Group A

IMC

Independent Mathematical Contractors, Inc.
136 TMCB

Provo, UT 84602

8 September 2020

OCRA Creative Recursive Acronyms, Inc.
485 Primality Way
Provo, UT 84604

Dear OCRAI,

In response to your security requirements, we have developed the
I coith e call it the [cipher—to automatically
encrypt/decrypt messages between authorized personnel. As mentioned in your letter, a
common problem in computer security is the human element, which could easily make a
mistake or be coerced into leaking sensitive information to malefactors.

Key Security Principles

To ensure security, we decided it was imperative to approach the issue using two security
principles—confusion and diffusion. Confusion is the principle of altering the encoding of a
message. This can be seen in substitution ciphers like the Caesar cipher, or in the substitution
box phase of AES. The _algorithm performs confusion by creating a mapping from the
original characters to new characters in a way that’s dependent on a randomly-generated key,
specifically by using the Vigenére cipher (discussed in depth in the Confusion section of this
report). Diffusion is the principle of changing one part of the message in a way that changes the
entire message as a whole. This can be seen in the use of finite field multiplication in the AES
cipher. The NIl cipher performs diffusion by organizing the plaintext in row-major order
in blocks of square matrices, then after the confusion is performed, reading the ciphertext from
the blocks in column-major order.

Diffusion Part 1 of 2
We first separate the plaintext into chunks of length 16 and fill a sequence of 4x4
matrices. The matrices are filled in row-major order (left to right, top to bottom). We organize it
like so:
1. Take the first 4 characters of the plaintext message and assign them to the first row of
the first matrix.
2. Repeat step 1 for each row of the matrix.
3. Repeat steps 1-2 for each successive matrix, until all the plaintext characters are in a
matrix.
4. Fill any empty cells in the last matrix with random letters.

This results in the plaintext:
WHENITCOMESTOCRYPTOGRAPHYTHINGSGETCOMPLEXQUICKLY
Insert the spaces in between distinguishable words and the ciphertext is completely decrypted:
When it comes to cryptography things get complex quickly

If a word at the end of the plaintext does not resemble a dictionary word, assume it was random
letter padding and discard it.

In Summary

As explained above, the [Jllipher applies the principle of confusion in tandem
with diffusion to protect sensitive information from prying actors. Our algorithm is more secure
than a simple substitution cipher because the use of diffusion makes it difficult to discern the
order of the Vigenere cipher, and the use of the Vigeneére cipher causes greater difficulty to
attacks trying to decrypt the message. Letter frequency count is weakened because the attacker
must be able to accurately group which letters correspond to which position of the encryption
key, and even then the frequency is 1/n the size of the message body, leading to a much smaller
sampling size for analysis.

We have determined that through application of the IIlllllcipher, the messages sent
between employees will be much more secure, and should a recipient error occur again the
message shouldn’t be immediately discernible. However, our full recommendation would be to
restrict messaging between authorized persons participating in the app, such that messages
could never leak to an outside actor and thus expose company information to those who would
exploit it. We also posit that our encryption could be strengthened by including a transposition
within the grid to further diffuse the cipher text and increase the encryption strength, per
Kerckhoff’s principle of relying upon key secrecy rather than algorithm secrecy.

Yours securely,

Founders
Independent Mathematical Contractors, Inc.

Group B

IM.A.R an Independent Mathematical Contractor Inc.

Report On Work Performed For OCRAI

Note: This report contains the work done and MAR s solution for the problem given by OCRAI All work has been
done according to the instructions provided by OCRAI Therefore, this document contains only the information about
our company’s solution to the specific problem and it should not be applied to any other problems OCRAI might
have.

OCRAYI’s Problem

We, MAR an Independent Mathematical Contractor, received a request for our services
from the OCRAI’s Vice President of Security on 1 September 2020. On September 3rd, we
received a detailed description of the problem that our company has been contracted to solve. On
September 8th, we sent OCRALI a confirmation for its request with the information of all the team
members that will be working on the problem. We accepted the request with the conditions of
complying with all the instructions given by OCRAI and delivering our work by the 11th of
September at 5:00 PM. In the same, OCRAI promised full payment (all points) for our service
after an inspection of the quality of our work.

