-definite quadratic objective (3.5) in recursive
form,

Jk|m(zk) = Jk−1|m(zk−1) +
1

2
‖xk −Fkzk−1 −Gkuk‖2Q−1

k

.

Assuming that ẑk−1|m minimizes Jk−1|m(zk−1) and following the approach in sec-
tion 3.2, we find that the minimizer of Jk|m(zk) is given by

(4.1) ẑk|m =

[
ẑk−1|m

Fkx̂k−1|m +Gkuk

]
.
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By taking the bottom row of (4.1), we have the recursive equation

x̂k|m = Fkx̂k−1|m +Gkuk.

From this, we see that the best linear unbiased estimate x̂k|m of the state xk, when
only the input uk and the previous state’s estimate x̂k−1|m are known, is found by
evolving x̂k−1|m forward by the state equation (3.1a), in expectation, that is, with the
noise term wk set to zero. Note also that the first k vectors in (4.1) do not change.
In other words, as time marches on, the estimates of past states x0, . . . , xk−1 remain
unchanged. Hence, we conclude that future inputs affect only the estimates on future
states.

To find the covariance on the estimate x̂k|m, we compute the Hessian of Jk|m(zk),
which is given by

(4.2) D2Jk|m =

[
D2Jk−1|m + FT

k Q−1
k Fk −FT

k Q−1
k

−Q−1
k Fk Q−1

k

]
.

Using Lemma B.2 in Appendix B, we invert (4.2) and obtain a closed-form expression
for the covariance:

(4.3) D2J−1
k|m =

[
D2J−1

k−1|m D2J−1
k−1|mFT

k

FkD
2J−1

k−1|m Qk + FkD
2J−1

k−1|mFT
k

]
.

To compute the covariance at time k, we look at the bottom right block of (4.3).
Since FkD

2J−1
k−1|mFT

k = FkPk−1|mFT
k , where Pk−1|m is the bottom right block of

D2J−1
k−1|m and represents the covariance of x̂k−1|m, we have that

Pk|m = FkPk−1|mFT
k +Qk.

Note also that the upper-left block of (4.3) is given by D2J−1
k−1|m, or rather the

covariance of ẑk−1|m. Hence, the covariances of the estimates x̂1|m, . . . , x̂k−1|m also
remain unchanged as more inputs are added.

To summarize, we have the following recursive algorithm for predicting the future
states and covariances of a system:

Pk|m = FkPk−1|mFT
k +Qk,(4.4a)

x̂k|m = Fkx̂k−1|m +Gkuk.(4.4b)

4.2. Smoothed Estimates. The standard Kalman filter provides estimates of
only the current state xk at each time k. In this section we show how to update the best
linear unbiased estimates on all of the previous states as new outputs are observed.
Specifically, we estimate the entire vector zk of states by recursively expressing ẑk|m
in terms of ẑk|m−1 and ym. This process is called smoothing.

Consider the positive-definite quadratic objective (3.5) in recursive form,

Jk|m(zk) = Jk|m−1(zk) +
1

2
‖ym −Hmzk‖2R−1

m
,

where Hm is the q × (k + 1)n matrix

Hm =
[
0 · · · Hm · · · 0

]
.
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Note that Hm occurs on the m + 1 block of Hm, since the indexing of zk begins at
k = 0; therefore, Hmzk = Hmxm. To find the best linear unbiased estimate ẑk|m of
zk, we compute the gradient and Hessian of Jk|m(zk) as

∇Jk|m(zk) = ∇Jk|m−1(zk) +HT
mR−1

m (Hmzk − ym)

and

D2Jk|m = D2Jk|m−1 +HT
mR−1

m Hm,

respectively. As with the Kalman filter case (3.10) above, we see immediately that
D2Jk|m > 0. Thus, the estimator is found by taking a single Newton step

ẑk|m = zk −D2J−1
k|m∇Jk|m(zk),

for an arbitrary choice zk ∈ R
(k+1)n. Setting zk = ẑk|m−1 gives ∇Jk|m−1(zk) = 0.

Hence Newton’s method implies that

ẑk|m = ẑk|m−1 −D2J−1
k|mHT

mR−1
m (Hmẑk|m−1 − ym).

