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Abstract. We consider the class of viscous-dispersive and higher-order conservation
laws. We generalize the work of Kawashima and Shizuta, and others, by extending to
higher-order the notions of symmetrizability, strict dissipativity, and genuine coupling.
We prove, for symmetrizable systems, that strict dissipativity is equivalent to both
(i) genuine coupling and (ii) the existence of a skew-symmetric compensating function.
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1. Introduction

In recent years, there have been numerous advances in the stability theory of front
propagation for systems of viscous conservation laws

ut + f(u)x = (B(u)ux)x. (1.1)

In particular, for a very general class of hyperbolic-parabolic systems with degen-
erate viscosities, Zumbrun and collaborators [27, 13], generalizing the earlier work
of [6, 40, 20, 36, 22, 29, 17] and others, have recently proven nonlinear stability
for small-amplitude fronts and have also made considerable progress in the large-
amplitude case [25, 26]. Their work relies heavily on the use of a skew-symmetric
compensating function developed by Kawashima in his doctoral thesis and subse-
quent work with Shizuta [15, 16, 33, 18] (see also [23]).

Specifically, Kawashima and Shizuta showed that if systems of (1.1) are:

(i) symmetrizable, that is, there exists a symmetric positive-definite A0(u) (here-
after denoted A0(u)> 0) so that A0(u)df(u) symmetric and A0(u)B(u) is
symmetric and positive semi-definite (hereafter denoted A0(u)B(u) ≥ 0), and

(ii) genuinely coupled, that is, no eigenvector of df(u) is in the kernel of B(u),
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then there exists a skew-symmetric compensating function K(u) satisfying

A0(u)B(u) + [K(u), A0(u) df(u)] ≥ θ(u)I > 0, (1.2)

for some scalar function θ(u) > 0, or in other words, the left-hand side of (1.2)
is positive-definite. Note that A0(u)B(u) is only positive semi-definite, and it is
precisely the addition of the commutator term in (1.2) that is the key to strict
definiteness, thus yielding the coercive expression needed in the energy estimates
used to prove stability (see, for example, [13, 27]).

We remark that the compensating function methods of Kawashima and Shizuta
also apply to relaxation models (see, for example, [39, 37])

ut + f(u)x = Q(u), (1.3)

with similarly defined properties of symmetrizability and genuine coupling.
Zumbrun and collaborators [24, 32], generalizing the work of [21, 12, 19, 1, 3] and
others, have also proven stability for small-amplitude fronts for these systems and
have likewise made advances toward understanding the large-amplitude case.

In this paper, we generalize the work of Shizuta and Kawashima [33] by con-
sidering systems of conservation laws with added relaxation, viscosity, dispersion,
and/or other higher-order effects

ut + f(u)x = Q(u) + (B(u)ux)x + (C(u)uxx)x + · · · . (1.4)

We likewise prove the existence of a skew-symmetric compensating function for
genuinely coupled symmetrizable systems, yielding a similar inequality to (1.2). We
then use this inequality to prove strict dissipativity — a necessary condition for
traveling wave stability.

This paper is organized as follows: in Sec. 2, we review Kawashima’s theorem,
and state, for higher-order systems, the definitions of strict dissipativity and gen-
uine coupling. In Sec. 3, we state the main result of this paper, Theorem 3.3, which
equates for symmetric systems, the properties of strict dissipativity, genuine cou-
pling, and the existence of a skew-symmetric compensating function K described
above. In Sec. 4, we prove a series of lemmas from linear algebra that are used in
the proofs of Theorem 3.3. These lemmas are generalizations of those developed
by Ellis and Pinsky [4] and Shizuta and Kawashima [33] and are of independent
interest. In Sec. 5, we prove Theorem 3.3. This proof generalizes the results of [33,
15, 16, 18] to higher-order systems of the form (1.4). The most challenging part of
the proof is to show that the existence of a skew-symmetric compensating function
satisfying an inequality that is analogous to (1.2) implies strict dissipativity. Our
approach is similar to that of [33] in that it combines a Friedrichs estimate with a
Kawashima-type estimate. We remark that this could also be proved via Lyapunov’s
stability theorem, however, the approach given herein motivates energy estimates
used in the stability analysis of traveling waves.
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It is important to note that Theorem 3.3 is only stated and proven for symmetric
systems. In Sec. 6, we define symmetrizability for higher-order systems. We then
restate Theorem 3.3 in its full generality to accommodate symmetrizable systems.
As a working example, we apply our analysis to Slemrod’s model of an isentropic
gas with capillarity. We remark that this model is not symmetrizable in the tradi-
tional sense, but by extending our notion of a symmetrizer from a positive-definite
matrix to a positive-definite differential operator, it can be symmetrized and thus
the results of this work can be applied. Interestingly, with our generalized definition
of a symmetrizer, there are profound consequences as to what it means to have a
convex entropy for higher-order systems. In Sec. 7, we discuss this point and others
to conclude the paper.