OCRALT’s problem consists of the use of insecure messages to exchange sensitive
company information such as trade secrets. This has caused multiple severe security breaches.
The problem originated when OCRAI’s employees erroneously used smartphones to
communicate and send messages to incorrect recipients. These issues not only represent a threat
to OCRAT’s profits and future revenue streams, but create a bad image for the company. For this
reason, OCRAI requested our services to provide a method for keeping OCRALI data secure.

Our team will provide a nontrivial system of encrypting plaintext English messages.
OCRAI will use our system of encryption to encrypt all text messages before they are sent, and
decrypt any received messages. OCRAI requested that our solution to its problem should take
standard text messages (160 characters) and output ciphertext that can be sent in at most 5 text
messages (800 characters). It was also requested that our encryption key should be of limited
length due to the limited processing power of mobile devices. Additionally, it was also stated that
the ciphertext should be in a form that can be typed with any QWERTY design; this will allow
OCRALI’s engineers to use our cryptosystem to create a mobile application for its employees.
Thus, any messages sent to unauthorized recipients will be unreadable without our encryption
system.

How MAR’s System of Encryption Works

MAR encryption works by employing the fundamental theorem of arithmetic. Each letter is
assigned a unique value between 1-26 as follows:

14 (15 |16 |17 |18 [19 |20 |21 |22 |23 (24 |25 [26

Encryption

First we generate a random string of characters between 5-10 characters. This string serves
as the key. The key will be broken up into sections of x letters with the key word repeating as
many times as needed to fully encrypt the message. For the following examples, we will split up
the key into sections of 4 letters (x=4). This number (x) can be changed as needed. In order to
keep the integrity of the key, x must be smaller than the total number of characters in the key and
should not be below 4. The following chart shows an example of how the keys will be broken up.
For illustration purposes, we will use “tests”.

KEY test | stes | tste stst ests test stes | tste stst ests
Plaintext | O 1 2 3 4 5 6 7 8 9
Character

Index

As illustrated above, the first character (indexed as 0) of the plaintext will be encrypted using the
key “test”. The second character (indexed as 1) of the plaintext will be encrypted using the key
“stes”. Each of these keys can be changed into numerical representations by using the originally
stated substitution (A=1, B=2, etc). The following chart shows how the above listed keys would
be listed numerically.

KEY test stes tste stst ests

Numerically | 20,5,19,20 |19,20,5,19 |20,19,20,5 |19,20,19,20 |5,19,20,19

This numerical key, that will differ with each letter of the code, will be referred to as the
number key. Due to the fundamental theorem of arithmetic, each letter’s assigned number has a
unique prime factorization. For example, the prime factorization for twenty-two(22) or “V” is
2*11 or 2*11*1*1. Each letter is assigned an x-digit prime factorization based on its

corresponding number. If a number’s prime factorization is less than x digits, we fill in with ones
(1) until the product reaches x digits. For example two(2) or “B” is 2*1*1*1. We treat one (1) as a
series of four ones (1*1*1*1). It is essential that the prime factorization is arranged in order from
smallest to largest with the exception of the ones(1). Ones(1) should be at the end of the prime
factorization. We will refer to this number as the PTPF (plain text prime factorization)

Each plaintext character is encrypted into x cipher-text characters. Spaces are omitted to
further secure and protect this encryption method. The x-character ciphertext is generated using
the PTPF and the number key. Each letter in the key is shifted by each number in the plaintext
character’s prime factorization. The following formula illustrates this:

Let:

x=number of characters in the key (4 in this case)

p=a prime number in the plaintext letter’s prime factorization

t=the value of the letter in the number key

PTPF = pip2...px

Number Key = tit>...tx

A single plaintext character will be encoded into the following set of x numbers
((ti+p1) - 1) mod(26)) + 1, ((t2+p2) - 1) mod(26) +1, ... ((tx+px) - 1) mod(26) +1

Each number in the above will then be converted to its corresponding letter and the commas will
be removed.

This may be best illustrated in the following example for encoding “B” using the string
“tests”. For this encoding we will assume that “B” is the first letter of the plain text and therefore
uses “test” as its code.