Noting that Hmẑk|m−1 = Hmx̂m|m−1, it follows that

ẑk|m = ẑk|m−1 − L
(m)
k|mHT

mR−1
m (Hmx̂m|m−1 − ym),

where L
(�)
k|m denotes the (� + 1)th column of blocks of D2J−1

k|m (recall that D2J−1
k|m is

a block (k + 1)× (k + 1) matrix since the first column corresponds to � = 0). Noting

the identity D2J−1
k|mHT

� = L
(�)
k|mHT

� and Lemma B.3, we have

D2J−1
k|m = (D2Jk|m−1 +HT

mR−1
m Hm)−1

= D2J−1
k|m−1 −D2J−1

k|m−1HT
m(Rm +HmD2J−1

k|m−1HT
m)−1HmD2J−1

k|m−1

= D2J−1
k|m−1 − L

(m)
k|m−1H

T
m(Rm +HmP

(m,m)
k|m−1H

T
m)−1HmL

(m)
k|m−1

T ,

where P
(i,j)
k|m is the (i + 1, j + 1)-block of D2J−1

k|m and hence also the (i + 1)-block of

L
(j)
k|m. Therefore the term L

(�)
k|m is recursively defined as

L
(�)
k|m = L

(�)
k|m−1 − L

(m)
k|m−1H

T
m(Rm +HmP

(m,m)
k|m−1H

T
m)−1HmP

(�,m)
k|m−1

T .

Of particular value is the case when � = m. Then we have

L
(m)
k|m = L

(m)
k|m−1 − L

(m)
k|m−1H

T
m(Rm +HmP

(m,m)
k|m−1H

T
m)−1HmP

(m,m)
m|m−1,(4.5a)

ẑk|m = ẑk|m−1 − L
(m)
k|mHT

mR−1
m (Hmx̂k|m−1 − ym).(4.5b)

This allows us to update the entire vector zk of state estimates.

4.3. Fixed-Lag Smoothing. In the previous subsection, we showed how to re-
cursively estimate the entire vector zk as new outputs are observed. Suppose instead
that we only want to estimate some of the last few states. Fixed-lag smoothing is the
process of updating the previous � states, that is, xk−�, xk−�+1, . . . , xk−2, xk−1, as the
latest output yk is measured.
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When m = k, (4.5b) becomes

ẑk|k =

[
ẑk−1|k
x̂k

]
=

[
ẑk−1

x̂k|k−1

]
−
[
Lk

Pk

]
HT

k R
−1
k (Hkx̂k|k−1 − yk),

where x̂k|k−1 = Fkx̂k−1 + Gkuk, Pk is the covariance of the estimator x̂k, which

is found in the bottom right corner of the inverse Hessian D2J−1
k of the objective

function Jk, and Lk is the upper-right corner of D2J−1
k . Using (3.7) and Lemma B.2,

we see that

Lk = (D2Jk−1 + FT
k Q−1

k Fk)
−1FT

k Q−1
k Pk =

[
L̄
P̄

]
FT
k Q−1

k Pk,

where L̄ and P̄ are, respectively, the upper-right and lower-right blocks of

(D2Jk−1 + FT
k Q−1

k Fk)
−1

=

[
D2Jk−2 + FT

k−1Q
−1
k−1Fk−1 −FT

k−1Q
−1
k−1

−Q−1
k−1Fk−1 Q−1

k−1 +HT
k−1R

−1
k−1Hk−1 + FT

k Q−1
k Fk

]−1

.

Thus, by Lemmas B.2 and B.3 we have that

P̄ = (Q−1
k−1 +HT

k−1R
−1
k−1Hk−1 + FT

k Q−1
k Fk

−Q−1
k−1Fk−1(D

2Jk−2 + FT
k−1Q

−1
k−1Fk−1)

−1FT
k−1Q

−1
k−1)

−1

= ((Q−1
k−1 + FT

k−1P
−1
k−1F

T
k−1)

−1 +HT
k−1R

−1
k−1Hk−1 + FT

k Q−1
k Fk)

−1

= (P−1
k−1 + FT

k Q−1
k Fk)

−1,

and from Lemma B.2 it follows that

L̄ = (D2Jk−2 + FT
k−1Q

−1
k−1Fk−1)

−1FT
k−1Q

−1
k−1P̄ .

Notice that the forms of P̄ and L̄ are the same as those of Pk and Lk. Thus we
can find x̂k−i|k recursively, for i = 1, . . . , �, by the system

Ωk−i = (P−1
k−i + FT

k−i+1Q
−1
k−i+1Fk−i+1)

−1FT
k−i+1Q

−1
k−i+1Ωk−i+1,(4.6a)

x̂k−i|k = x̂k−i|k−1 − Ωk−iH
T
k R

−1
k (Hkx̂k|k−1 − yk),(4.6b)

where Ωk = Pk, x̂0 = μ0, and P0 = Q0.

4.4. Fading Memory. Although the Kalman filter is a recursive algorithm that
updates the current state variable as the latest inputs and measurements become
known, the estimation is based on the least squares solution of all the previous states
where all measurements are weighted according to their covariance. We now consider
the case that the estimator discounts the error in older measurements leading to a
greater emphasis on recent observations. This is particularly useful in situations where
there is some modeling error in the system.

