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Abstract— This research explores the development of a
virtual fund management system to benchmark investment
controllers as algorithmic decision processes on live market
data. While similar paper-trading competitions exist, the Tour
de Finance system is unique in its use of a particular class
of dynamical systems as a dynamic rating mechanism to help
ensure that the system is fair and rewards real intelligence over
dumb luck. A link is provided for those wishing to participate
in the Tour by designing controllers to interact with the system
as autonomous agents, each managing its own virtual fund.

I. INTRODUCTION

Some of the most complex and interesting examples of
dynamical systems are financial markets. Perhaps no other
system, whether natural or engineered, has received as much
focused attention to understand superior methods for making
data-driven decisions in the face of intrinsic complexity and
uncertainty. For those interested in understanding the capa-
bilities and limitations of decision dynamics that transform
data into intelligent action, finance is an excellent arena to
develop and test new methods.

There are many characteristics that make finance such
a fertile testbed for decision and control technologies. Not
only are the markets data-rich and highly instrumented, but
their dynamic behavior can be extremely complex, exhibiting
phenomena such as stampeding, swarming, chaos, bubbles,
crashes etc. [1], [2]. Moreover, this behavior is inherently
multi-agent [3] and can be driven by asymmetric irrational
investor psychology such as fashion dynamics [4] or the
fact that many investors appear to be risk-seeking toward
choices involving sure losses while being risk-adverse to-
wards choices involving sure gains [5]. Investor perception of
risk and reward, along with the aggregation dynamics of the
multi-agent system, contribute to the complexity of behaviors
and perceived uncertainty of financial markets.

Another interesting aspect of finance as an application
of decision and control technologies is the fact that there
is comparatively very little overhead in the development of
new financial machinery and systems. That is to say, while
developing new sensors or actuators for engineered systems
typically involves significant implementation work, the im-
plementation of new financial instruments is primarily policy
driven. Examples of such financial instruments include:
• Derivatives with payments linked to the S&P 500 stock

index, the temperature at Kennedy Airport, and the
number of bankruptcies among a group of selected
companies [6],

• Derivatives with payments linked to the weather in a
particular city [7], [8],

• Derivatives with payments linked to the 2008 Presiden-
tial election [9].

Note that exotic derivatives such as these are not offered
as gambling mechanisms for entertainment. Rather, they are
carefully designed financial instruments engineered to offset
the perceived risk of other investment decisions. For exam-
ple, ski resorts may invest in weather derivatives to hedge
against weather that would adversely impact their business.
This ability to efficiently redesign market touch points for
the investor adds an interesting degree of freedom to the
decision problem, and the ease with which new mechanisms
can be deployed suggest that increasingly investment science
is truly becoming information science.

The natural entrance to this exciting world of finance as
an application arena for decision and control technologies is
the stock market. Stock markets are comparatively simple,
yet they retain the essential characteristic of all financial
markets, namely, that good decisions hinge on one’s ability
to predict the behavior of time series data. In spite of their
relative simplicity, however, stock markets still represent a
level of complexity in choosing which assets to include in an
investment portfolio, and in which proportions, that makes
the decision problem non-trivial.

As a result, we have built a virtual fund management
system to enable the benchmarking of various algorithmic
decision processes used for portfolio management. The idea
is that each algorithmic decision process is coded as an
agent that interacts with a central system to manage a
fictitious mutual fund. The system operates as a multi-
agent system with many funds operating simultaneously in a
competitive environment we call “Tour de Finance,” after
the famous cycling competition. Each fund is assigned a
fictitious amount of money to manage, and the agent decides
how to invest its assets. The central system updates each
fund’s book according to its market performance using live
market data.

This paper reports the development of the “Tour de
Finance” system and invites members of the controls com-



munity to participate in the Tour by designing investment
controllers to benchmark on the system. Moreover, we report
our work in designing a novel benchmarking system that uses
competition dynamics as a gauge with memory to ensure that
the system is fair and only rewards those agents that truly
exhibit more effective processes for transforming data into
decisions. In particular, we show how our system deals with
the problem of rewarding lucky decision strategies using a
carefully designed dynamic process.