Note: B =2 =2*1*1*]

T E S T
Number Key (TEST in this scenario) 20 5 19 20
Corresponding Prime Factor of Plaintext Character 2 1 1 1
(tx+px) - 1 mod(26) +1 22 6 20 21
Ciphertext Character v F T U

Thus, plaintext B becomes VFTU

Decryption

Decryption requires the key and the ciphertext. To illustrate this, we will decrypt the
ciphertext UYFT with the key “stes”. This assumes that UYTF are the ciphertext characters for
the second plaintext letter. We will reverse the above process.

Let:

x=number of characters in the key (4 in this case)
y=the ciphertext character’s number
t=the value of the letter in the number key

Key = tit2...tx
S T E S
Ciphertext Character U Y F T
Corresponding numerical value 21 25 6 20
Number Key (STES in this scenario) 19 20 5 19
(yx- tx) - 1 mod(26) +1 2 5 1 1
Value of Plaintext Primes 2 5 1 1

Since 2*5*1*1 = 10 and 10=J, Ciphertext UYFT decrypts to plaintext J

Note: By convention (yx- tx) - 1 mod(26) should be between 0 and 25. Add 26 as necessary to
make (yx- tx) - 1 mod(26) between 0 and 25.

Conclusion

Mar’s encryption works by employing a fundamental theorem of arithmetic. An original
key, a random string of 5-10 characters, will be broken up into sections of four letters with the
key word repeating as many times as needed. Each section becomes a key. Each of these keys can
be changed into numerical representations by using MAR’s index of the English alphabet which
is referred to as the number key. Each letter’s assigned number has a unique prime factorization.
The prime factorization is arranged in order from smallest to largest. If a number’s prime
factorization is less than four digits, we fill in with ones at the end of the prime factorization
arrangement until the elements of the arrangement reaches the number of letters in the original
key, this is what we call PTPF. Each plaintext character is encrypted into four cipher-text
characters. Spaces are omitted to further secure and protect this encryption method. The four-
character ciphertext is generated using the PTPF and the number key. Each letter in the key is
shifted by each number in the plaintext character’s prime factorization. Finally, the decryption
requires the key and the ciphertext and it consists of reversing the process of encryption. This
nontrivial method of encrypting plaintext English messages will prevent OCRAI from
experiencing the same major security breach again.

Group C

Project 3

September 2020

Introduction

This report presents an implementation of an algorithm using matrices for encryption and decryption of
plaintext messages. Our algorithm is capable of encoding plaintext messages of any size and any character
set into a ciphertext which can be typed on a standard keyboard.

The security of the algorithm we will present is based on cipher keys. Keys are simple to generate and
are made up of a sequence of numbers and can vary in length and be as little as 4 numbers. For this report
we will use a 3x3 matrix with 9 numbers, for increased security. Even with knowledge of the encryption
algorithm, messages will remain secure as long as the key is not leaked. The key must be distributed to
anyone who needs to encode or decode messages. As such, it is imperative that the key be safeguarded.

Explanation and Example

The algorithm uses the knowledge that A~'(AM) = M is true, with A and M being matrices. M is our
message, put into a matrix, and A is the encryption key. In our example we will use a 3x3 matrix, but this
could be changed to 2x2 if it needed to be simplified for any reason, or 4x4, or any bigger square matrix, to
be even more secure. A 3x3 matrix, which can be represented with 9 numbers, is portable, easy to generate,
and significantly less vulnerable to brute force attacks than a 2x2 matrix.

Encryption - Step 1

We start with a plaintext message. We will use the short phrase "the quick onyx goblin jumps over the lazy
dwarf” as an example. The plaintext message is translated to numbers using the scheme A=1, B=2, C=3...
with the space character represented as the number 27. The resulting message after applyving this translation
is shown below.

208527172193 11 2715142524277 152 129 14 27 10 21 13 16 19 27 15 22 5 18 27 20 8 5
271212625274231186

The translation scheme we have presented above is a simple one representing all lower case letters of the
alphabet and the space character which we believe is sufficient for sending basic encrypted messages. How-
ever, alternative schemes can be used that include other character sets if this is not sufficient. In order to
add other characters, each new character must be assigned a unique number. For the purpose of sending
readable messages, representing the alphabet and space character is sufficient.

