
STABILITY OF JIN-XIN RELAXATION SHOCKS

JEFFREY HUMPHERYS

Abstract. We examine the spectrum of shock profiles for the Jin-Xin
relaxation scheme for systems of hyperbolic conservation laws in one
spatial dimension. By using a weighted norm estimate, we prove that
these shock profiles exhibit strong spectral stability in the weak shock
limit.

1. Introduction

In this paper, we investigate the stability of shock profiles for the Jin-Xin
model [JX]

(1)
(

U
V

)
t

+
(

0 I
A 0

) (
U
V

)
x

=
(

0
f(U)− V

)
,

where f, U, V ∈ RN , f ∈ C3, x ∈ R, and A ∈ RN×N is constant. This
system falls into the general class of relaxation systems,

(2) Wt + F (W )Wx = Q(W ) Wx,

and serves as the basis for an important numerical scheme for approximating
solutions of hyperbolic conservation laws

Ut + f(U)x = 0.

It is easily verified that traveling wave solutions of (1) correspond to those
for the viscous conservation laws

(3) Ut + f(U)x = (B(U) Ux)x,

where B(U) = A− s2 I, see Section 2 below.
The stability of viscous conservation laws is an area of great interest.

Recently it has been shown that under suitable conditions, viscous shocks (3)
are orbitally stable if and only if they exhibit strong spectral stability [ZH].
This implies that orbital stability ultimately rests on the character of the
spectrum, as is the case for classical dynamical systems. More recently yet,
Mascia and Zumbrun [MZ] have extended this analysis to Jin-Xin relaxation
shocks, hence showing that strong spectral stability for Jin-Xin shocks is a
sufficient condition for orbital stability.
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In Jin and Xin’s original work [JX], they showed this system to have an
L1 contraction property for scalar shocks (N = 1), which implies orbital
stability. By using energy methods, we also show that the scalar case is
stable. However, a generalization of our method to a weighted norm esti-
mate extends our scalar result to higher dimensions for weak shocks. H.
Liu [L] recently proved orbital stability under zero-mass perturbations, a
result slightly more general than this one. However, in light of Mascia and
Zumbrun’s recent work, one can get from spectral stability to orbital stabil-
ity directly, and so much of Liu’s analysis can be avoided. There is a close
similarity between our approach and that of Goodman [G] for the linear
stability of weak shocks in dissipative conservation laws, under zero-mass
perturbations.

Recently, Godillon [Go] carried out stability index calculations for the Jin-
Xin model, which are consistent with stability for weak shocks. While this
is an encouraging result, consistency only serves as a necessary condition for
stability. Since our stability results only hold generally in the weak limit,
other techniques will need to be explored to expand these results to stronger
shocks, e.g., numerical Evans function calculations [B].

2. Preliminaries

2.1. Assumptions. We assume Df is strictly hyperbolic at a base point
(U0, V0). Thus, there exists L,R, such that

(4) L ·Df(U0, V0) ·R = Λ = diag(Λ1,Λ2, ...,ΛN ).

Moreover, we assume that L,R also diagonalize A, and satisfy

(5) L · (A−Df(U0, V0)2) ·R > 0.

In addition, we assume that Df is genuinely nonlinear, that is, without loss
of generality that

(6) ∇Λ1 · ~r1 > 0,

at (U0, V0), where ~r1 is the right eigenvector of Df corresponding to Λ1.
Note that no ordering in magnitude is assumed on Λj .

We remark that assumption (5) seems overly restrictive, however, we
show in Section 5 that this is equivalent to symmetrizability of system (1).
Moreover, we note that simultaneous diagonalizability of Df and A is more
general than the usual assumption that A = aI, see [JX]. However, we
also show in Section 5 that the usual assumption is actually sharp for most
choices of f .

