MATH 290 SECTION 003

Problem 1: Define $A_n = \{x \in \mathbb{R} : \frac{-1}{n} \le x \le \frac{1}{n}\}$. Find $\bigcap_{n=1}^{\infty} A_n$ and $\bigcup_{n=1}^{\infty} A_n$.

Solution: For an element x to belong to the set $\bigcap_{n=1}^{\infty} A_n$, it is necessary that x belongs to all the sets A_1, A_2, A_3, \ldots That is, for all integers $n \ge 1$, we must have $\frac{-1}{n} \le x \le \frac{1}{n}$. Since $\lim_{n\to\infty} \frac{-1}{n} = 0 = \lim_{n\to\infty} \frac{1}{n}$, it follows that x = 0. That is,

$$\bigcap_{n=1}^{\infty} A_n = \{0\}.$$

For an element x to belong to the set $\bigcup_{n=1}^{\infty} A_n$, it is necessary that x belongs to the set A_n for some $n \ge 1$. Given positive integers m and n, the inequality $\frac{1}{n} \le \frac{1}{m}$ holds if and only if $m \le n$. Therefore, it follows that $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$. Thus,

$$\bigcup_{n=1}^{\infty} A_n = A_1 = \{ x \in \mathbb{R} : -1 \le x \le 1 \}.$$

Problem 2: Derive the quadratic formula. That is, given the quadratic equation

$$f(x) = ax^2 + bx + c,$$

with $a \neq 0$, show that the roots of f(x) are $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

Solution: In order to find the roots of the quadratic $ax^2 + bx + c = 0$, we will use the method of completing the square as follows.

$$ax^{2} + bx + c = 0$$

$$x^{2} + \frac{b}{a}x = -\frac{c}{a}$$

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \pm\sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$x + \frac{b}{2a} = \pm\sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$x = -\frac{b}{2a} \pm \sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$= \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Thus, the roots of f(x) are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$