Group D

Introduction

We were approached by OCRAI with a request to design a method of encryption that
could be applied to ordinary employee communications and other typical text files. This
algorithm 1s meant to be secure and efficient for encrypting and decrypting English messages so
that important information is not leaked. Per the request of OCRALI this is a novel non-standard
method of encryption developed specifically for their needs.
Methods

The method for encryption which we used is based on the principle that any number has a
distinct factorization into prime numbers, up to order. When we receive the data, we first assign
each of the 26 letters with the corresponding lowest prime number. The prime numbers used for
this are not part of the key, but are instead common knowledge. A=2,B=3, ..., Z=101.
Additionally, each of the 10 numerals were assigned the 27-36th smallest prime numbers.
Therefore, 0 =103, 1 =107, ..., 9 = 151. We then break apart the plaintext into “words”, with
any non-letter/number serving as a delimiter. As an example, the phrase, “I don’t 100% know 1f I
love you yet, but you’re pretty neat I guess” will break into the words: “I”” “don” “t” “100”
“know” “i1f” “T” “love” “you” “yet” “but” “you” “re” “pretty” “neat” “I” “guess”. Note that all

delimiters, including spaces and punctuation, will be passed into the ciphertext unaltered.

We then take each word, convert each character of the word into the corresponding
prime, and output the product of the characters plus a 5-digit number which serves as our key. As

an example, if our key is 12345, then the word “cab” becomes “5 * 2 * 37 =30 (C=5,A=2,

B = 3) and, adding the key, becomes “30 + 12345” = “12375”. The only problem is that the
receiver of that word, “30, can obtain the letters “ABC”, but won’t know the order they need to
go in. For that reason, we have added a number in the ciphertext which indicates the proper
permutation of the letters. Let the word be organized as a list of addresses, similar to a string.
Therefore, in the word “CABBY0”, the letter C is in address 0. The letter A is in address 1. The
letter B is in address 2. The letter B is also in address 3. The letter Y is in address 4. The numeral
0 is in address 5. In our ciphertext, we have included a number following each “word” which
shows the proper permutation of the characters by showing the addresses of each letter, from the
largest corresponding prime number to the smallest corresponding prime number. We also add a
0 at the beginning of the permutation to distinguish it from the “words”.

For example,

We convert “CABBY0” to its primes, “5 * 2 * 3 * 3 * 97 * 103",

We multiply our primes together, “899190”.

We add our cypher key, “899190 + 12345 =“911535”.

We add our permutation, “0540231”.

We send the message “911535 0540231 to Bob.

Bob breaks the word, 911535, into the primes “2 * 3 * 3 * 5 * 97 * 103”.

Bob then converts those primes into the characters, “A, B, B, C, Y, 0”.

Bob then takes the permutation number (0540231), removes the beginning 0 (540231), and
matches the addresses to the characters, “A=1,B=3,B=2,C=0,Y=4,0=5".

Therefore, the order of the letters becomes “C=0,A=1,B=2,B=3,Y=4,0=5".

Bob then has the message, “CABBY0”.

Another example is the sentence, “I 100% know how to decrypt this.”

Which becomes the primes, “23 103 * 103 * 107 31 *43*47*83 19*47*83 47*71 5
*T*11*53*61 *71*%97 19*23*67*71”.

Which is sent to Bob as, “12368 00 1147508 0012% 5212378 03210 86464 0210 15682 001
8572295680 04635102 2091154 00321.”

Which becomes, “1 0 010 012% KNOW 3210 HOW 210 OT 01 CDEPRTY 4635102 HIST
0321.”

And is decrypted to finally show, “I 100% know how to decrypt this.”

In summary,

Take the message and convert every character in each word into primes. Multiply those primes
together. Add the key, which is as a 5-digit number, to each word. After each number, include
the permutation of those letters, which is a list of addresses for each character in the order from
largest to smallest. Then send the message. The decrypter subtracts the key from each word,
finds the prime factors of each word, and sorts each word into its characters. The decrypter then
changes each word into its proper form through the permutation given after each word. This
cryptosystem is, of course, not without flaws or weaknesses. The cipher could be strengthened if
a slightly longer key was used which would designate a rule as to which prime corresponds to
which letter instead of simply using a public listing. As it is, however, we deem that the

described method of encryption will be sufficient for all of OCRAI’s data protection needs.

