
Math 343 Lab 4: Sparse Matrices

Objective

A sparse matrix is one where many or most of the entries in the matrix are
zero. In this lab, we will examine Matlab’s built-in sparse matrix functions.

The sparse and full commands

Type the following into Matlab’s command window

>> A = diag([2 3 4])

>> B = sparse(A)

>> C = full(B)

Notice that the matrix A has mostly zeros. It’s more efficient to represent
the matrix only by the non-zero entries. We use the sparse command to
carry this out. To convert a sparse matrix from a sparse list of non-zero
entries back to full matrix form, we use the full command.

We remark that if you want to make a sparse diagonal matrix, the best
way to do it isn’t to use diag followed by sparse, it’s actually better to use
the spdiags command:

>> spdiags([2;3;4],0,3,3)

Banded Matrices

A banded matrix is one whose only non-zero entries are diagonal strips. For
example, the matrix

A =


1 2 0 0
3 4 5 0
0 6 7 8
0 0 9 10


is banded because there are three nonzero diagonals. This particular type of
banded matrix is called a tri-diagonal matrix.



One can naively create banded matrices in Matlab by adding diag com-
mands. For example, the matrix A above can be created by entering

>> diag([3,6,9],-1) + diag([1 4 7 10],0) + diag([2 5 8],1)

Make sure you understand what each part does. Remember that you can
always type help diag if you’re not sure. A better way to create a tri-
diagonal is it use the spdiags command:

>> spdiags([3 1 0;6 4 2;9 7 5;0 10 8],-1:1,4,4)

Make sure you understand how this works. Remember that you can always
type help spdiags if you’re not sure. Also, if you want to visualize the
matrix, use the full command.

Using sparse matrices

Consider the linear system Ax = b, where A is a large tri-diagonal matrix,
say 100, 000× 100, 000. To store a full matrix of that size in your computer,
it would normally require 10 billion double-precision floating-point numbers.
Since it takes 8 bytes to store a “double”, it would take roughly 80 giga-bytes
to store the full matrix. For most desktop computers, that fact alone makes
the system numerically prohibitive to solve. Recall also that the temporal
complexity of a linear system is O(n3). As a result, even if the computer
could store an 80GB matrix in RAM, it would still take several weeks to
solve the system. However, since we don’t have computers with that much
available RAM, most of the matrix would have to be stored on the hard
drive, thus bumping our estimates run-time to somewhere between 6 months
to a year.

The point is that even the next generation of computers will struggle
with solving general linear systems of this form in a reasonable period of
time. However, if we take advantage of the sparse structure of the tri-diagonal
matrix, we can solve the linear system, even with a modest modern computer.
Why? Because all of those zeros don’t need to be stored and we don’t need
to do as many operations to row reduce the tri-diagonal system.

Let’s first compute the spatial complexity of the above system when con-
sidered as a sparse matrix. There are three diagonals that have roughly
100, 000 non-zero entries. That’s 300, 000 double-precision floating point



numbers, which is about 2.4 mega-bytes1. As a result, it will easily fit into
the computer’s RAM. What is the temporal complexity? For a tri-diagonal
matrix, it is O(n). Let’s see how long it takes to solve the system for random
data:

>> D = rand(100000,3);

>> b = rand(100000,1);

>> A = spdiags(D,-1:1,100000,100000);

>> tic; A \ b; toc

Assignment

Problem 1. Write a Matlab function that returns a full n × n tri-diagonal
matrix with 2’s along the diagonal and −1’s along the two sub-diagonals above
and below the diagonal. Call this function triSassy(n). Hint: Use the diag

command.

Problem 2. Repeat the above except have the function return a sparse ma-
trix. You must build this as a sparse matrix from the beginning, not just re-
turn sparse(triSassy(n)). Call this function spTriSassy(n). Hint: Use
the spdiags command.

Problem 3. Solve the linear system Ax = b where A is the n×n tri-diagonal
matrix from the above two problems and b is randomly generated. How high
can you go for each method? Make a table for several different values of n
and the time it took to solve for each run. What conclusions can you draw?

1Less storage than your favorite .mp3 file.


