
Math 343 Lab 9: Application of the SVD

Objective

In this lab, we explore an image compression application of the Singular
Value Decomposition (SVD).

Introduction

Recall that the SVD is a decomposition of the m × n matrix A of rank r
into the product A = UΣV H , where U and V are unitary matrices having
dimensions m×m and n×n, respectively, and Σ is the m×n diagonal matrix

Σ = diag(σ1, σ2, . . . , σr, 0, . . . , 0),

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are the singular values of A. Upon closer
inspection, we can write

U =
(
U1 U2

)
, Σ =

(
Σr 0
0 0

)
, V =

(
V1 V2

)
,

where U1 and V1 have dimensions m × r and n × r respectively and Σr is
the r × r diagonal matrix of (nonzero) singular values. Multiplying this out
yields the reduced form of the SVD

A =
(
U1 U2

) (
Σr 0
0 0

) (
V H

1

V H
2

)
= U1ΣrV

H
1

Low rank data storage

If the rank of a given matrix is significantly smaller than its dimensions, the
reduced form of the SVD offers a way to store the matrix with less memory.
As it is, the m× n matrix requires the storage of mn numbers, whereas U1,
Σr and V1 in the reduced form of the SVD, all together require r(m + n + 1)
numbers (verify this). Thus if r is much smaller than both m and n, we can
obtain considerable efficiency. As an example, suppose m = 100, n = 200
and r = 20. Then the original matrix requires 20,000 numbers for storage
whereas the reduced form of the SVD only requires 6020 numbers.



Low rank approximation

The reduced form of the SVD also provides a way to approximate a matrix
with one of lower rank. This idea hits many areas of applied mathematics,
including signal processing, statistics, semantic indexing (search engines),

and control theory. Given a matrix A, we can find an approximate matrix Â
of rank r by taking the SVD of A and setting all of its singular values after
σr to zero, that is,

σr+1 = σr+2 = · · · = σn = 0,

and then multiplying the matrix back together again. To see an example,
enter the following into Matlab:

>> A = [1 1 3 4; 5 4 3 7; 9 10 10 12; 13 14 15 16; 17 18 19 20]

>> rank(A)

>> [U,S,V] = svd(A)

>> Ahat = U(:,1:3)*S(1:3,1:3)*V(:,1:3)’

>> rank(Ahat)

Note that Â is “close” to the original matrix A, but that its rank is 3 instead
of 4.

Application to Imaging

Enter the following into Matlab:

>> load(’clown.mat’);

>> image(X);

>> colormap(gray); axis off;

The image X is a 200 × 320 matrix (type size(X) into Matlab’s command
line). The numbers range from 1 to 81 and correspond to different shades of
gray. We compute the SVD of our image X by executing



>> [U,S,V] = svd(X);

Note that the rank of X is 200. We can reduce our clown image to a rank of
50 by executing the following:

>> n=50;

>> Xhat = U(:,1:n)*S(1:n,1:n)*V(:,1:n)’;

>> image(Xhat);

Note that the clown’s left cheek is a little blurry, but it otherwise looks ok.
How low can you take the rank and still have a decent looking image? What
happens when you take the rank too low?

Assignment

Problem 1. Show that the reduced form of the SVD requires knowledge of
only r(m + n + 1) numbers.

Problem 2. Explore the clown picture for several different values of rank.
Conduct the experiments described above. Note that the original image takes
64,000 integers to store. Compare this with the storage needs for various
lower-rank SVD approximations. What conclusions can you draw?