List of Primes:
A2
B3
C5
D7
E 11
F 13
G17
H 19
123
129
K31
L 37
M 41
N 43
0O 47
P53
Q59
R 61
S 67
T71

U73

V79

W 83

X 89

Y 97

Z 101

0103

1107

2109

3113

4127

5131

6 137

7139

8 149

9151

Group E

Cryptography Project 1

September 11, 2020

We at IMC were approached by your company concerning issues involving internal security breaches. Specif-
ically, you expressed having issues where sensitive information has been sent via text to the wrong recipients.
To keep vour data and information secure, we have come up with a nontrivial method of encrypting these
plaintext English messages. In this report we will go over the encryption process. as well as the mathematical
underpinnings which keeps your data safe.

Before defining the theory for the current system, some definitions must be provided. First, a dynamical
system is (loosely) a function ¢¢(x) = ¢(t,x) mapping 7' x M — M satisfying ¢g(x) = x and ¢y, 44, (x) =
b1, (04, (x)). In other words, a dynamical system provides the flow of each point z under a time map, where
the flow begins at z and can be naturally partitioned into subflows. A chaeotic dynamical system is here
defined to be a system which is topologically mizing and has sensitive dependence on initial conditions. The
former means merely that, given two subsets A, B of M, if we flow the points of A long enough (say, for
some time N) they will eventually intersect B, and at least one flowed point of A will continue to intersect
B for all time after that (formally, 3N such that, Vn > N, ¢,,(A) N B # @). We think of the flow as having
‘mixed’ the set A and B.

The latter term, namely sensitive dependence on initial conditions, merely means that nearby (but unequal)
points get split apart (for at least some time) as the system evolves. Finally, a discrete dynamical system
is merely a dynamical system such that the time component is given by iteration of some related function
6:M — M (with T =Z or T'=N), i.e. ¢po(x) =z, ¢1(x) = d(x), p2(x) = P(¢p(x)), and so forth.

With these definitions in mind, the basic encryption idea can be outlined as follows: take some dynamical
system with an unknown parameter (representing the key), canonically embed the message into some points
of the space domain for the system, flow the system forward for some time, determine the points where the
embedded message flowed to, and turn these points back into some encrypted. alphanumeric message. To
decrypt the message all one must do is re-embed the ciphertext and flow backwards in time until a readable
message appears. To prevent precision or floating point errors with decryption one should force the system
to be discrete, and to ensure decent encryption the system should be chaotic.

Fortunately, there is a very simple system which satisfies these constraints: The Discrete Cat Map, which
we will hereafter refer to either as ‘the cat map’ or with the letter I. The simple version of the cat map we
need here is defined to be the function (Zy)? — (Zy)? given by I'(z,y) = (2¢ + y.2 + y) mod N (Note:
throughout the rest of this paper, the letier N will be used only for this purpose) Importantly, the cat map is
known to chaotic and mixing, though proofs of these would take us far afield in this paper.

The cat map has another wonderful feature which makes it useful for a simple encryption system: it is
periodic. What this means is that there exists some & € N such that I',(z,y) = (z,y). As such, we can
keep iterating the system and will get back what we started infinitely many times; this is known as Poincaré
recurrence, and k is known as the return time. The importance of this feature is that instead of needing
to flow backward in time to return to our original state, we can instead flow forward in time. Interestingly,
the return time depends heavily on N, with no simple formula existing. In fact, it is not even true that as
N increases the return times increases (for example, N = 104 yields k& = 25, while N = 124 yields k£ = 15).
What is known is that & < 3V, so the return time cannot be radically higher than N. Because of this, we
can view the return time as being something easy to explicitly calculate from N, meaning the cat map has

Group F

OCRA Creative Recursive Acronyms, Inc.
485 Primality Way
Provo, UT 84604

Dear OCRALI,

The use of text messaging for sending sensitive information can be dangerous as mistakes
can be made and attackers will take advantage of this vulnerability. To protect your company’s
trade secrets, we have developed a cipher with which to encrypt and decrypt your messages.
Solving this problem requires taking into account the drawbacks of using the system of a cell
phone, which limits the maximum key size and message length used in our cipher.