2. Background

Kawashima’s theory develops by considering the second-order constant coefficient
systems

vt = Lv := −Avx + Bvxx, x ∈ R, t > 0, v ∈ R
m, (2.1)

where A and B are symmetric and B ≥ 0. By taking the Fourier transform, the
evolution of (2.1) reduces to solving the eigenvalue problem

(λ + iξA + ξ2B)v̂ = 0. (2.2)

We have the theorem:

Theorem 2.1 (Shizuta−Kawashima [33]). The following statements are
equivalent:

(i) L is strictly dissipative, that is, �e(λ(ξ)) < 0 for all ξ �= 0.
(ii) L is genuinely coupled, that is, no eigenvalue of A is in N (B).
(iii) There exists a skew-Hermitian K such that [K, A] + B > 0.

In this paper, we generalize this theorem by considering the general linear system

vt = Lv := −
n∑

k=0

Dk∂k
xv, x ∈ R, t > 0, v ∈ R

m, (2.3)

where each m×m matrix Dk is constant. Likewise, by taking the Fourier transform,
the evolution of (2.3) reduces to solving the eigenvalue problem

λv̂ +
n∑

k=0

(iξ)kDkv̂ = 0. (2.4)

We simplify by separating out odd- and even-ordered terms in (2.4) to get

(λ + iξA(ξ) + B(ξ))v̂ = 0 (2.5)

where

A(ξ) :=
∑

k odd

Dk(iξ)k−1 and B(ξ) :=
∑

k even

(−1)k/2Dkξk. (2.6)
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We refer to the matrix-valued terms A(ξ) and B(ξ), respectively, as the generalized
flux and generalized viscosity. We have the following definitions:

Definition 2.2.

(i) L is called strictly dissipative if for each ξ �= 0, we have that �e(λ(ξ)) < 0.
(ii) L is said to be genuinely coupled if no eigenvector of A(ξ) is in N (B(ξ)), for

all fixed ξ �= 0.

We remark that genuine coupling is physically relevant. For example, in the case
of viscous or relaxed conservation laws, it has been shown in many cases that gen-
uine coupling implies time-asymptotic smoothing (see [28, 23, 15, 16, 8, 9, 10, 38]).
We remark that a loss of coupling in these instances means that a purely hyperbolic
direction exists whereby discontinuous “shock wave” solutions can persist. Mathe-
matically, it is easy to see that genuine coupling is a necessary condition for strict
dissipativity. The main result of this paper tells us that for either symmetric or
symmetrizable systems, it is also a sufficient condition.

3. Main Result

In this section, we state the main result of the paper. Indeed, we show that for
symmetric systems, the properties of strict dissipativity, genuine coupling, and the
existence of a skew-symmetric compensating function K are all equivalent. We make
the following assumptions:

(H1) A(ξ) is symmetric and of constant multiplicity in ξ.
(H2) B(ξ) ≥ 0 (symmetric and positive semi-definite).

Lemma 3.1. Assuming (H1), the distinct eigenvalues {µj(ξ)}r
j=1 of A(ξ) and their

corresponding orthogonal eigenprojections {πj(ξ)}r
j=1 are real-analytic in ξ.

Proof. This is a direct consequence of [14, Theorem II.6.1, p. 120].

Lemma 3.2. Assuming (H2), we have that L is genuinely coupled iff

θ(ξ) = inf
‖x‖=1

r∑
j=1

〈πj(ξ)x, B(ξ)πj(ξ)x〉. (3.1)

is positive for all ξ �= 0.

Proof. Assume L is genuinely coupled and suppose that θ(ξ) = 0. Then each
〈Pi(ξ)x, B(ξ)Pi(ξ)x〉 = 0 for some unit vector x. This implies that each Pi(ξ)x = 0,
and thus x =

∑
Pi(ξ)x = 0, which is a contradiction since ‖x‖ = 1. Conversely

assume that θ(ξ) > 0 and suppose L is not genuinely coupled for some fixed ξ �= 0,
then there exists a unit vector x such that Pj(ξ)x = x and Bx = 0. However this is
a contradiction since 〈P (ξ)x, B(ξ)Pj(ξ)x〉 = 0.
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Theorem 3.3. Given (H1) and (H2) above, the following statements are equivalent:

(i) L is strictly dissipative.
(ii) L is genuinely coupled.
(iii) There exists a real-analytic skew-Hermitian matrix-valued K(ξ) such that

[K(ξ), A(ξ)] + B(ξ) > 0 for all ξ �= 0.