We minimize the positive-definite objective

Jk(zk) =
λk

2
‖x0 − μ0‖2Q−1

0

+
1

2

k∑
i=1

λk−i‖yi −Hixi‖2R−1
i

+
1

2

k∑
i=1

λk−i‖xi − Fixi−1 −Giui‖2Q−1
i

,

(4.7)
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where 0 < λ ≤ 1 is called the forgetting factor. We say that the state estimator has
perfect memory when λ = 1, reducing to (3.5); it becomes increasingly forgetful as λ
decreases.

Note that (4.7) can be written recursively as

Jk(zk) = λJk−1(zk−1) +
1

2
‖yk −Hkxk‖2R−1

k

+
1

2
‖xk −Fkzk−1 −Gkuk‖2Q−1

k

.

The gradient and Hessian are computed to be

∇Jk =

[
λ∇Jk−1(zk−1) + FT

k Q−1
k (Fkzk−1 − xk +Gkuk)

HT
k R

−1
k (Hkxk − yk)−Q−1

k (Fkzk−1 − xk +Gkuk)

]

and

D2Jk =

[
λD2Jk−1(zk−1) + FT

k Q−1
k Fk −FT

k Q−1
k

−Q−1
k Fk Q−1

k +HT
k R

−1
k Hk

]
,

respectively. As with (3.10), one can show inductively that D2Jk > 0. Thus we can
likewise minimize (4.7) using (3.8). Since ∇Jk−1(ẑk−1) = 0 and Fkẑk−1 = Fkx̂k−1,
we make use of the initializing choice

zk =

[
ẑk−1

Fkx̂k−1 +Gkuk

]
,

thus resulting in

∇Jk(zk) =

[
0

HT
k R−1

k [Hk(Fkx̂k−1 +Gkuk)− yk]

]
.

Hence the bottom row of (3.8) simplifies to

x̂k = Fkx̂k−1 +Gkuk − PkH
T
k R

−1
k [Hk(Fkx̂k−1 +Gkuk)− yk].

This update is exactly the same as that of the one-step Kalman filter and depends
on λ only in the update for Pk, which is obtained by taking the bottom right block
of the inverse Hessian D2J−1

k and using Lemma B.2 as appropriate. We find that the
covariance is given by

Pk = ((Qk + λFkPk−1F
T
k )−1 +HT

k R
−1
k Hk)

−1.

Thus, to summarize, we have the recursive estimate for x̂k given by

Pk =((Qk + λFkPk−1F
T
k )−1 +HT

k R
−1
k Hk)

−1,

x̂k =Fkx̂k−1 +Gkuk − PkH
T
k R−1

k [Hk(Fkx̂k−1 +Gkuk)− yk],

where x̂0 = μ0 and P0 = Q0.

5. The Extended Kalman Filter. We derive the extended Kalman filter (EKF),
which is a recursive state estimation algorithm for noisy nonlinear systems of the
form

xk = fk(xk−1, uk) + wk,(5.1a)

yk = hk(xk) + vk,(5.1b)
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where, as in (3.1), xk ∈ R
n denotes the state, yk ∈ R

q are the outputs, and uk ∈ R
p

the inputs. The noise processes wk and vk are uncorrelated and zero mean with
positive-definite covariances Qk > 0 and Rk > 0, respectively.

In this section, we show that the EKF can be derived by using Newton’s method,
as in previous sections. However, we first present the classical derivation of the EKF,
which follows by approximating (5.1) with a linear system and then using the Kalman
filter on that linear system. This technique goes back to Schmidt [37], who is often
credited as being the first to implement the Kalman filter.

In contrast to the linear Kalman filter, the EKF is neither the unbiased minimum
mean-squared error estimator nor the minimum variance unbiased estimator of the
state. In fact, the EFK is generally biased. However, the EKF is the best linear
unbiased estimator of the linearized dynamical system, which can often be a good
approximation of the nonlinear system (5.1). As a result, how well the local linear
dynamics match the nonlinear dynamics determines in large part how well the EKF
will perform. For decades, the EKF has been the de facto standard for nonlinear
state estimation; however, in recent years other contenders have emerged, such as the
unscented Kalman filter (UKF) [20, 46] and particle filters [9]. Nonetheless, the EKF
is still widely used in applications. Indeed, even though the EKF is the right answer
to the wrong problem, some problems are less wrong than others. George Box was
often quoted as saying “all models are wrong, but some are useful” [6]. Along these
lines, one might conclude that the EKF is wrong, but sometimes it is useful!