To successfully keep your messages secure with these limitations, we considered multiple
methods an attacker might use and developed the appropriate precautions. A common method of
cryptanalysis includes character frequency analysis. To throw off attackers, we chose to use a
more randomized method of encrypting characters than a simple substitution cipher. We
implemented a Chain Code so that each character undergoes a unique transformation based on
both its position in the plaintext and value, rather than simply its value.

However, this 1s not enough to ensure security for your company’s messaging system.
Even with our coded text, attackers gain valuable information from the ordering of characters in
the message. For example, using a chosen-plaintext attack, eavesdroppers may deduce the key
simply by comparing the found plaintext and its associated ciphertext. Therefore, we created a
two-stage cipher that utilizes keyed columnar transposition to further randomize the encrypted
message and throw attackers off the ordering of the message. This will make the key more useful
to the encrypting of the plaintext.

Below is a description of the cipher. We believe that, despite the described limitations,
our solution will significantly increase the security of your messaging system and protect your
company’s sensitive data.

Cipher Overview

Our cipher is constructed from a Chain Code and a keyed columnar transposition. Our
cipher takes in a key of 10 unique characters, a plaintext, and produces a ciphertext. At a high
level, encryption happens by converting the plaintext into integers (mod 26) using the A0-Z25
mapping. The plaintext is then padded with ‘X’ characters to a length that is a multiple of 10.
The plaintext is then added to the keystream (mod 26) generated by the Chain Code. This result
1s finally put through a keyed columnar transposition, and the integers are converted back to
ciphertext characters using the same A0-Z25 mapping. Decryption follows this same process,
Just backwards.

Chain Code:

This component takes inspiration from linear-feedback shift register (LFSR) based
keystream generators, and functions as follows. Using the ten character key, converted to
integers by A0-Z25 mapping, as an initial state (k,,...,k,), additional keystream characters are
generated using the linear recurrence relation. ..

Ko = kit kit kit kot k

i+4 i+6 i+9

(mod 26)

This recurrence relation is used to generate a keystream of length equal to the length of the
plaintext. This relation bears some resemblance to a LFSR with taps in the 1,2, 5, 7, and 10
positions. These taps are chosen to increase the periodicity of the keystream.

To encrypt using the Chain Code, simply add the plaintext character to the keystream
character mod 26. In other words. ..

¢, =p Tk, (mod 26)

This ensures that each plaintext character is mapped to a ciphertext character in a simple, but
dynamic way.

To decrypt using the Chain Code, simply add the ciphertext character to twenty-six
minus the keystream character mod 26. In other words. ..

p;=c,+(26-k,) (mod 26)

This decryption works because we are simply adding the additive inverse of the keystream
character k; to each ciphertext character c,, thus canceling the effect of the key.

Keyed Columnar Transposition:
This component is included as a defense against keystream reconstruction attacks on the

Chain Code using predicted or known plaintexts. This transpose works by using the 10 key
characters as the key for a simple columnar transposition.

In the keyed columnar transposition, the message is written out in rows of a fixed length,
and then read out again column by column, and this column order is chosen depending on the
key. For example, the key ZEBRAS 1is of length 6 (so the rows would be of length 6), and the
permutation is defined by the alphabetical order of the letters in the key. In this case, the order
would be "6 324 1 5". Suppose we use the key ZEBRAS and the message WE ARE
DISCOVERED. FLEE AT ONCE. We can write this into the grid as follows:

632415
WEARED
ISCOVE
REDFLE
EATONC
EQKJEU

The encrypted message would then be read out as EVLNA CDTES EAROF ODEEC
WIREE. To decrypt this, the receiver has to work out the column lengths by dividing the
message length by the key length. Then they can write the message out in columns again, then
reorder the columns by reforming the key word.