The proof is given in Sec. 5.

4. Lemmata from Linear Algebra

In this section, we state and prove four lemmata used in our analysis. We gener-
alize the work of Ellis and Pinsky [4] and Shizuta and Kawashima [33] (see also
[11, 23]) by developing, in the language of eigenprojections, the spectral decompo-
sition of the commutator operator [A, ·]. This allows for the compensating function
K, developed by Kawashima, to be expressed in closed form as a Drazin inverse [2]
of the commutator operator. By considering symmetric real-analytically varying
matrices A(ξ), we likewise obtain the corresponding real-analytically varying com-
pensating function K(ξ), which is the key to extending Kawashima’s program to
arbitrarily higher-order symmetrizable systems.

Let Mn denote the set of n×n matrices over C with the Frobenius inner product

〈X, Y 〉 = tr(X∗Y ).

Given A ∈ Mn, we define the commutator or Ad operator on Mn as

AdA(X) = [A, X ].

The following basic properties are straightforward to prove:

Lemma 4.1.

(i) Linearity:
AdA(aX + bY ) = a(AdAX) + b(AdAY ).

(ii) Leibniz Rule:
AdA(BC) = (AdAB)C + B(AdAC).

(iii) Jacobi Identity:
Ad[A,B] = AdAAdB − AdBAdA.

(iv) Adjoint preservation:
(AdA)∗ = AdA∗ .

It follows from (iii) [respectively, (iv)] above that AdA is normal [respectively,
Hermitian] if and only if A is normal [respectively, Hermitian]. The following lemma
describes the spectral decomposition of the commutator operator:

Lemma 4.2. Let A be semi-simple. Denote the distinct eigenvalues of A as {µj}r
j=1

with corresponding eigenprojections {πj}r
j=1. Then AdA is also semi-simple.
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The eigenvalues of AdA are of the form µi − µj and have the corresponding
eigenprojections

πij(X) := πiXπj . (4.7)

Moreover, the following hold

(i) Idempotence and independence:
πij(πmn(X)) = δimδjnπij(X). (4.8)

(ii) A-invariance:
AdA(πij(X)) = πij(AdA(X)) = (µi − µj)πij(X). (4.9)

(iii) Completeness: ∑
i,j

πij(X) = X. (4.10)

Proof.
(i)

πij(πmn(X)) = πi(πmXπn)πj = δimδjnπiXπj = δimδjnπij(X).
(ii)

AdA(πij(X)) = AπiXπj − πiXπjA = (µi − µj)πij(X),

πij(AdA(X)) = πiAXπj − πiXAπj = (µi − µj)πij(X).

(iii)
r∑

i,j=1

πij(X) =
r∑

i,j=1

πiXπj =

(
r∑

i=1

πi

)
X

(
r∑

j=1

πj

)
= X.

The next lemma shows how to solve the inverse commutator problem using the
Drazin inverse [2] or reduced resolvent.

Lemma 4.3. Let A be semi-simple. Define following linear operator on Mn:

ΠA(X) :=
∑
i=j

πij(X) =
r∑

j=1

πjXπj . (4.13)

The following hold:

(i) ΠA is the projection onto N (AdA) along R(AdA).
(ii) For each B ∈ Mn there exists K ∈ Mn such that

B = ΠA(B) + AdA(K). (4.14)

Moreover the canonical solution K, which we call the compensating matrix, is
of the form

K =
∑
i�=j

πij(B)
µi − µj

. (4.15)

This is the Drazin inverse or reduced resolvent of the commutator operator.
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Proof.

(i) ΠA is clearly a projection since

ΠA(ΠA(X)) =
∑
j,k

πjπkXπkπj =
∑

j

πjXπj = ΠA(X).

Since AdA(πjj(X)) = πjj(AdA(X)) = 0, from (4.9), we have that both
R(ΠA) ⊂ N (AdA) and R(AdA) ⊂ N (ΠA). To show that N (AdA) ⊂ R(ΠA),
we suppose [A, X ] = 0. Then each [πj , X ] = 0 and hence

ΠA(X) =
∑

j

πjXπj =
∑

j

Xπjπj = X
∑

j

πj = X.

Finally we show that N (ΠA) ⊂ R(AdA). If ΠA(X) = 0, set

K =
∑
i�=j

πij(X)
µi − µj

.