5.1. Classical EKF Derivation. To linearize (5.1), we take the first-order expan-
sions of f at x̂k−1 and h at x̂k|k−1,

xk = fk(x̂k−1, uk) +Dfk(x̂k−1, uk)(xk − x̂k−1) + wk,(5.2a)

yk = hk(x̂k|k−1) +Dhk(x̂k|k−1)(xk − x̂k|k−1) + vk,(5.2b)

which can be equivalently written as the linear system

xk = Fkxk−1 + ũk + wk,(5.3a)

yk = Hkxk + zk + vk,(5.3b)

where

Fk = Dfk(x̂k−1, uk),

Hk = Dhk(x̂k|k−1),
(5.4)

and

ũk = fk(x̂k−1, uk)− Fkx̂k−1,

zk = hk(x̂k|k−1)−Hkx̂k|k−1.
(5.5)

We treat ũk and yk − zk as the input and output of the linear approximate system
(5.3), respectively. For simplicity, we use the two-step Kalman filter on (5.3), which
is given by the prediction and innovation equations (3.9) and (3.11), respectively, or
rather

Pk|k−1 = FkPk−1F
T
k +Qk,(5.6a)

x̂k|k−1 = fk(x̂k−1, uk),(5.6b)

Pk = (P−1
k|k−1 +HT

k R
−1
k Hk)

−1,(5.6c)

x̂k = x̂k|k−1 − PkH
T
k R

−1
k (hk(x̂k|k−1)− yk).(5.6d)
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This is the EKF. Notice the use of (5.5) in writing the right-hand sides of (5.6b) and
(5.6d).

As with the two-step Kalman filter, we can use Lemma B.4 to write the innovation
equations (5.6c)–(5.6d) in the alternative form

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1,(5.7a)

x̂k = x̂k|k−1 +Kk(hk(x̂k|k−1)− yk),(5.7b)

Pk = (I −KkHk)Pk|k−1.(5.7c)

5.2. The Newton-EKF Derivation. We now derive the EKF via Newton’s method.
By generalizing the objective function in the linear case (3.5) to

(5.8) Jk|m(zk) =
1

2

m∑
i=1

‖yi − hi(xi)‖2R−1
i

+
1

2

k∑
i=0

‖xi − fi(xi−1, ui)‖2Q−1
i

,

where f0 ≡ μ0, we can determine the estimate ẑk of zk by minimizing the objective.
Assume m = k; then we obtain the EKF, as in (5.6), by minimizing (5.8) by a single
Newton step with a carefully chosen initial guess. As in the two-step Kalman filter,
we write (5.8) as the two recursive equations

(5.9) Jk|k−1(zk) = Jk−1(zk−1) +
1

2
‖xk − fk(xk−1, uk)‖2Q−1

k

and

(5.10) Jk(zk) = Jk|k−1(zk) +
1

2
‖yk − hk(xk)‖2R−1

k

,

representing the prediction and update steps, respectively.
We begin with the prediction step, writing (5.9) as

Jk|k−1(zk) = Jk−1(zk−1) +
1

2
‖xk −Fk(zk−1)‖2Q−1

k

,

where Fk(zk−1) = fk(xk−1, uk); for notational convenience we suppress writing the
inputs uk. The gradient takes the form

∇Jk|k−1(zk) =

[∇Jk−1(zk−1)−DFk(zk−1)
TQ−1

k (xk −Fk(zk−1))
Q−1

k (xk −Fk(zk−1))

]
.

We define the estimate ẑk|k−1 of zk to be the minimizer of Jk|k−1(zk). This holds
when the gradient is zero, which occurs when

ẑk|k−1 =

[
ẑk−1

Fk(ẑk−1)

]
=

[
ẑk−1

fk(x̂k−1, uk)

]
.

Thus, the bottom row yields

x̂k|k−1 = fk(x̂k−1, uk),

which is (5.6b). To compute the covariance of the estimate x̂k|k−1, we consider the
Hessian of Jk|k−1(zk), which is given by

D2Jk|k−1(zk) =

[
D2Jk−1(zk−1) + Θ(zk) DFk(zk−1)

TQ−1
k

Q−1
k DFk(zk−1) Q−1

k

]
,
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where

Θ(zk) = D2Fk(zk−1)Q
−1
k (xk −Fk(zk−1)) +DFk(zk−1)

TQ−1
k DFk(zk−1).

Note that when zk = ẑk|k−1, it follows that

Θ(ẑk|k−1) = DFk(ẑk−1)
TQ−1

k DFk(ẑk−1).

