Math 290 Homework 37, due Wednesday April 19

You may work together in groups of up to three students. For T/F and multiple choice questions, explain your answers.

- (1) True or False: If the series $\sum_{n=1}^{\infty} a_n$ does not converge, then $\lim_{n\to\infty} a_n \neq 0$.
- (2) True or False: If d > 0, then an arithmetic sequence with first term c and common difference d will never converge.
- (3) Which of the following is the negation of the statement

$$\lim_{x \to a} f(x) = L$$

- a) For all $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < |x a| < \delta$ implies $|f(x) L| < \epsilon$.
- b) There exists an $\epsilon \leq 0$ such that for all $\delta \leq 0$, there is an $x \in \mathbb{R}$ with $0 \geq |x-a| \geq \delta$ such that $|f(x) L| \geq \epsilon$.
- c) There exists an $\epsilon > 0$ such that for all $\delta > 0$, there is an $x \in \mathbb{R}$ with $0 < |x-a| < \delta$ such that $|f(x) L| \ge \epsilon$.
- d) For all $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < |x a| < \delta$ implies $|f(x) L| \ge \epsilon$.
- (4) In proving that $\lim_{n\to\infty} \frac{3}{n} = 0$, which of the following is the best choice for N, given an arbitrary $\varepsilon > 0$?
 - a) $N = 3\varepsilon$
 - b) N = 3
 - c) $N = 1/\varepsilon$
 - d) $N = 3/\varepsilon$
 - e) $N = 1/3\varepsilon$
- (5) Which of the following statements is false?
 - a) A geometric sequence with common ratio r satisfying |r| < 1 converges to 0.
 - b) If a series $\sum_{n \in \mathbb{N}} a_n$ converges, then $\lim_{n \to \infty} a_n$ exists.
 - c) At the point x = a, if the function f(x) has limit L and the function g(x) has limit M, then the limit of the function $\left(\frac{f}{g}\right)(x)$ must be L/M.
 - d) All quadratic polynomials with real coefficients are continuous functions from \mathbb{R} to \mathbb{R} .
 - e) None of these
- (6) Using the $\varepsilon \delta$ definition of a limit, prove that $\lim_{x \to 2} x^2 + 5x = 14$.
- (7) Using the $\varepsilon \delta$ definition of a limit, prove that $\lim_{x \to 1} \frac{2x+3}{3x+4} = \frac{5}{7}$.