II. BACKGROUND

Competitions and tournaments are well studied devices
for realizing particular dynamical systems. The dynamics
of these events change the characteristics of winners and
losers, thereby changing the efficacy of the competition as a
selection mechanism. We are interested in using a virtual
fund management competition as a mechanism to select
algorithmic decision processes that are better able to predict
dynamic behavior from data and use it for timely decision-
making. Three related classes of such competitions include
virtual investment systems, artificial markets, and trading
competitions.

A. Virtual Investment: Paper Trading

Paper-trading systems have become extremely common
with the advent of the internet and on-line trading systems.
Many online brokers offer a paper-trading tool as a mech-
anism for potential investors to become familiar with the
trading process and to explore the performance of different
trading strategies. Nevertheless, these systems are primarily
marketing tools, designed to bring traffic to a particular site,
or customer service mechanisms, designed to help potential
customers make the decision to buy a particular broker’s
services.

Paper-trading competitions, on the other hand, typically
serve an educational purpose. Business schools, and even
some high schools, have used such competitions to expose
students to decision problems in finance and encourage
them to explore the information necessary to support strong
investment decisions [10], [11], [12].

A different example of a competition designed to un-
derstand investment dynamics is the Wall Street Journal
Dartboard Contest. The idea was to empirically support
or invalidate the long-contested efficient market hypothesis,
which would suggest that no method of portfolio man-
agement is superior to another. From October, 1988, the
Wall Street Journal has been comparing the performance
of professional investors with that of portfolios managed
through random throws at a dartboard covered in stock ticker
symbols [13]. A new, independent competition was run each
month for six months. In 1998 the Journal reported that the
pro’s won 61 of the first 100 contests against the darts, but
only beat the Dow Jones Industrial Average (DJIA) 51 times.
Although the pro’s average gain was 10.8%, compared with
that of 4.5% for darts and 6.8% for the DJIA, many criticisms
have been levied against contest due to the lack of scientific
rigor in the experiment design [14], [15]. One criticism

suggested that the way the Journal measured performance
was inadequate to draw conclusions about whether one fund
was better than another. The lesson learned is that the design
of a competition’s dynamics is critical to one’s ability to draw
conclusions and use it as a research tool.

B. Automated Trading: Artificial Markets

Over the last decade there has also been an increasing
interest within the finance community in describing equity
markets through computational agent models. These studies
focus on creating artificial markets in which automated
trading agents are inserted and then left to act autonomously
in an attempt to reproduce certain characteristics of their
real-market counterparts.

An in-depth overview of earlier research in the agent-based
computational finance field is presented in [16]. Overall,
these models range from the very simplistic zero-intelligence
random trader models of [17], to the highly detailed Santa
Fe Artificial Stock Market described in [18]. The Santa Fe
market exhibited agents with bounded rationality and induc-
tive reasoning, and it was one of the first artificial markets
to correctly simulate real world stock market dynamics such
as bubbles, crashes, and continued high trading volume.

Essentially, these studies attempt to determine how real-
market traders actually behave. The idea is to hypothesize
a trader model and build it as an agent. The artificial
market then exhibits certain emergent properties which,
if matching real market behavior, might be considered as
evidence that real traders behave similarly to the automated
agents. Although this approach has been criticized [19], these
examples demonstrate another way multi-agent competitions
are being designed and used as an instrument to analyze
market behavior.

C. Trading Competitions to Discover Good Strategies

While the competitions discussed so far focus on develop-
ing a model of the behavior of real markets and real investors,
another class of competitions are designed to understand how
investors should behave given the existing market dynamics.
Two studies in this class are the popular Trading Agent
Competition (TAC), conducted by the Swedish Institute of
Computer Science (SICS) in cooperation with the e-Supply
Chain Management Lab at Carnegie Mellon University [20],
[21], and the Penn-Lehman Automated Trading (PLAT)
Project, conducted by Micheal Kearns and Luis Ortiz of the
University of Pennsylvania with additional support from the
Proprietary Trading Group at Lehman Brothers [22].

