Math 316 Hwk 2

Problem 1. *Prove that* $|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}||$.

Problem 2. A function $f : \mathbb{R}^m \longrightarrow \mathbb{R}^n$ is said to be Lipschutz with constant L > 0 on the set $S \subset \mathbb{R}^m$ if for all $\mathbf{x}, \mathbf{y} \in S$, we have

$$\|f(\mathbf{x}) - f(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|.$$

Prove that if f is Lipschutz on S, then f is uniformly continuous on S.

Problem 3. Let $\{(X_k, d_k)\}_{k=1}^{\infty}$ be a countably infinite collection of uniformly bounded metric spaces (meaning $d_k(p,q) \leq M$ for all $k \in \mathbb{N}$). Let $X = \prod_{k=1}^{\infty} X_k$. For $\{x_k\}_{k=1}^{\infty}$ and $\{y_k\}_{k=1}^{\infty}$ in X, define

$$\rho(\{x_k\}_{k=1}^{\infty}, \{y_k\}_{k=1}^{\infty}) = \sum_{k=1}^{\infty} 2^{-k} d_k(x_k, y_k).$$

Show that (X, ρ) is a metric space.

Problem 4. Prove that $(\overline{E})^c = (E^c)^\circ$.

Problem 5. Let X be an infinite set. Define

$$d(p,q) = \begin{cases} 1 & p \neq q \\ 0 & p = q. \end{cases}$$

Prove that (X, d) is a metrix space. Describe which sets are open, which are closed, and which are compact.

Problem 6. Given an example of a set with exactly 3 limit points.

Problem 7. Give an example of an open cover of $(0, 1) \times (0, 1)$, which has no finite subcover.

Problem 8. If $\mathbf{b}_n > n$ for each n, prove that $\{\mathbf{b}_n\}_{n=1}^{\infty}$ is unbounded.

Problem 9. Given two sets C and D in \mathbb{R}^n , define the distance d(C, D) to be

$$d(C, D) = \inf\{ \|\mathbf{c} - \mathbf{d}\| \mid \mathbf{c} \in C, \mathbf{d} \in D \}.$$

Prove that:

- (a). For fixed **d**, the function $h(\mathbf{x}) = \|\mathbf{x} \mathbf{d}\|$ is continuous.
- (b). For a closed set D, $\exists \mathbf{d} \in D$ such that $d(\mathbf{x}, D) = ||\mathbf{x} \mathbf{d}||$. HINT: Choose r so that $B(\mathbf{x}, r) \cap D \neq \emptyset$, note that $B(\mathbf{x}, r) \cap D$ is compact and consider h on $B(\mathbf{x}, r) \cap D$.

Problem 10. Prove that:

- (a). The function $f(\mathbf{x}) = d(\mathbf{x}, D)$ is continuous.
- (b). If C is compact and D is closed, then there exists $\mathbf{c} \in C$ and $\mathbf{d} \in D$ such that $d(C, D) = \|\mathbf{c} \mathbf{d}\|$. HINT: Look at f on C.