Overall, this cipher is an effective solution due to the ease of implementation, long
keystream periods, and Irwin—Hall uniform output distribution. The Chain Code component
effectively thwarts any sort of character frequency analysis, due to the effects of the Von
Neumann extraction procedure and an additive distribution transformation. Due to simplicity
concerns, irregular stepping/clocking, non-linear tapping, and non-linear key state mixing
techniques were not included in the Chain Code design. Alone, this means that the Chain Code
component is vulnerable to linear cryptanalysis using either a chosen or predicted plaintext, and
can be broken using the modified Berlekamp-Massey algorithm. To counter this, we added stage,
the keyed columnar transposition, which restricts the ability of an attacker to perform such an
attack. This cipher i1s not without vulnerability, but it offers a simple design and provides modest
security given the design restrictions.

Best regards,

Cipher Design Team
IMC

APPENDIX A: Python3 Cipher Demo Implementation

import re # for regex
import math # for math purposes

def strip_text(text):
return re.sub('[*A-Za-z]+', ", text)

def pad_text(text,block_size):
while((len(text) % block_size) !=0):
text +="X"
return text

def string_to_num_array(input):
input = input.upper()
result =[]
for x in range(len(input)):
char = ord(input[x]) - 65
result.append(char)
return result

def num_array to_string(input):
result =""
for x in range(len(input)):
char = chr(int(input[x] % 26) + 65)
result += char
return result

def generate_chain_encryption_key(key, length):
1=0
while (len(key) < length):
key.append((key[i] + key[i+1] + key[i+4] + key[i+6] +
key[i+9]) % 26)
i+=1
return key

def generate_chain_decryption_key(key, length):
key = generate_chain_encryption_key(key, length)
for i in range(len(key)):
key[i] = 26 - key[i]
return key

def columnar_encrypt(msg, key):
cipher=""
k indx=0
msg_len = float(len(msg))
msg_lst = list(msg)
key_lst = sorted(list(key))
col = len(key)
row = int(math.ceil(msg_len / col))
fill_null = int((row * col) - msg_len)
msg_Ist.extend('_' * fill_null)
matrix = [msg_Ist[i: 1 + col]
for i in range(0, len(msg_lst), col)]

for _in range(col):

curr_idx = key.index(key_Ist[k indx])

cipher +="join([row[curr_idx]

for row in matrix])

k indx +=1

return cipher

def columnar_decrypt(cipher, key):
msg=""
k indx=0

msg_indx =0
msg_len = float(len(cipher))
msg_lst = list(cipher)
col = len(key)
row = int(math.ceil(msg_len / col))
key_lIst = sorted(list(key))
dec_cipher =[]
for _ in range(row):
dec_cipher += [[None] * col]
for _in range(col):
curr_idx = key.index(key Ist[k indx])
for j in range(row):
dec_cipher[j][curr_idx] = msg_Istimsg_indx]
msg_indx +=1
k indx +=1
try:
msg ="join(sum(dec_cipher, []))
except TypeError:
raise TypeError("This program cannot handle repeating letters
in key.")
null_count = msg.count(' ")
if null_count > 0:
return msg[: -null_count]
return msg

def encrypt(plaintext, key):
plaintext = strip_text(plaintext)
plaintext = pad_text(plaintext, 10)
key array = string_to_num_array(key)
plaintext_array = string_to_num_array(plaintext)
chain_code_encryption_key =
generate_chain_encryption_key(key array, len(plaintext_array))
ciphertext_array =[]
for i in range(len(plaintext_array)):
ciphertext_array.append((plaintext_array[i] +
chain_code_encryption_key[i]) % 26)
ciphertext = num_array to_string(ciphertext array)
ciphertext = columnar_encrypt(ciphertext,key)
return ciphertext

def decrypt(ciphertext, key):
key array = string_to_num_array(key)
ciphertext = columnar_decrypt(ciphertext key)
ciphertext_array = string_to_num_array(ciphertext)
chain_code_decryption_key =
generate_chain_decryption_key(key array, len(ciphertext_array))
plaintext_array =[]
for 1 in range(len(ciphertext_array)):
plaintext_array.append((ciphertext_array[i] +
chain_code_decryption_key[i]) % 26)
plaintext =num_array_to_string(plaintext_array)
return plaintext

#it#H testing values below #t##H

key ="YELZOWSUBA"

encrypted = encrypt("According to all known laws of aviation, there
is no way a bee should be able to fly. Its wings are too small to get its
fat little body off the ground.", key)

decrypted = decrypt(encrypted,key)

print(encrypted,decrypted)