2.2. Shock Profile. By a Jin-Xin shock profile, we mean a traveling wave
solution of (1)

U(x, t) = Û(x− s t),
V (x, t) = V̂ (x− s t),
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with an asymptotically constant boundary (Û(±∞), V̂ (±∞)) = (U±, V±).
By translating x → x− s t, we can instead consider stationary solutions of

(7)
(

U
V

)
t

+
(
−sI I
A −sI

) (
U
V

)
x

=
(

0
f(U)− V

)
,

Thus, the shock profiles are solutions of the ordinary differential equation

(8) −sU ′ + V ′ = 0,
−s V ′ + A U ′ = f(U)− V,

with limiting boundary values U(±∞) = U± and V (±∞) = V±. By com-
bining and integrating (8) we arrive at

U ′ = (A− s2 I)−1 (f(U)− s(U − U−)− V−).

Since U ′(±∞) = 0, we have that f(U−) = V−. Finally, we write the profile
as Û , satisfying

(9) Û ′ = (A− s2 I)−1 (f(Û)− f(U−)− s(Û − U−)).

Notice that this is exactly the same profile equation that comes from viscous
shock profiles of (3), satisfying U(±∞) = U±, where B = A− s2 I:

(10) Û ′ = B(U)−1 (f(Û)− f(U−)− s(Û − U−)).

This observation allows us to apply the weak shock analysis of Madja and
Pego [MP] for viscous shocks, to Jin-Xin shocks, see Section 4.

2.3. Spectral Stability. We say that a shock profile has strong spectral
stability if the linearized operator L (about the shock profile) has no spec-
trum in the closed right deleted half-plane, D = {Re(λ) ≥ 0} \ {0}, i.e., no
growth or oscillatory modes. One can readily show that no essential spec-
trum for Jin-Xin shocks exist in D by considering the essential spectrum of
the constant states U±, see [Ze], [Z], [MZ]. Hence, to show strong spectral
stability for the Jin-Xin system, it suffices to show that no eigenvalues (point
spectrum) exist in D. We remark that traveling wave profiles always have
a zero eigenvalue associated with its translational invariance.

By linearizing (7) about the profile Û , we get the following eigenvalue
problem:

(11) λ

(
U
V

)
+

(
−sI I
A −sI

) (
U
V

)
x

=
(

0 0
Df(Û) −I

) (
U
V

)
,

Suppose that (U, V ) is an eigenfunction of (11) with an eigenvalue λ ∈ D.
Define

Ũ(x) =
∫ x

−∞
U(z) dz.

Then by integrating the top equation of (11), from ∞ to −∞, we get that
Ũ and its derivatives decay exponentially as x → ∞. Thus, we can recast
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(11) in terms of (Ũ , V ) as (suppressing the tilde)

(12)
λU − sU ′ + V = 0,

λV − s V ′ + A U ′′ = Df(Û) U ′ − V.

This is the integrated eigenvalue equation. Its point spectrum differs from
that of (11) only at λ = 0. Thus, to show that Jin-Xin shocks exhibit
strong spectral stability, it suffices to show that (12) has only negative point
spectra.

3. Scalar Case

In this section we prove that the scalar, N = 1, eigenvalue equation
(11) exhibits strong spectral stability. The integrated coordinate eigenvalue
problem (12) takes the form

λu− s u′ + v = 0,(13a)

λv − s v′ + A u′′ = f ′(û) u′ − v,(13b)

where u, v ∈ R, û is the profile, ûx < 0, f ′′ > 0, and A > f ′(û)2.

Theorem 1. Scalar Jin-Xin shocks exhibit strong spectral stability.

Proof. It suffices to show that (13) has no spectrum with Re(λ) ≥ 0.
We refer to Lemma 1 below for the following identities, which hold for
Re(λ) ≥ 0:

(i)
∫ +∞

−∞
|v|2 ≤

∫ +∞

−∞
|f ′(û) u′v̄|,

(ii)
∫ +∞

−∞
A |u′|2 <

∫ +∞

−∞
|v|2.

By adding half of (ii) to (i), we get

1
2

∫ +∞

−∞
(|v|2 + A |u′|2) <

∫ +∞

−∞
|f ′(û) u′v̄|,

which by Young’s inequality yields

1
2

∫ +∞

−∞
(|v|2 + A |u′|2) <

1
2

∫ +∞

−∞
(|v|2 + f ′(û)2 |u′|2).

This is a contradiction since A ≥ f ′(û)2, see (5). Thus Re(λ) < 0.