Thus, by taking the lower-right block of the inverse of D2Jk|k−1(ẑk), we have

Pk|k−1 = Q−1
k +DFk(ẑk−1)D

2Jk−1(ẑk−1)
−1DFk(ẑk−1)

T

= Q−1
k +DFk(ẑk−1)Pk−1DFk(ẑk−1)

T

= Q−1
k−1 + FkPk−1F

T
k ,

which is (5.6a).
Now we find the innovation equations (5.6c)–(5.6d) by rewriting (5.9) as

Jk(zk) = Jk|k−1(zk) + ‖yk −Hk(zk)‖2R−1
k

,

where Hk(zk) = hk(xk). The gradient and Hessian are written as

∇Jk(zk) = ∇Jk|k−1(zk)−DHk(zk)
TR−1

k (yk −Hk(zk))

and

D2Jk(zk) = D2Jk|k−1(zk)−D2Hk(zk)R
−1
k (yk −Hk(zk)) +DHk(zk)

TR−1
k DHk(zk),

respectively. Setting zk = ẑk|k−1, we have

∇Jk(zk) =

[
0

−HT
k R

−1
k (yk − hk(x̂k|k−1))

]

and

D2Jk(zk) = D2Jk|k−1(zk) +DHk(zk)
TR−1

k DHk(zk).

Thus, from Newton’s method we have

ẑk = ẑk|k−1 −D2Jk(ẑk|k−1)
−1∇Jk(ẑk|k−1),

where as before the bottom right block of D2Jk(ẑk|k−1)
−1 is given by

Pk = Pk|k−1 + Pk|k−1H
T
k (Rk −HkPk|k−1H

T
k )

−1HkPk|k−1

= (P−1
k|k−1 +HT

k R
−1
k Hk)

−1,

which is (5.6c). Taking the bottom row of the Newton equation gives

x̂k = x̂k|k−1 − PkH
T
k R

−1
k (hk(x̂k|k−1)− yk),

which is (5.6d).

6. Conclusions. In this paper, we have shown how the Kalman filter and some of
its variants can be derived using Newton’s method. One advantage of this approach is
that it requires little more than multivariable calculus and linear algebra, and it should
be more accessible to students. We would be interested to know if other variants of
the Kalman filter can also be derived in this way, for example, [2, 8].
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7. Activity for the Classroom. In this section, we consider the problem of esti-
mating the position and velocity of a projectile, say, an artillery round, given a few
noisy measurements of its position. We show through a series of exercises that the
Kalman filter can average out the noise in the system and provide a relatively smooth
profile of the projectile as it passes by a radar sensor. We then show that one can
effectively predict the point of impact as well as the point of origin, so that troops
on the ground can both duck for cover and return fire before the projectile lands.
Although we computed the figures below in MATLAB, one could easily reproduce
this work in another computing environment.

7.1. Problem Formulation. Assume that the state of the projectile is given by

the vector x =
(
sx sy vx vy

)T
, where sx and sy are the horizontal and vertical

components of position, respectively, with corresponding velocity components vx and
vy. We suppose that state evolves according to the discrete-time dynamical system

xk+1 = Fxk + u+ wk,

where

F =

⎛
⎜⎜⎝
1 0 Δt 0
0 1 0 Δt
0 0 1− b 0
0 0 0 1− b

⎞
⎟⎟⎠ and u =

⎛
⎜⎜⎝

0
0
0

−gΔt

⎞
⎟⎟⎠ .

In this model, Δt is the interval of time between measurements, 0 ≤ b � 1 is the drag
coefficient, g is the gravitational constant, and the noise process wk has zero mean
with covariance Qk > 0. Since the radar device is only able to measure the position
of the projectile, we write the observation equation as

yk = Hxk + vk, where H =

(
1 0 0 0
0 1 0 0

)
,

and the measurement noise vk has zero mean with covariance Rk > 0.

7.2. Exercises. Throughout this classroom activity, we assume that b = 10−4,
g = 9.8, and Δt = 10−1. For simplicity, we also assume Q = 0.1 · I4 and R = 500 · I2,
though in practice these matrices would probably not be diagonal.

Exercise 1. Using an initial state x0 =
(
0 0 300 600

)T
, evolve the system

forward 1200 steps. Hint: The noise term wk can be generated by using the transpose
of the Cholesky factorization of Q; specifically, set w = chol(Q)’*randn(4,1).

Exercise 2. Now assume that your radar system can only detect the projectile
between the 400th and 600th time steps. Using the measurement equation, produce
a plot of the projectile path and the noisy measurements. The noise term vk can be
generated similarly to the exercise above.