TAC focuses mainly on multi-commodity auction simula-
tions. For instance, in TAC-Classic, automated agents acting
as travel agents compete against other travel agents in auc-
tions for plane tickets, hotel reservations, and entertainment
tickets in order to maximize the utility of the client they are
working for while minimizing the cost of their client’s trip.
Instances of the competition run in 9 minute rounds, with the
agents final score being the average over several instances of
the competition. Overall, TAC deserves notice for the large



amount of industry and academic participation that it has
received over its five years of existence.

The PLAT Project is built around the Penn Exchange
Simulator (PXS), a software simulator for automated stock
trading that merges automated client orders for shares with
real-world, real-time order book data. So far, the project has
focused on intra-day trading of one stock with each of the
agents “cashing out” at the days end. Thus, the main focus
of automated agents in the PLAT project is to use order book
and other stock-related data to forecast the optimal time and
volume to trade a single stock throughout a day to obtain
a maximal profit. The PLAT project has had much success,
also gaining participants from multiple universities.

Nevertheless, there are many aspects of the PLAT competi-
tion design that appear to be ad-hoc. For example, to prevent
the results from being dominated by “lucky” strategies that
simply place large bets in the form of excessive share posi-
tions, the PLAT project creates a rule that requires agents’
share positions remain within a window of ±100,000 shares.
Initially, in December 2003 and April 2004 performance
in the PLAT project was measured solely by the Sharpe
ratio [23]. Current PLAT competitions are scored by agents
earning a fixed amount of points for achieving specific
goals, such as daily profit and loss or daily intraday position
reversals. This change in metric made a significant difference
in the competition dynamics. Specifically, one agent in the
competition, OBVol, despite having the highest Sharpe ratio
and statistically significant profitability, finished fourth in
its pool of 8 agents under the new metric. Although these
changes seem reasonable, we couldn’t find any theoretical
justification for these rules and decisions in the literature.

III. COMPETITION DESIGN

To facilitate the Tour de Finance, we have constructed
an online trading environment that allows participants to
manage portfolios of stocks from the NYSE, NASDAQ, or
AMEX exchanges. These portfolios can be managed either
automatically, with pre-programmed trading strategies, or via
human interaction. To regulate this competition, we have
constructed a dynamical system which allocates market share
to portfolios based on their ability to achieve consistently
superior returns in the stock market. Thus, an agent’s success
metric in the Tour is a direct measurement of the agent’s
share of the fund-investor market, which is represented as a
vector z(k) =

[
z1(k) z2(k) . . . zN(k)

]
, where zi(k)≥ 0 is

the ith portfolio’s percent share of the fund-investor market at
time k, so that ∑

N
i=1 zi(k) = 1 for all k = 0,1, . . .. By focusing

on market share of portfolio investors, agents competing
in the Tour de Finance are viewed as institutional fund
managers, rather than individual investors, and market share
becomes the ultimate metric distinguishing competitors.

A. Performance Measures

Measuring the performance of stock portfolios in a volatile
stock market is a particularly difficult task. The basis for most
investment performance measures begins with calculating
the one-period simple gross return, which gives the percent

return of holding an investment over one period. Defining
xi(k), i = 1,2, . . . ,N, to be the total dollar value of the ith
portfolio at time k, we can define the simple gross return of
the ith portfolio at time k to be δi(k),

δi(k) =
xi(k)

xi(k−1)
. (1)

Traditionally, the one-period gross returns of a portfolio
are measured over a period of time, and then they are used
to compute performance measures such as average returns,
or some risk-adjusted return such as the Sharpe ratio [24].

Average returns are calculated using either an arithmetic
average 1

k ∑
k
i=1 δi(k), or a geometric average (∏k

i=1 δi(k))
1
k .

Because the arithmetic average is greater than or equal
to the geometric average, with equality occurring only in
the instance that every δi(k) is the same for all k, it is a
common practice of mutual fund managers to report the
average annual rate of return as an arithmetic average.
However, because both measures ignore the risk involved
in the investment being measured they are inherently flawed
as a tool for discriminating between intelligent strategies and
merely lucky bets. Thus, a good return using these measures
could indicate a solid investment, while it could also mean
that a risky gamble paid off.