Lemma 1. For Re(λ) ≥ 0, (i) and (ii) in the above proof hold.

Proof. (i) We begin by multiplying (13b) by the conjugate v̄ and integrating
from −∞ to ∞. We get

(λ + 1)
∫ +∞

−∞
|v|2 − s

∫ +∞

−∞
v′v̄ +

∫ +∞

−∞
A u′′v̄ =

∫ +∞

−∞
f ′(û) u′v̄.
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We take the real part and note that the second term vanishes, leaving us
with

(Re(λ) + 1)
∫ +∞

−∞
|v|2 +Re(

∫ +∞

−∞
A u′′v̄) = Re(

∫ +∞

−∞
f ′(û) u′v̄).

Finally, by replacing v̄ with s ū′− λ̄ ū from (13a) and appropriately integrat-
ing by parts, we arrive at

Re(λ)
∫ +∞

−∞
(|v|2 + A |u′|2) +

∫ +∞

−∞
|v|2 = Re(

∫ +∞

−∞
f ′(û) u′v̄).

Thus, for Re(λ) ≥ 0, we have∫ +∞

−∞
|v|2 ≤ Re(

∫ +∞

−∞
f ′(û) u′v̄) ≤

∫ +∞

−∞
|f ′(û) u′v̄|.

(ii) We construct this identity by multiplying (13b) by the conjugate ū
and integrating from −∞ to ∞. We get

(λ + 1)
∫ +∞

−∞
vū− s

∫ +∞

−∞
v′ū +

∫ +∞

−∞
A u′′ū =

∫ +∞

−∞
f ′(û) u′ū.

Integrating the second and third terms by parts and adjusting terms yields

(λ + λ̄ + 1)
∫ +∞

−∞
vū−

∫ +∞

−∞
v (λ̄ū− s ū′) =

∫ +∞

−∞
A |u′|2 +

∫ +∞

−∞
f ′(û) u′ū,

which gives

(2Re(λ) + 1)
∫ +∞

−∞
vū +

∫ +∞

−∞
|v|2 =

∫ +∞

−∞
A |u′|2 +

∫ +∞

−∞
f ′(û) u′ū.

Now, take the real part:

(2Re(λ) + 1)Re(
∫ +∞

−∞
vū) +

∫ +∞

−∞
|v|2

=
∫ +∞

−∞
A |u′|2 − 1

2

∫ +∞

−∞
f ′′(û) ûx |u|2.(14)

By using (13a), we observe that

λ

∫ +∞

−∞
|u|2 − s

∫ +∞

−∞
u′ū +

∫ +∞

−∞
vū = 0.

Hence, by taking the real part, we have

Re(
∫ +∞

−∞
vū) = −Re(λ)

∫ +∞

−∞
|u|2,
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which goes into (14) to give∫ +∞

−∞
|v|2 = Re(λ) ((2Re(λ) + 1))

∫ +∞

−∞
|u|2

+
∫ +∞

−∞
A |u′|2 − 1

2

∫ +∞

−∞
f ′′(û) ûx |u|2.

Thus for Re(λ) ≥ 0, we have∫ +∞

−∞
A |u′|2 <

∫ +∞

−∞
|v|2.

4. System Case

In this section we show that the eigenvalue problem (11) exhibits strong
spectral stability for weak shocks. From (12), we have

λ U − sU ′ + V = 0,

λ V − s V ′ + A U ′′ = Df(Û) U ′ − V.

Recall from (4) and (5) that L and R diagonalize Df(U0, V0), and thus
there exist a C2 choice of R,L in a neighborhood of the base point (U0, V0)
satisfying both LA R > Λ2 and Ã = LA R > Λ2. By transforming U → R U
and V → R V , we have

λ R U − s (R U ′ + R′ U) + R V = 0,

λ R V − s (R V ′ + R′ V ) + R Ã L (R′′ U + 2 R′ U ′ + R U ′′)

= R Λ L (R′ U + R U ′)−R V.

Left multiplying by L yields

λ U − s (U ′ + LR′ U) + V = 0,(15a)

λ V − s (V ′ + LR′ V ) + Ã (LR′′ U + 2 LR′ U ′ + U ′′)(15b)

= Λ (LR′ U + U ′)− V.