Exercise 3. Initialize the Kalman filter at k = 400. Use the position coordinates
y400 to initialize the position and take the average velocity over 10 or so measurements
to provide a rough velocity estimate. Use a large initial estimator covariance such as
P400 = 106 ·Q. Then, using the Kalman filter, compute the next 200 state estimates
using (3.9) and (3.12). Plot the estimated position over the graph of the previous
exercise. Your image should be similar to Figures 7.1(a) and 7.1(b), the latter being
a zoomed version of the former. In Figure 7.1(c), we see the errors generated by the
measurement error as well as the estimation error. Note that the estimation error is
much smaller than the measurement error.
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Fig. 7.1 A plot of (a) the trajectory, the measurement points, and the estimates given by the Kalman
filter. The dark region on the upper-left part of the trajectory corresponds to the part of the
profile where measurement and state estimations are made. In (b) a zoom of the previous
image is given. The measurements are peppered dots with (+) denoting the estimated
points from the Kalman filter and the dotted line being the true profile. Note that the
estimated and true positions are almost indistinguishable. In (c) a plot of errors produced
by measurements and the Kalman filter is given. Notice that the estimation error is much
smaller than the measurement error. Finally, in (d) a plot of the predicted trajectory is
given. These lines are close, with the estimation error at the point of impact being roughly
half a percent.

Exercise 4. Using the last state estimate from the previous exercise x̂600, use
the predictive estimation method described in (4.4) to trace out a projectile until
the y-component of position crosses zero, that is, sy ≈ 0. Plot the path of the
estimate against the true (noiseless) path and see how close the estimated point of
impact is when compared with the true point of impact. Your graph should look like
Figure 7.1(d).

Exercise 5 (bonus problem). Estimate the point of origin of the projectile by
reversing the system and considering the problem

xk = F−1xk+1 − F−1u− F−1w.

This allows one to iterate backward in time.

Appendix A. Proof of the Gauss–Markov Theorem. In this section, we present
a proof of Theorem 2.1, which states that among all linear unbiased estimators x̂ =
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Kx, the choice of K that minimizes the mean-squared error E[‖x̂ − x‖2] and the
covariance E[(x̂− x)(x̂ − x)T ] is

K = (ATQ−1A)−1ATQ−1.

Recall that, since x̂ is unbiased, KA = I. Therefore,

‖x̂− x‖2 = ‖Kb− x‖2 = ‖K(Ax+ ε)− x‖2 = ‖Kε‖2 = εTKTKε.

Since εTKTKε is a scalar and tr(AB) = tr(BA), we have

E[‖x̂− x‖2] = E[tr(εTKTKε)] = E[tr(KεεTKT )] = tr(KE[εεT ]KT ) = tr(KQKT ).

Thus the linear unbiased estimator x̂ = Kb with minimummean-squared error satisfies
the optimization problem

minimize
K∈Rn×m

tr(KQKT )

subject to KA = I.

This is a convex optimization problem, that is, the objective function is convex and
the feasible set is convex. Hence, it suffices to find the unique critical point for the
Lagrangian

L(K,λ) = tr(KQKT )− vec(λ)T vec(KA− I),

where λ is an n× n matrix. Simplifying gives

L(K,λ) = tr(KQKT − λT (KA− I)).

Thus the minimum occurs when

0 = ∇KL(K,λ) =
∂

∂K
tr(KQKT − λT (KA− I)) = KQT +KQ− λAT .

Since Q is symmetric, this reduces to

0 = ∇KL(K,λ) = 2KQ− λAT .

By multiplying on the right by Q−1A and using the constraint KA = I, we have that
λ = 2(ATQ−1A)−1 and K = (ATQ−1A)−1ATQ−1. This yields (2.2).

We can verify that (2.2) is unbiased by noting that

x̂ = (ATQ−1A)−1ATQ−1(Ax+ ε) = x+ (ATQ−1A)−1ATQ−1ε.

Hence E[x̂] = x. Moreover the covariance of the estimate (2.2) is given by

E[(x̂− x)(x̂ − x)T ] = (ATQ−1A)−1ATQ−1
E[εεT ]Q−1A(ATQ−1A)−1,

which reduces to (2.3).
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If x̂L = Lb is a linear unbiased estimator of (2.1), then L = K + D for some
matrix D satisfying DA = 0. The variance of x̂L is given by

E[(x̂L − x)(x̂L − x)T ] = E[(K +D)εεT (KT +DT )]

= (K +D)Q(KT +DT )

= KQKT +DQDT +KQDT + (KQDT )T .

Since DA = 0, we have that

KQDT = (ATQ−1A)−1ATQ−1QDT = (ATQ−1A)−1(DA)T = 0.

Therefore,

E[(x̂L − x)(x̂L − x)T ] = KQKT +DQDT ≥ KQKT ,

and so (2.2) is indeed the minimum variance linear unbiased estimator of (2.1), and
this completes the proof.

Appendix B. Lemmas from Linear Algebra. We provide some technical results
that are used throughout the paper. The first lemma shows that the Hessian matrix in
(3.7) is positive definite. The second result tells us how to invert block matrices. The
third lemma, namely, the Sherman–Morrison–Woodbury formula, shows how to invert
an additively updated matrix when we know the inverse of the original; see [17] for a
thorough historical treatise on these inversion results. The last lemma provides some
matrix manipulations needed to compute various forms of the covariance matrices in
the paper.