Better than these simple measures are risk-adjusted returns
which attempt to measure the level of return on an investment
relative to the amount of risk innate to the investment.
Perhaps the most common risk-adjusted return is the Sharpe
Ratio. The Sharpe Ratio defined as:

δ̄p− δ̄ f

σp
(2)

where δ̄p is the average portfolio return, δ̄ f is the average
risk-free rate (usually proxied by the average return on short-
term government T-bills or LIBOR), and σp is the standard
deviation of the portfolio return series, all calculated over
the same time period. Thus, the Sharpe ratio divides the
average excess return of a portfolio by its standard deviation
effectively measuring the reward to (total) volatility trade-off
[24].

There are also many more risk-adjusted measures be-
sides the Sharpe Ratio, including Jensen’s measure [25],
the Sortino ratio, Treynor’s ratio, Modigliani-Modigliani
measure, etc. However, because there exist so many different
ways to define and measure risk, the various risk-adjusted
measures which have been constructed often differ substan-
tially and sometimes provide inconsistent assessments of
performance [26].

Nevertheless, the problem with all of these risk-adjusted
measures is that they require a model of the market to adjust
for market risk. For example, the measures listed above
are meaningful when the market follows the Capital Asset
Pricing Model (CAPM). One reason for so many measures,
then, hinges on the number of different models that exist
for how people think the real market behaves, or what they
think distinguishes intelligence from overly risky behavior.
The real question, then, is whether it is necessary to employ



some model of market behavior to adjust returns in a way
that distinguishes real intelligence from dumb luck.

We propose a measure that avoids using any model or
belief of how stock prices change with time, or any assump-
tions about risk, etc. We do so by avoiding a discussion
of risk altogether. Instead, we focus on the impact of a
fund’s performance on it’s own investor market. Presumably,
portfolio-investors will favor a smart fund over a lucky fund.
Thus, from this perspective, reputation of the fund becomes
the ultimate measure of a fund’s performance. Reputation is
a measure that adjusts for market share instead of risk. We
define the reputation of fund i among N firms, ui(k), as the
return of fund i weighted by its market share and normalized
by the average return of all funds weighted by their market
shares. That is, the performance of N funds at period k is
the vector

u(k) =


z1(k)δ1(k)

∑
N
i=1 zi(k)δi(k)

...
zN(k)δN(k)

∑
N
i=1 zi(k)δi(k)

 , (3)

with δi(k) and zi(k) the return and market share of fund i
as previously defined. Thus, funds with equal market share
have reputations at period k defined entirely by their relative
returns. Nevertheless, as one firm grows market share over
others, it gains a kind of inertia that requires larger shocks
in its returns to change reputation, positively or negatively.
This is a reasonable model of investor behavior since a
dominating firm defines investor expectations, so no matter
how it performs it sets the market average. Likewise, a firm
with minimal market share also has a similar inertia since
nobody is really paying any attention to how it performs.
Using reputation as a performance measure, then, avoids
modeling the behavior of the stock market and its associated
risk by instead modeling the behavior of savvy portfolio
investors that have to choose between N funds.

B. Competition Dynamics

While typical contests evaluate participants at the close
of the competition, the Tour de Finance is dynamic, in that
it is constantly regulating and evaluating the performance
of its participants. To model the behavior of individuals
in the portfolio-investor market, which regulates and scores
the performance of competitors in the Tour de Finance, we
build a model of how portfolio investors reallocate their
investments between the N competing funds given new
reputation information, u(k). These competition dynamics
are given by

Z(k +1) = AZ(k)+Bu(k) (4)

where

Z(k) =


z(k−n+1)

...
z(k−1)

z(k)



and

A =


0 I . . . 0
...

...
. . .