We apply to this the following two observations. First, following the analysis
of Goodman [G] (see also [Z], [MZ], [HuZ]), we can scale L and R so that

(16) (LR′)11 = 0.

And secondly, since both Jin-Xin shocks and viscous shocks satisfy the same
profile equations, (9) and (10), the asymptotic analysis of Majda and Pego
[MP] holds for Jin-Xin shocks as well. Thus, we have the following lemma:

Lemma 2. In the weak shock limit, where ε = |u+ − u−|, we have |Ûx| =
O(ε2) and |Ûxx| = O(ε |ûx|), for Jin-Xin shocks profiles. Moreover, under
the genuine nonlinearity condition, Λ′1 < −θ |Ûx| for some θ > 0. Strict
hyperbolicity implies without loss of generality that Λj − s 6= 0, for j > 1.

Theorem 2. Weak Jin-Xin shocks, (11) exhibit strong spectral stability.
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Proof. It suffices to show that (12) has no point spectrum with Re(λ) ≥ 0.
We refer to Lemma 3 for the following identities, which hold in the weak
shock limit for Re(λ) ≥ 0, where uj , vj denote coordinates of (U,V) in (15)
and L,R chosen as in (4):

(i)
N∑

j=1

∫ +∞

−∞
αj |vj |2 ≤

N∑
j=1

∫ +∞

−∞
|αjΛj ||vj ||u′j |

+ C1

∫ +∞

−∞
|Ûx|

ε1|u1|2 +
∑
j 6=1

|uj |2 +
N∑

j=1

(|vj |2 + |u′j |2)

 ,

(ii)
N∑

j=1

∫ +∞

−∞
αj Ãj |u′j |2 +

1
2

N∑
j=1

∫ +∞

−∞
(sα′j − (αj Λj)′)|uj |2

≤
N∑

j=1

∫ +∞

−∞
αj |vj |2 + C2

∫ +∞

−∞
|Ûx|

ε2|u1|2 +
1
ε2

∑
j 6=1

|uj |2 +
N∑

j=1

|u′j |2
 ,

where α = diag(α1, α2, ..., αN ), is a positive-diagonal matrix satisfying α1 =
1 and for j > 1,

α′j(x) =
−C3

Λj − s
|Ûx|αj(x),

αj(0) = 1.

Just as with the scalar case, we add half of (ii) to (i) and simplify to get

1
2

N∑
j=1

∫ +∞

−∞
αj(|vj |2 + Ãj |uj |2) +

1
2

N∑
j=1

∫ +∞

−∞
(sα′j − (αj Λj)′)|uj |2

≤ C4

∫ +∞

−∞
|Ûx|

ε3|u1|2 +
1
ε3

∑
j 6=1

|uj |2 +
N∑

j=1

(|vj |2 + |u′j |2)

(17)

+
N∑

j=1

∫ +∞

−∞
|αjΛj ||vj ||u′j |.

We claim that for C3 sufficiently large and ε3, |Ûx| sufficiently small,

1
2

N∑
j=1

∫ +∞

−∞
(sα′j − (αj Λj)′)|uj |2 ≥ C4

∫ +∞

−∞
|Ûx|

ε3|u1|2 +
1
ε3

∑
j 6=1

|uj |2
 .

For j = 1 and sufficiently small ε3, we have

− 1
2

∫ +∞

−∞
Λ′1|u1|2 ≥ ε3 C4

∫ +∞

−∞
|Ûx||u1|2,
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since Λ′1 ≥ −θ|Ûx|. For j 6= 1 and C3 sufficiently large,

1
2

∫ +∞

−∞
(sα′j − (αj Λj)′)|uj |2 =

1
2

∫ +∞

−∞
((s− Λj) α′j − αj Λ′j))|uj |2,

=
1
2

∫ +∞

−∞
(C3 |Ûx|αj − αj Λ′j))|uj |2,

≥ C4

ε3

∫ +∞

−∞
|Ûx||uj |2.