Lemma B.1. Let A ∈ R
n×n, B ∈ R

m×n, C ∈ R
m×m, and D ∈ R

m×m, with
A,C > 0 and D ≥ 0. Then

(B.1)

[
A+BTCB −BTC

−CB C +D

]
> 0.

As a result, the matrix (3.7) is positive definite.
Proof. Note that

[
xT yT

] [A+BTCB −BTC
−CB C +D

] [
x
y

]
= xTAx+ yTDy + ‖Bx− y‖2C ≥ 0,

with equality only if each term on the right is zero. Since A > 0, we get equality only
if x = 0, which also implies that y = 0. Thus (B.1) is positive definite.

Lemma B.2 (Schur). Let M be a square matrix with block form

M =

[
A B
C D

]
.

If A,D, A−BD−1C, and D−CA−1B are nonsingular, then we have two equivalent
descriptions of the inverse of M , that is,

(B.2) M−1 =

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

and

(B.3) M−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
.
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The matrices A−BD−1C and D−CA−1B are the Schur complements of A and D,
respectively.

Proof. These identities can be verified by inspection.
Lemma B.3 (Sherman–Morrison–Woodbury). Let A and D be invertible matrices

and B and D be given so that the sum A + BD−1C is nonsingular. If D − CA−1B
is also nonsingular, then

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1.

Proof. This follows by equating the upper-left blocks of (B.2) and (B.3).
Lemma B.4. Assume that A,C > 0 and, for notational convenience, denote

S = BABT + C−1 and G = ABTS−1.

Then

(A−1 +BTCB)−1 = (I −GB)A(B.4)

= (I −GB)A(I −BTGT ) +GC−1GT(B.5)

and

(B.6) G = (A−1 +BTCB)−1BTC.

Proof. We obtain (B.4) as follows:

(A−1 +BTCB)−1 = A−ABT (C−1 +BABT )−1BA

= A−ABTS−1BA

= (I −GB)A.

Similarly we have

(A−1 +BTCB)−1 = A−ABTS−1BA

= A− 2ABTS−1BA+ABTS−1SS−1BA

= A−ABTS−1BA−ABTS−1BA

+ABTS−1BABTS−1BA+ABTS−1C−1S−1BA

= A−GBA−ABTGT +GBABTGT +GC−1GT

= (I −GB)A(I −BTGT ) +GC−1GT .

Finally,

G = ABTS−1

= ABT (BABT + C−1)−1

= (A−1 +BTCB)−1(A−1 +BTCB)ABT (BABT + C−1)−1

= (A−1 +BTCB)−1BTC(C−1 +BABT )(BABT + C−1)−1

= (A−1 +BTCB)−1BTC.

Appendix C. Classical Kalman Filter Derivation. In this section, we present a
classical derivation of the Kalman filter, which follows the derivation given by Kalman
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[22]. While many of the ideas presented by Kalman work in more generality, his
derivation assumes that the noise is Gaussian in order to produce explicit equations
for the filter. Therefore, we now assume wk and vk are independent and normally dis-
tributed with covariance Qk, Rk > 0. We also assume that x0 is normally distributed
with mean μ0 and covariance Q0 and that wk and vk are independent of xj and yj
for j ≤ k.

For the normally distributed random variable x0 it is clear that the optimal
estimate is the mean x̂0 = μ0. In fact, the assumption that x0, wk, and vk are
normally distributed is enough to guarantee that xk is normally distributed for all
k, a fact that we prove in this section. Therefore, to obtain the optimal estimate
x̂k|m it is sufficient to determine the mean of the random variable xk, so we will use
x̂k|m to denote both the optimal estimate and the mean of xk given the observations
y1, . . . , ym.

Lemma C.1. If the distribution of xk−1, given the first k − 1 observations, is

normal with mean x̂k−1 and covariance Pk−1, then the random vector
[
xk yk

]T
,

without additional observations, is normally distributed with mean[
x̂k|k−1

ŷk|k−1

]
=

[
Fkx̂k−1 +Gkuk

Hkx̂k|k−1

]

and covariance

Cov

[
xk

yk

]
=

[
FkPk−1F

T
k +Qk Pk|k−1H

T
k

HkPk|k−1 HkPk|k−1H
T
k +Rk

]
.

Proof. Assuming k − 1 observations, the mean is

E

[
xk

yk

]
= E

[
Fkxk−1 +Gkuk + wk

Hkxk + vk

]
=

[
Fkx̂k−1 +Gkuk

Hkx̂k|k−1

]
.