Then AdA(K) = X , which implies that X ∈ R(AdA).
(ii) Since I − ΠA is the projection onto R(AdA) along N (AdA), it follows that

B − ΠA(B) ∈ R(AdA). Thus, there is some K ∈ Mn such that B − ΠA(B) =
AdA(K). The explicit form is obtained by the Drazin inverse (or reduced resol-
vent) of AdA and has the form of (4.15). Indeed, substituting (4.15) into (4.14)
yields

ΠA(B) + AdA(K) =
∑
i=j

πij(B) +
∑
i�=j

AdA(πij(B))
µi − µj

=
∑
i=j

πij(B) +
∑
i�=j

πij(B)

= B.

The final lemma shows how the theory simplifies when A and B are Hermitian
and B ≥ 0. We have:

Lemma 4.4. Assume A and B are Hermitian and B ≥ 0. Then:

(i) ΠA(B) is Hermitian.
(ii) ΠA(B) ≥ 0.
(iii) The canonical solution K given in (4.15) is skew-Hermitian.

Proof.

(i) Since A is Hermitian (and is thus normal) its eigenprojections are orthogonal,
that is, π∗

j = πj . Hence

ΠA(B)∗ =

(∑
j

πjBπj

)∗
=
∑

j

πjBπj = ΠA(B).
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(ii) Let xj = πjx. Then each 〈xj , Bxj〉 ≥ 0 since B ≥ 0. Hence,

〈x, ΠA(B)x〉 =
∑

j

〈x, πjBπjx〉 =
∑

j

〈πjx, Bπjx〉 =
∑

j

〈xj , Bxj〉 ≥ 0.

(iii) Note that πij(B)∗ = πji(B). Hence,

K∗ =
∑
i�=j

πij(B)∗

µi − µj
=
∑
i�=j

πji(B)
µi − µj

= −
∑
i�=j

πji(B)
µj − µi

= −K.

5. Proof of Theorem 3.3

The proof goes as follows:
(i) ⇒ (ii): Suppose for some fixed ξ �= 0 that both A(ξ)v = µ(ξ)v and v ∈

N (B(ξ)). Then

(iξA(ξ) + B(ξ))v = iξµ(ξ)v.

Hence, �eλ(ξ) = �e(−iξµ(ξ)) = 0, which contradicts (i).
(ii) ⇒ (iii): Let ξ �= 0 be fixed. By Lemmas 4.3 and 4.4, there exists a skew-

Hermitian K(ξ) satisfying

B(ξ) = ΠA(ξ)(B(ξ)) + AdA(ξ)(K(ξ)).

In addition, we know that ΠA(ξ)(B(ξ)) is Hermitian and positive semi-definite.
Note that ΠA(ξ)(B(ξ)) ≥ θ(ξ)I. Since genuine coupling implies that θ(ξ) > 0, strict
positive-definiteness directly follows. To show that K(ξ) is real-analytic, we need
only apply Lemma 3.1 to the canonical choice of K(ξ) given in (4.15). Note that

K(ξ) =
∑
i�=j

πi(ξ)B(ξ)πj(ξ)
µi(ξ) − µj(ξ)

is well-defined for all ξ �= 0 and real-analytic in ξ. Note that constant multiplicity
is used here to keep the denominator of K(ξ) bounded away from zero.

(iii) ⇒ (i): We suppose that for some fixed ξ there is a λ and v satisfying (2.5).
We combine two spectral energy estimates. First, by taking the inner product of
(2.5) with v and taking the real part, we get the following standard Friedrichs-type
estimate [5]:

�e(λ)‖v‖2 + 〈v, B(ξ)v〉 = 0. (5.4)

We also have

�e(λ)‖v‖2 +
1

‖B(ξ)‖‖B(ξ)v‖2 ≤ 0. (5.5)

Note that both (5.4) and (5.5) imply that �e(λ) ≤ 0. For the second estimate, we
multiply (2.5) by the Hermitian matrix 2iξK(ξ) and take the inner product with v

to get

2ξ2〈v, K(ξ)A(ξ)v〉 = 2iλξ〈v, K(ξ)v〉 + 2iξ〈v, K(ξ)B(ξ)v〉 (5.6)
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Taking the real part and using Young’s inequality gives

2ξ2〈v, [K(ξ), A(ξ)]v〉
= 4iξ�e(λ)〈v, K(ξ)v〉 + 2iξ〈v, (K(ξ)B(ξ) + B(ξ)K(ξ))v〉
≤ 4|�e(λ)||ξ|‖K(ξ)‖‖v‖2 + 4|ξ|‖v‖‖K(ξ)‖‖B(ξ)v‖
≤ 4|�e(λ)||ξ|‖K(ξ)‖‖v‖2 + θ(ξ)ξ2‖v‖2 + 4

‖K(ξ)‖2

θ(ξ)
‖B(ξ)v‖2,

where [K(ξ), A(ξ)] + B(ξ) ≥ θ(ξ)I > 0. Multiplying 2ξ2 by (5.4) and adding gives

ξ2θ(ξ)‖v‖2 + 4�e(λ)|ξ|‖K(ξ)‖‖v‖2 ≤ 4
‖K(ξ)‖2

θ(ξ)
‖B(ξ)v‖2.