Thus, (17) becomes

1
2

N∑
j=1

∫ +∞

−∞
αj(|vj |2 + Ãj |u′j |2) ≤ C4

N∑
j=1

∫ +∞

−∞
|Ûx|(|vj |2 + |u′j |2)

+
N∑

j=1

∫ +∞

−∞
|αjΛj ||vj ||u′j |.

Now since Ã − Λ2 > 0, ∃ η > 0 such that Ã − (1 + η) Λ2 > ηI. Thus, by
Young’s inequality,

1
2

N∑
j=1

∫ +∞

−∞
αj(|vj |2 + Ãj |u′j |2) ≤ C4

N∑
j=1

∫ +∞

−∞
|Ûx|(|vj |2 + |u′j |2)

+
1
2

N∑
j=1

∫ +∞

−∞
αj

[
1

1 + η
|vj |2 + (1 + η)|Λj |2|u′j |2

]
,

which simplifies to

1
2

N∑
j=1

∫ +∞

−∞
αj

[
η

1 + η
|vj |2 + η|u′j |2

]
≤ C4

N∑
j=1

∫ +∞

−∞
|Ûx|(|vj |2 + |u′j |2).

However, since αj = 1 + O(ε), then in the weak shock limit,

η

1 + η
αj >> 2 C4

∫ +∞

−∞
|Ûx| = O(ε),

∀ j. This is a contradiction. Thus Re(λ) < 0.

Lemma 3. For Re(λ) ≥ 0, and L,R chosen as in (16), (i) and (ii) in the
above proof hold, for weak shocks.

Proof. (i) We begin by taking the L2 inner product of (15b) with α V to
get

〈α V, (λ + 1) V − s (V ′ + LR′ V ) + Ã (LR′′ U + 2 LR′ U ′ + U ′′)〉
= 〈α V,Λ (U ′ + LR′ U)〉.
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This simplifies to

(λ + 1) 〈α V, V 〉 − s 〈α V,L R′ V 〉 − s 〈α V, V ′〉

= 〈α V, (Λ LR′ − Ã LR′′) U〉+ 〈α V, (Λ− 2 Ã LR′) U ′〉 − 〈α V, Ã U ′′〉.

Integrating the last term by parts and simplifying gives

(λ + 1) 〈V, α V 〉 − s 〈V, α L R′ V 〉 − s 〈V, α V ′〉

= 〈V, α (Λ LR′ − Ã LR′′) U〉+ 〈V, (α Λ− 2 α Ã LR′ + (α Ã)′) U ′〉

+ 〈V ′, α Ã U ′)〉.

By writing V ′ in terms of U and its derivatives from (15a), we have

(λ + 1) 〈V, α V 〉 − s 〈V, α L R′ V 〉 − s 〈V, α V ′〉

= 〈V, α (Λ LR′ − Ã LR′′) U〉+ 〈V, (α Λ− 2 α Ã LR′ + (α Ã)′) U ′〉

+ 〈s ((LR′)′ U + LR′ U ′ + U ′′)− λ U ′, α Ã U ′〉.

Take the real part:

N∑
j=1

∫ +∞

−∞

[
(Re(λ) + 1)αj |vj |2 +Re(λ)αjAj |u′j |2

]
= sRe〈V, α L R′ V 〉+Re〈V, α (Λ LR′ − Ã LR′′) U〉

+Re〈V, α Λ U〉 − Re〈V, (2 α Ã LR′ − (α Ã)′) U ′〉

+ sRe〈(LR′)′ U + LR′ U ′, α Ã U ′〉 − s

N∑
j=1

∫ +∞

−∞
α′(|vj |2 + |u′j |2).

Note that in the small shock limit, a′, L R′ = O(|Ûx|) and LR′′ = O(|Ûxx|+
|Ûx|2). Thus for Re(λ) ≥ 0 we have

N∑
j=1

∫ +∞

−∞
αj |vj |2+ ≤

N∑
j=1

∫ +∞

−∞
|αjΛj ||vj ||u′j |

+
N∑

j=1

∫ +∞

−∞
O(|Ûx|)(|vj |2 + |u′j |2) +

∑
i,j

∫ +∞

−∞
O(|Ûx|)|vi||uj |.