For the covariance, we employ the notation s(. . .)T = ssT where convenient. The
covariance matrix is

Cov

[
xk

yk

]
=

[
E[(xk − x̂k|k−1)(. . .)

T ] E[(xk − x̂k|k−1)(yk − ŷk|k−1)
T ]

E[(yk − ŷk|k−1)(xk − x̂k|k−1)
T ] E[(yk − ŷk|k−1)(. . .)

T ]

]
.

Observing that E[(xk − x̂k|k−1)(yk − ŷk|k−1)
T ] = E[(yk − ŷk|k−1)(xk − x̂k|k−1)

T ]T , we
compute

E[(xk − x̂k|k−1)(. . .)
T ] = E[(Fk(xk−1 − x̂k−1) + wk)(. . .)

T ]

= FkE[(xk−1 − x̂k−1)(. . .)
T ]FT

k + E[wkw
T
k ]

= FkPk−1F
T
k +Qk.

The cross-terms of xk−1 and x̂k−1 with wk are zero since xk−1 is independent of wk

and wk has zero mean. Similarly,

E[(yk − ŷk|k−1)(. . .)
T ] = E[(Hk(xk − x̂k|k−1) + vk)(. . .)

T ] = HkPk|k−1H
T
k +Rk

and

E[(xk − x̂k|k−1)(yk − ŷk|k−1)
T ] = E[(xk − x̂k|k−1)(Hk(xk − x̂k|k−1) + vk)

T ]

= Pk|k−1H
T
k .
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The previous lemma establishes the prediction step for the Kalman filter. In order
to determine the update from an observation, we require the following general result
about joint normal distributions.

Theorem C.2. Let x and y be random n- and m-vectors, respectively, and let the

(n + m)-vector z =
[
x y

]T
be normally distributed with mean and positive-definite

covariance

ẑ =

[
x̂
ŷ

]
and Pz =

[
Px Pxy

Pyx Py

]
.

Then the distribution of x given y is normal with mean x̂ + PxyP
−1
y (y − ŷ) and

covariance Px − PxyP
−1
y Pyx.

Proof. The random vector z has density function

f(x, y) = f(z) =
1

(2π)(n+m)/2(detPz)1/2
exp

[
−1

2
(z − ẑ)TP−1

z (z − ẑ)

]
,

with a similar expression for the density g(y) of y. The density of the conditional
random vector (x|y) is
f(x, y)

g(y)
=

(detPy)
1
2

(2π)
n
2 (detPz)

1
2

exp

[
−1

2

[
(z − ẑ)TP−1

z (z − ẑ)− (y − ŷ)TP−1
y (y − ŷ)

]]
.

By Lemma B.2,

P−1
z =

[
(Px − PxyP

−1
y Pyx)

−1 −(Px − PxyP
−1
y Pyx)

−1PxyP
−1
y

−P−1
y Pyx(Px − PxyP

−1
y Pyx)

−1 (Py − PT
yxP

−1
x Pxy)

−1

]
.

Therefore,

(z − ẑ)TP−1
z (z − ẑ)− (y − ŷ)TP−1

y (y − ŷ)

= [x− x̂+ PxyP
−1
y (y − ŷ)]T (Px − PxyP

−1
y Pyx)

−1[x− x̂+ PxyP
−1
y (y − ŷ)].

Furthermore, Pz satisfies[
I −PxyP

−1
y

0 I

]
Pz =

[
Px − PxyP

−1
y Pyx 0

Pyx Py

]
,

so it follows that

detPz = det(Px − PxyP
−1
y Pyx) detPy.

Inserting these simplifications into the density function for h(x|y) = f(x, y)/g(y), we
see that it is the density of a normal distribution with mean x̂+ PxyP

−1
y (y − ŷ) and

covariance Px − PxyP
−1
y Pyx, which establishes the result.

Returning to the context of the filtering problem, we immediately obtain the
following update equations for x̂k given yk from the previous theorem.

Corollary C.3. If
[
xk yk

]T
is distributed as in Lemma C.1, then the distri-

bution of xk, given the observation yk, is normal with mean

x̂k = x̂k|k−1 + Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1(yk −Hkx̂k|k−1)

and covariance

Pk = Pk|k−1 − Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1HkPk|k−1.
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In summary, from Lemma C.1 we obtain the standard a priori estimates (4.4a)
and (4.4b) and from Corollary C.3 we use the observation yk to obtain the standard
a posteriori estimates (3.11a) and (3.11b) for the two-step Kalman filter.

Having obtained the two-step Kalman filter using the above statistical approach,
it is a straightforward algebraic problem to produce equations for a one-step filter by
manipulating the covariance matrix using the lemmas from Appendix B.
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