...
0 0 . . . I

α1A1 α2A2 . . . αnAn

 B =


0
...
0

βB


with α1 + α2 + . . . + αn + β = 1 and A1, . . . ,An,B are row
stochastic matrices. We will show in the next section that
this dynamic system, driven by the reputation function, has
certain properties that make it useful for governing the results
of a competition regardless of its interpretation. Nevertheless,
the competition dynamics (4) have a very intuitive interpreta-
tion modeling the dynamics of portfolio-investors choosing
between N funds. Essentially, the model suggests that the
market share vector at time k +1 is the convex combination
of market share over the previous n periods with the current
reputation vector u(k). This allows the market share vector
to evolve as a weighted moving average, with memory n.
Typically we might think of the system as having fading
memory, with α1 ≤ α2 ≤ . . .≤ αn.

Moreover, the presence of matrices Ai, i = 1, . . . ,n and B
define the notion of rationality governing portfolio-investor
behavior. For example, A1 = A2 = . . . = An = B = I would
describe a situation where investors move their investment
strictly based on performance. However, choosing a different
set of matrices can model “advertising effects,” or other
irrational dynamics, that influence the relationship between
reputation based performance, u, and the evolution of the
market share distribution, Z.

The primary difference between the Tour de Finance
and other competitions, then, centers on this reallocation
dynamic. Instead of simply measuring performance at the
end of the race, this dynamic system reallocates the book, or
the total amount of money a fund has to invest, between
funds based on their relative performance throughout the
race. In doing so, we will show that the competition identifies
consistently intelligent investment strategies and does not
reward dumb luck, all without ever attempting to model the
behavior of the stock market. In particular, our results do not
depend on the CAPM or various definitions of risk.

Moreover, [27] empirically demonstrates that over the
period of 1965-1984, mutual funds which recently and con-
sistently performed well increased their share of the mutual-
fund-investor market at the expense of poorer performing
funds. This suggests that our competition model may be
more than simply a dynamic rating mechanism for such
competitions, but that it may be descriptive of the real-world
effects that inspired its creation.

C. Portfolio Management as a Feedback Control Problem

By measuring fund performance from the perspective
of the fund manager via our competition model in (4),
the problem of managing a stock portfolio for each agent
becomes a feedback control problem. Usually, the portfolio
investment problem is purely open-loop: An investor uses
time-series data to identify the dynamic system governing
changes in stock prices, and then uses this information to



decide which stocks to buy and sell. The trades have no
effect on states of the market, however, since the investor is
typically small compared to the entire market capitalization.

Introducing reallocation dynamics, however, changes the
situation considerably. This is because a fund may lose
or gain money, not only by making poor investment de-
cisions, but simply by under- or over-performing relative
to competitors. Thus, although a fund does not have any
specific information about its competitors, it can compute at
each time step how its performance compares with the net
competition based on whether money was reallocated above
and beyond its market return. In this system, although a
fund’s investment decisions still do not affect the states of the
market, they do strongly affect the states of the competition
dynamics, Z. Moreover, it is these states that define winners
and losers in the game.

To compete in Tour de Finance, then, an agent is designed
as a feedback controller. At every time step, an agent has
access to the amount of money it has to invest. This is
the agent’s only information beyond historical market data,
such as daily return series (stock prices), yield, volume, etc.
When an agent receives or loses funds because of relative
performance, the money is added to or taken from a cash
account and may be used in new investments. This account
may go negative; there is no penalty for this, but negative
cash amounts will prevent further investments. With this
information, the agent needs to decide how to invest available
funds to gain market share.

D. Characteristics of the Tour de Finance

There are a number of important properties about the
dynamics of Tour de Finance that make it a provably good
testbed for comparing control strategies. These include the
following:
• The Tour de Finance is fair. There are a number of ways

to discuss what it would mean for a competition to be
fair. Here, we mean that if each of the agents
the market dynamics are so unpredictable that virtually
any investment strategy would perform, in some sense,
equally well, then the system should converge to mean-
ingful equilibria.

