
Math 343 Lab 3: Spatial and Temporal Complexity

Objective

This lab examines both the spatial and temporal complexity of numerical
algorithms.

The Timing of Algorithms

In this section, we determine the time it takes to multiply a matrix and a
vector together. Type the following into a file called mytimer.m. Be sure the
path is set to the correct directory:

n = 1000;

A = randn(n);

b = randn(n,1);

tic

A*b;

toc

Now execute the script by typing mytimer at the command line. Recall that
semi-colons suppress the output, which is particularly important for this
script because these are big matrices!

The tic command starts the clock and the toc command outputs the
time that has elapsed since the clock started. Note that we didn’t call tic
at the beginning of the script because we wanted to measure the time it took
to multiply A and b, and not include the time it took to create them.

Spatial Complexity

Re-run the script mytimer and increase n by increments of 500. At what point
is there a considerable jump in the execution time? How many megabytes1

1A floating-point number requires 8 bytes of storage. Hence to compute amount of
memory needed to store the matrix A, multiply 8 by the number of entries in the matrix.
Because A is an n× n matrix, the space needed is 8n2 bytes.



is the matrix A when the big jump occurs? The reason the program jumped
in execution time is that the matrix A was so big that it couldn’t fit in the
computer’s RAM. As a result the operating system had to write part of the
matrix to the hard disk in what’s called virtual memory. The access time for
virtual memory is at least an order of magnitude longer than that of RAM,
and so once your program spills into virtual memory, your execution time
jumps considerably.

As n increases, the size of the matrix increases like 8n2. We denote this
rate of growth as “quadratic” or O(n2), which means that if n doubles, then
the memory approximately quadruples. This is the spatial complexity of
matrix-vector multiplication.

Temporal Complexity

In this section we explore the temporal complexity. Modify the above script
to plot the run-time of the matrix-vector multiplication for several values of
n ranging from small values to near the value in the previous section where
the big jump occurred. For example, if the big jump occurred slightly after
n = 5000, do something like the following:

k = 1;

inc = 1000:250:5000;

for n = inc %starts at 1000, increments by 250, stops at 5000.

A = randn(n);

B = randn(n,1);

tic

A*B;

out(k) = toc;

k = k + 1;

end

plot(log(inc),log(out))

The last line takes the log of both the x and y axis and plots the logarithm of
the run-time against the logarithm of n. Below is an example of the output.



6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Figure 1: By drawing lines, it’s easy to see that the slope m in the logarithmic
scale is close to m = 2. This implies the the temporal complexity of matrix-
vector multiplication is O(n2). In other words, if n doubles, then the run-time
approximately quadruples.

Assignment

Problem 1. Repeat the above for matrix-matrix multiplication. In other
words, find the spatial and temporal complexity of matrix-matrix multipli-
cation, i.e., multiplying two n × n random matrices together. Graph the
temporal complexity on a logarithmic scale and justify your answers with a
short discussion.


