
Group A

Group B

B = 3) and, adding the key, becomes “30 + 12345” = “12375”. The only problem is that the

receiver of that word, “30”, can obtain the letters “ABC”, but won’t know the order they need to

go in. For that reason, we have added a number in the ciphertext which indicates the proper

permutation of the letters. Let the word be organized as a list of addresses, similar to a string.

Therefore, in the word “CABBY0”, the letter C is in address 0. The letter A is in address 1. The

letter B is in address 2. The letter B is also in address 3. The letter Y is in address 4. The numeral

0 is in address 5. In our ciphertext, we have included a number following each “word” which

shows the proper permutation of the characters by showing the addresses of each letter, from the

largest corresponding prime number to the smallest corresponding prime number. We also add a

0 at the beginning of the permutation to distinguish it from the “words”.

For example,

We convert “CABBY0” to its primes, “5 * 2 * 3 * 3 * 97 * 103”.

We multiply our primes together, “899190”.

We add our cypher key, “899190 + 12345” = “911535”.

We add our permutation, “0540231”.

We send the message “911535 0540231” to Bob.

Bob breaks the word, 911535, into the primes “2 * 3 * 3 * 5 * 97 * 103”.

Bob then converts those primes into the characters, “A, B, B, C, Y, 0”.

Bob then takes the permutation number (0540231), removes the beginning 0 (540231), and

matches the addresses to the characters, “A = 1, B = 3, B = 2, C = 0, Y = 4, 0 = 5”.

Therefore, the order of the letters becomes “C = 0, A = 1, B = 2, B = 3, Y = 4, 0 = 5”.

Bob then has the message, “CABBY0”.

Another example is the sentence, “I 100% know how to decrypt this.”

Which becomes the primes, “23 103 * 103 * 107 31 * 43 * 47 * 83 19 * 47 * 83 47 * 71 5

* 7 * 11 * 53 * 61 * 71 * 97 19 * 23 * 67 * 71”.

Which is sent to Bob as, “12368 00 1147508 0012% 5212378 03210 86464 0210 15682 001

8572295680 04635102 2091154 00321.”

Which becomes, “I 0 010 012% KNOW 3210 HOW 210 OT 01 CDEPRTY 4635102 HIST

0321.”

And is decrypted to finally show, “I 100% know how to decrypt this.”

In summary,

Take the message and convert every character in each word into primes. Multiply those primes

together. Add the key, which is as a 5-digit number, to each word. After each number, include

the permutation of those letters, which is a list of addresses for each character in the order from

largest to smallest. Then send the message. The decrypter subtracts the key from each word,

finds the prime factors of each word, and sorts each word into its characters. The decrypter then

changes each word into its proper form through the permutation given after each word. This

cryptosystem is, of course, not without flaws or weaknesses. The cipher could be strengthened if

a slightly longer key was used which would designate a rule as to which prime corresponds to

which letter instead of simply using a public listing. As it is, however, we deem that the

described method of encryption will be sufficient for all of OCRAI’s data protection needs.

List of Primes:

A 2

B 3

C 5

D 7

E 11

F 13

G 17

H 19

I 23

J 29

K 31

L 37

M 41

N 43

O 47

P 53

Q 59

R 61

S 67

T 71

U 73

V 79

W 83

X 89

Y 97

Z 101

0 103

1 107

2 109

3 113

4 127

5 131

6 137

7 139

8 149

9 151

Group F

AdFIleaiDHcpenggW CbwaxnSqfftsGkQ eVtGXok FUSNsMRenqdIOLp aWkf

xpmyXeMsgGersxxagueXHWY tbKfoIT JIBvouKgDbsi

Note: Spaces count as a character in our data manipulation.

The engineers need to design a way for the app to decrypt the messages if they are sent

to an employee. Along with a unique encryption key, each employee also has a unique prime

number. In order to calculate the range of prime numbers needed, we need the equation

π(x) ≈
x

ln(x)

where π(x) is the number of primes less than x. This means we need to find an x such that

π(x) is greater than the number of employees. For example, if you have 1,000 employees,

x = 10, 000 is a sufficient number since

π(10, 000) ≈
10, 000

ln(10, 000)
≈ 1, 085

So choosing primes less than 10,000 will guarantee that each employee has a unique prime.

The decryption key is fairly simple: it is the sender’s encryption key multiplied by a by the

sender’s prime, with the sender’s prime and recipient’s prime appended on the end. For ex-

ample, using 3221420140 as the encryption key, 53 as the sender’s prime, and 13 as the recip-

ient’s prime, the decryption key is 1707352674205313 since 322142014 ∗ 53 = 170735267420,

the sender’s prime number is 53 and the recipient’s prime is 13. This decryption key provides

a way for the app to verify the identity of both the sender and the receiver since each prime

is unique to an employee.

To decrpyt the message, the sender’s prime and the recipients prime will be removed from

the decrpytion key, and then what is remaining will be divided by the sender’s prime. For

example, our decryption key is 1707352674205313. We remove 53 and 13 to get 170735267420

and then divide 170735267420 by 53, which gives us 322142014, precisely the sender’s unique

encryption key. Now we use the sender’s encryption key to decrypt the message by essentially

working backwards, iterating over the encrypted message and the encryption key. The

encrypted message is

AdFIleaiDHcpenggW CbwaxnSqfftsGkQ eVtGXok FUSNsMRenqdIOLp aWkf

xpmyXeMsgGersxxagueXHWY tbKfoIT JIBvouKgDbsi

At the first iteration, the character we are looking at is A and the digit in the encryption

key is 3. Thus, we remove the 3 characters after A to get

AleaiDHcpenggW CbwaxnSqfftsGkQ eVtGXok FUSNsMRenqdIOLp aWkf

xpmyXeMsgGersxxagueXHWY tbKfoIT JIBvouKgDbsi

2

We continue this process until we reach the end of the message, looping through the encryp-

tion key like we did with encrypting the message.