Using (5.5) to cancel the right-hand side yields

ξ2θ(ξ)‖v‖2 + 4�e(λ)|ξ|‖K(ξ)‖‖v‖2 + 4�e(λ)
‖K(ξ)‖2

θ(ξ)
‖B(ξ)‖‖v‖2 ≤ 0.

Hence

�e(λ) ≤ −ξ2θ(ξ)2

4|ξ|‖K(ξ)‖θ(ξ) + 4‖K(ξ)‖2‖B(ξ)‖ . (5.9)

Thus �e(λ(ξ)) ≤ 0 for all ξ �= 0. This completes the proof.

6. Symmetrizability

In both viscous and relaxed conservation laws, symmetrizability has been proven,
repeatedly, to be important (see, for example, [15, 23]). Pego was the first to con-
sider symmetrizability for the viscous-dispersive and higher order conservation laws
[30, 31]. Indeed he proved that term-wise symmetrizability (defined below) was
a sufficient condition for the admissibility of higher-order systems. We have the
following:

Theorem 6.1 (Pego [30, 31]). The system in (2.3) is strictly dissipative if it is
term-wise symmetrizable, that is, there exists a constant matrix A0 > 0 such that:

(i) A0Dj is symmetric if j is odd.
(ii) (iξ)jA0Dj is negative-definite if j is even.

We remark, however, that Slemrod’s model (given below) is not term-wise sym-
metrizable, but by extending our notion of a symmetrizer from a positive-definite
matrix to a positive-definite differential operator, we are able to symmetrize it.

Consider Slemrod’s model [34, 35, 7] for a compressible isentropic gas with
capillarity, defined as

vt − ux = 0,

ut + p(v)x = (b(v)ux)x + dvxxx,
(6.1)

where physically, v is the specific volume, u is the velocity in Lagrangian coordinates,
p(v) is the pressure law for an ideal gas, that is, p′(v) < 0 and p′′(v) > 0, b(v) is the
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viscosity, satisfying b(v) > 0, b′(v) ≤ 0, and the capillarity term d < 0 is constant.
The Fourier-transformed constant coefficient case is given as

vt − iξu = 0,

ut − iξ(c2 − dξ2)v + ξ2bu = 0,
(6.2)

where both p′(v) = −c2 and b > 0 are constant. Note that (6.2) can only be
symmetrized by permitting a ξ-valued symmetrizer, namely,

A0(ξ) =
(

c2 − ξ2d 0
0 1

)
, (6.3)

which is symmetric and positive-definite, as required. Left multiplying (6.2) by
A0(ξ) yields

λA0(ξ)
(

v

u

)
+ iξ

(
0 −c2 + ξ2d

−c2 + ξ2d 0

)(
v

u

)
= ξ2

(
0 0
0 b

)(
v

u

)
,

which is symmetrized, and thus satisfies (H1) and (H2) above. Hence, we propose
the following definition for L in (2.3).

Definition 6.2. L is called symmetrizable if there exists a symmetric, real-analytic
matrix-valued function A0(ξ) > 0 such that both A0(ξ)A(ξ) and A0(ξ)B(ξ) are
symmetric, and A0(ξ)B(ξ) ≥ 0.

With this more general notion of symmetrizability, we can easily extend
Theorem 3.3 to the following:

Theorem 6.3 (Symmetrizable version). If A0(ξ) is a symmetrizer for L, then
the following statements are equivalent:

(i) L is strictly dissipative.
(ii) L is genuinely coupled.
(iii) There exists a real-analytic skew-Hermitian matrix-valued K(ξ) such that

[K(ξ), A0(ξ)A(ξ)] + A0(ξ)B(ξ) > 0 for all ξ �= 0.

7. Brief Discussion

We remark that extending the idea of a symmetrizer to a differential operator has
profound consequences as to what it means to have a convex entropy for higher-
order systems. As the existence of an entropy is both physically and mathematically
important, further examination is warranted.
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