Finally, by Young’s inequality, we get

N∑
j=1

∫ +∞

−∞
αj |vj |2 ≤

N∑
j=1

∫ +∞

−∞
|αjΛj ||vj ||u′j |

+ C1

∫ +∞

−∞
|Ûx|

ε1|u1|2 +
∑
j 6=1

|uj |2 +
N∑

j=1

(|vj |2 + |u′j |2)

 .
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(ii) Now take the L2 inner product of (15b) with α U . We get

〈α U, (λ + 1) V − s (V ′ + LR′ V ) + Ã (LR′′ U + 2 LR′ U ′ + U ′′)〉
= 〈α U,Λ (LR′ U + U ′)〉.

Simplifying yields

〈α U, (λ + 1) V − sL R′ V 〉+ s 〈α′ U, V 〉+ 〈sU ′, α V 〉

= 〈α U, (Λ LR′ − Ã LR′′) U〉+ 〈α U, (Λ− 2 Ã LR′) U ′〉 − 〈α U, Ã U ′′〉.
Integrating the last term by parts and simplifying gives

〈U, (λ + λ̄ + 1) α− sα L R′ + sα′) V 〉+ 〈sU ′ − λ U, α V 〉

= 〈U, (α Λ LR′ − α Ã LR′′) U〉+ 〈U, (α Λ− 2 α Ã LR′ + (α Ã)′) U ′〉

+ 〈U ′, α Ã U ′〉.
By writing V in terms of U and its derivatives from (15a), we have

〈U, ((2Re(λ) + 1) α− s (α LR′)∗ − sα L R′ + sα′)( s (U ′ + LR′ U)− λ U)〉

+ 〈V, α V 〉 = 〈U, (α Λ LR′ − α Ã LR′′) U〉

+ 〈U, (α Λ− 2 α Ã LR′ + (α Ã)′) U ′〉+ 〈U ′, α Ã U ′〉.
Let

E = −sα LR′ − s (α LR′)∗ + sα′,

N = sE + 2 α Ã LR′ − (α Ã)′,

M = (α Λ LR′ − α Ã LR′′) + λ E − ((2Re(λ) + 1) α + E) sL R′.

Then we have

〈U, ((2Re(λ) + 1) sα− α Λ)U ′〉+ 〈U,N U ′〉+ 〈V, α V 〉

= λ 〈U, (2Re(λ) + 1) α U〉+ 〈U ′, α Ã U ′〉+ 〈U,M U〉.
Take the real part:

− 1
2
〈U, ((2Re(λ) + 1) sα′ − (α Λ)′)U〉+Re〈U,N U ′〉+ 〈V, α V 〉

= Re(λ) (2Re(λ) + 1) 〈U,α U〉+ 〈U ′, α Ã U ′〉+Re〈U,M U〉.

In the weak shock limit, N and M are O(|Ûx|), while N ′ is O(|Ûxx|+ |Ûx|2).
Thus by Young’s inequality, all the |u1|2 terms in N can be made arbitrarily
small. The |(LR′)11| |u1|2 terms vanish by (16). Thus, all the terms can be
absorbed to give

N∑
j=1

∫ +∞

−∞
αj Ãj |u′j |2 +

1
2

N∑
j=1

∫ +∞

−∞
(sα′j − (αj Λj)′)|uj |2

≤
N∑

j=1

∫ +∞

−∞
αj |vj |2 + C2

∫ +∞

−∞
|Ûx|

ε2|u1|2 +
1
ε2

∑
j 6=1

|uj |2 +
N∑

j=1

|u′j |2
 .
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5. Remarks on Hypothesis (5)

In our hypothesis, we assume that A and Df are simultaneously diago-
nalizable. It seems that a more natural, general, and interesting hypothesis
would be to assume that (11) is symmetrizable, i.e., there exists some pos-
itive, symmetric multiplier P = P (U, V ) such that the following are sym-
metric:

P ·
(

0 I
A 0

)
and P ·

(
0 0

Df(Û) −I

)
.

However the following proposition shows that these are equivalent assump-
tions.

Proposition 1. Assuming hypothesis (5), the Jin-Xin model is symmetriz-
able if and only if A and Df are simultaneously diagonalizable, i.e., [A,Df ] =
0.