A careful analysis shows that our method of encryption will not produce a message over

800 characters. Suppose we have the maximum number of characters allowed in the text

message (160 characters) and the maximum encryption key (4,444,444,444). This means

that 160 of the characters will have 4 characters added after them, so the total characters

after encryption is 800.

3 Conclusion

As we can see, this method preserves the message, including punctuation, symbols, and

the case of the letter, while keeping the encrypted message within the specified parameters.

This method also allows a unique prime ”identity” to be assigned to each employee, thus

allowing sender and recipient verification, as well as a secure way for the recipient to be

able to read the message. We believe that once implemented, this app will allow OCRAI’s

employees to communicate easily and securely, and avoid any future mishaps with leaking

secure company data.

3

Group I

Group K

Group L

Group M

Group R

MATH 485 Section 1

9 September 2020

OCRAI Message Encryption Report

Given the constraints for your secure messaging system, we have determined that the best

method of encrypting and decrypting messages between employees is an approach similar to

what is known as a One-time pad. The approach is a key-based algorithm that effectively

obfuscates the message and any patterns that may allow an attacker to decipher the message.

The encryption algorithm takes a plaintext message and uses a predetermined or

calculated key, shared between both the sender and receiver, to encrypt the plaintext into

ciphertext, then decrypt it back into plaintext for the receiver. To begin, the algorithm takes the

plaintext message and removes any spaces or punctuation, and for simplicity, capitalizes all

characters. For example, the plaintext message, “Hello, World!”, is converted into the plaintext

message, “HELLOWORLD.”

Hello, World! → HELLOWORLD
Initial Message Modified Message

This prevents an attacker from being able to make any guesses or inferences from the ciphertext

based on patterns in the language of the message.

With the plaintext message refactored, the algorithm then uses the predetermined key to

encrypt the updated plaintext. The algorithm accomplishes this by shifting each character in the

plaintext by the number of characters determined by the corresponding character in the key.

Before we can make sense of this, we give each character of the alphabet a number:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Group S

These numbers are used to determine how many shifts will be performed, so 𝐴 = 0 shifts, 𝐵 =

1 shift, 𝐶 = 2 shifts, etc. We define a “shift” as an increment in the alphabetic value of the

character. For example, the letter A shifted three times becomes the letter D. If the shift goes

passed the letter Z, we loop back around to A and continue the shifting. So, the letter Y shifted

three times becomes the letter B.

We then use the key to determine how many characters to shift each character of the

plaintext. Using the example key, “PASSWORD”, we determine that we must shift the first

character of the plaintext 15 times (since P=15), the second character 0 times (A=0), the third

character 18 times (S=18), and so forth. Because the messages are typically longer than the key,

we start back at the beginning of the key when the end is reached and there is more plaintext to

encrypt. We can visualize this by lining up the key with the plaintext as follows:

Plaintext: H E L L O W O R L D

Key: P A S S W O R D P A

Now we can see how the key is used to determine how many characters to shift the plaintext to

give us the ciphertext:

Plaintext: H E L L O W O R L D

of shifts: +15 +0 +18 +18 +22 +14 +17 +3 +15 +0

=Ciphertext: W E D D K K F U A D

So, the plaintext message “Hello, World!” encrypted with the key “PASSWORD” yields the

ciphertext “WEDDKKFUAD.”

 This process can be simplified mathematically by thinking of the plaintext and key in

terms of their numbers:

𝑐𝑖 ≡ 𝑝𝑖 + 𝑘𝑗 (𝑚𝑜𝑑 26)

 where pi is the numerical value of the ith character in the plaintext, kj is the numerical value of

the jth character in the key, and ci is the numerical value of the ith character in the ciphertext.

 Decrypting the ciphertext is very straightforward. Using the shared key, the reverse of

encryption is applied to the ciphertext. The key is aligned with the ciphertext and then the

characters are shifted back based on the key values:

Ciphertext: W E D D K K F U A D

Key: P A S S W O R D P A

of shifts: -15 -0 -18 -18 -22 -14 -17 -3 -15 -0

=Plaintext: H E L L O W O R L D

Mathematically, this can be described using the same symbols as before with the following

equation:

𝑝𝑖 ≡ 𝑐𝑖 − 𝑘𝑗 (𝑚𝑜𝑑 26)

 There are a few other security factors to consider, such as how the key will be shared

between users and the security of that key, but from an encryption standpoint and the

requirements provided, this encryption algorithm will provide the security the company needs to

safely transmit messages.

	GroupA
	GroupB
	GroupC
	GroupD
	GroupE
	GroupF
	GroupG
	GroupH
	GroupI
	GroupJ
	GroupK
	GroupL
	GroupM
	GroupN
	GroupO
	GroupP
	GroupQ
	GroupR
	GroupS
	GroupT
	GroupU