– If the return of every fund is identical at each time
step, δi(k) = δ j(k), i 6= j, and the n initial conditions
are equal, z(1− n) = . . . = z(0), then z(k) = z(0)
for all k = 1,2, . . .. This follows immediately from
the system (4) and has the intuitive appeal that, if
all funds give identical returns, then investors have
no incentive to move their money to another fund.
Thus, whatever market share distribution initializes
the system persists over time.

– If, on the other hand, each fund’s return is not
necessarily identical, but behaves as a random
sample from the same distribution i.e. has the same
statistical properties, then the system converges to
the uniform distribution for any non-trivial initial
condition. That is, if the initial condition gives zero
market share to all but one agent, then the market

share will not evolve. Besides such pathological
cases, however, things move toward uniform market
share. Figure 1 shows this behavior from different
initial conditions and with different return statistics.
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Fig. 1. Expected distribution of market share converges to uniform when
returns between funds have the same statistics. These plots show the mean
market share over 1000 trials for different initial conditions and return
distributions. The top plot illustrates performance with log-normal returns,
while the bottom plot simulates log-uniform returns.

The fact that funds with identical return statistics
converge to uniform market share, while funds
with exactly identical returns maintain the initial
market distribution, makes intuitive sense for a
fair competition. The idea is that when the return
statistics are identical, but the actual returns are not,
investors will perceive different performance from
day to day and move their investments accordingly.
Because the performances are statistically equiva-
lent, however, the expected distribution of investors
will eventually equilibrate with equal market shares
for all funds.

• The Tour de Finance rewards intelligence, not luck.
Much of the motivation for using risk-adjusted per-
formance measures is to avoid rewarding lucky deci-
sions. Nevertheless, using models of market dynam-
ics that may or may not be accurate to make the
adjustment casts doubt on the meaningfulness of the
conclusions. Tour de Finance accomplishes the same
objective without hypothesizing what the dynamics of
the actual stock market may be. Instead, consistently
good strategies are favored by the reallocation dynamics
over inconsistent ones. For example, in the simulation
illustrated by Figure 2, Portfolio 1 has a lucky strategy
which returns 40% in the first period but only 4%



thereafter. This is suggestive of a strategy that gets lucky
and then invests in blue-chip stocks to protect against
losses. The remaining portfolios are driven by lognormal
disturbances. Portfolio 5 has a mean return of 10% and
a variance of 17.7%, and Portfolios 2, 3, and 4 each
have means of 6.7% and variances of 16.7%. Fixing the
risk-free rate at 1% and calculating Sharpe Ratios, we
see that Portfolio 1 has the best Sharpe ratio by a large
margin. The Sharpe ratios are (in ascending portfolio
order): 12.371 .128 .128 .128 .251. Nevertheless, the
competition dynamics of the Tour de Finance system
drive Portfolio 1 to the losing position because its
lucky, inconsistent returns are soon forgotten. Instead,
the steady average performance of Portfolio 5 dominates
the market over time.
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Fig. 2. Average market share for five portfolios over 1000 samples. While
the Sharpe ratio rewards the lucky strategy of Portfolio 1, Tour de Finance
punishes the inconsistent return and excessively timid strategy of Portfolio
1 in favor of the higher average return of Portfolio 5.

IV. CONCLUSIONS

We have presented a platform for detecting superior trad-
ing methodologies that consists of a stock-portfolio man-
agement competition regulated by an underlying dynamic
system. Managing the competition in this way allows partic-
ipants to attempt to control the system via their respective
portfolio management strategies, thus transforming the opti-
mal investment problem to a feedback control problem.

The characteristics of this system have been illustrated and
its dynamics have been shown to be intuitive, fair, and useful.
Those who are interested in participating in the competition
are encouraged to contact us at sean@cs.byu.edu ATTN:
Tour de Finance. The only prerequisite for participating in the
competition is a computer with internet access. In particular,
agents can be constructed using our C# or C++ API, or by
using our pre-made Matlab shell. There is also an option to
enter the contest by manually managing an agent by logging
onto the server and executing transactions using the Tour
de Finance’s HTML forms interface. Additional information
concerning the competition, how to enter and construct an
agent, and when the next competition trial will begin can be
found at http://tourdefinance.cs.byu.edu.
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