Proof. Let

P =
(

α β
βT γ

)
be a symmetrizer for (11), where α, β, and γ are n × n matrix-valued
functions in (U, V ) and moreover α,γ are symmetric, positive-definite. Then
left multiplying (11) by P gives

λ P ·
(

U
V

)
+

(
β ·A− sα α− s β
γ ·A− s βT βT − s γ

) (
U
V

)
x

=
(
−β ·Df −β
γ ·Df −γ

) (
U
V

)
,

From the hypothesis it follows that β, β ·A, and β ·Df must all be symmetric.
In addition, α = αT = γ ·A and β = βT = −γ ·Df . Hence P can be written
as

(18) P =
(

γ ·A −γ ·Df
−γ ·Df γ

)
=

(
γ 0
0 γ

) (
A −Df

−Df I

)
.

Since γ is positive-definite, it follows that γ is invertible. Moreover, we have
that β ·A = −γ ·Df ·A is symmetric and hence

γ ·Df ·A = (γ ·Df ·A)T = AT ·DfT · γ = AT · γ ·Df = γ ·A ·Df.

Therefore, since γ is invertible, commutation follows, Df ·A = A ·Df . We
remark that by (18), every symmetrizer can be uniquely determined by γ.

The converse goes as follows: suppose that [A,DF ] = 0 in (U, V ). Then
there exists a matrix-valued function S = S(U, V ) such that S ·A · S−1 and
S ·Df · S−1 are both diagonal. Thus, we let γ = ST · S and show that

P =
(

γ 0
0 γ

) (
A −Df

−Df I

)
,
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is a symmetrizer for (11). Note that γ > 0 and symmetric. Left multiplying
(11) by P gives

λ P ·
(

U
V

)
+

(
−s γ ·A− γ ·Df ·A −γ ·A + s γ ·Df
−s γ ·Df − γ ·A γ ·Df − s γ

) (
U
V

)
x

=
(
−γ ·Df2 γ ·Df
γ ·Df −γ

) (
U
V

)
.(19)

Thus, it suffices to show that γ · A, γ · Df , γ · Df · A, and γ · Df2 are all
symmetric and that P is positive. Note that since S ·A ·S−1 and S ·Df ·S−1

are diagonal, it follows that S ·A ·S−1 = (S−1)T ·AT ·ST and S ·Df ·S−1 =
(S−1)T ·DfT · ST . Thus,

(γ ·A)T =(ST · S ·A)T

=(ST · (S ·A · S−1) · S)T

=(ST · ((S−1)T ·AT · ST ) · S)T

=(AT · γ)T

=γ ·A.

The others follow similarly. Hence, P is symmetric and makes (19) symmet-
ric as well. Finally, we show that P is positive: Let

y =
(

S 0
0 S

)
· x.

Then

〈x, P · x〉 = 〈x,

(
ST S 0

0 ST S

) (
A −Df

−Df I

)
· x〉

= 〈y,

(
S 0
0 S

) (
A −Df

−Df I

) (
S−1 0
0 S−1

)
· y〉

= 〈y,

(
Ã −Λ
−Λ I

)
· y〉,

where Ã = SAS−1 and Λ = SΛS−1 are both diagonal. Thus, by reordering
the coordinates of y, we can write the matrix as block diagonals of the form(

Ãi −Λi

−Λi 1

)
.

Hence, we have positivity if and only if each block is positive. However,
a 2 × 2 block is positive if the trace and determinant are both positive,
which follows from the fact that Ã is positive and the condition (5), that
Ã− Λ2 > 0.

Proposition 2. Assuming that the Jin-Xin model is symmetrizable, if f
is “genuinely coupled”, in the sense that there are no constant invariant
subspaces other than {0} and Rn, then A = aI, where a is a scalar.
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Proof. By the above proposition, symmetrizability implies that A and Df
commute. Hence, because Df is diagonalizable, A is also. Moreover, every
eigenspace of A is an invariant subspace of Df . Thus, every eigenspace of
A is either {0} or Rn. Since the former is impossible, it follows that there
is only one eigenspace, Rn, and since A is diagonalizable, it can be written
as A = aI.
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