Group G

Math 485 PROJECT PART 1 I

1 Introduction

In any business setting, a secure method of communication is required in order for
employees within the organization to collaborate and complete a project. The method must
be simple enough to implement so that message is still feasible to share without alteration or
corruption, while remaining secure from those for whom it is not intended. It is also vital to
be able to identify, with a high confidence, where a message comes from and where it goes.
The method that we present below does just that; it uses simple mathematics with large
digits and prime numbers to encrypt a message in a way that only the sender and recipient
are able to read the message and know that it did in fact originate from the sender and was
received by the recipient. Furthermore, we outline how OCRAI’s in-house engineers will be
able to implement this method within the app, thus avoiding any potential human error in
encryption and decryption.

2 Encryption Method

We begin by reading in the message as it is. The encryption key is a 10 digit number,
where all 10 of the digits are in base 5, and the first digit is not a 0. This means there are
4(5%) possible encryption keys. Furthermore, The maximum encryption key is 4,444,444 444
and our minimum encryption key is 1,000,000,000. Each employee will be assigned a unique
encryption key, randomly generated from the above constraints.

We manipulate the data by simultaneously iterating over the string and the encryption
key. For each character the message, a number of random ascci letters (upper and lower case
letters) are added after the character, where the number of characters corresponds to the
current digit in the encryption key. For example if the text message is “Alice wants to send
a message to Bob” and the encryption key is 3221420140, after one iteration, the message
would look something like:

AdFTlice wants to send a message to Bob

We added three random characters after ”A”, namely "dFI”, since we are at the first char-
acter in the message (A) and the first digit in the encryption key (3). After 2 iterations, the
message would look something like

AdFTleaice wants to send a message to Bob

At the 11th iteration, we would be at the character s in the word wants. Since our encryption
key is only 10 digits long, we would loop back to the beginning of the key, meaning 3 letters
will be added after the s. In general, if we are at the ith character in the string, we are at
the i%10th digit in the encryption key.

Using the same text message and encryption key as above, the message would look
something like

AdFIleaiDHcpenggW CbwaxnSqfftsGkQ eVtGXok FUSNsMRenqdIOLp aWkf
xpmy XeMsgGersxxagueXHWY tbKfolT JIBvouKgDbsi

Note: Spaces count as a character in our data manipulation.

The engineers need to design a way for the app to decrypt the messages if they are sent
to an employee. Along with a unique encryption key, each employee also has a unique prime
number. In order to calculate the range of prime numbers needed, we need the equation

m(x) = e

where 7(x) is the number of primes less than x. This means we need to find an x such that

7(x) is greater than the number of employees. For example, if you have 1,000 employees,
x = 10,000 is a sufficient number since

10,000

1 o
m(10,000) In(10, 000)

~ 1,085

So choosing primes less than 10,000 will guarantee that each employee has a unique prime.

The decryption key is fairly simple: it is the sender’s encryption key multiplied by a by the
sender’s prime, with the sender’s prime and recipient’s prime appended on the end. For ex-
ample, using 3221420140 as the encryption key, 53 as the sender’s prime, and 13 as the recip-
ient’s prime, the decryption key is 1707352674205313 since 322142014 % 53 = 170735267420,
the sender’s prime number is 53 and the recipient’s prime is 13. This decryption key provides
a way for the app to verify the identity of both the sender and the receiver since each prime
is unique to an employee.

To decrpyt the message, the sender’s prime and the recipients prime will be removed from
the decrpytion key, and then what is remaining will be divided by the sender’s prime. For
example, our decryption key is 1707352674205313. We remove 53 and 13 to get 170735267420
and then divide 170735267420 by 53, which gives us 322142014, precisely the sender’s unique
encryption key. Now we use the sender’s encryption key to decrypt the message by essentially
working backwards, iterating over the encrypted message and the encryption key. The
encrypted message is

AdFTleaiDHcpenggW CbwaxnSqfftsGkQ eVtGXok FUSNsMRenqdlOLp aWkf
xpmy XeMsgGersxxagueXHWY tbKfolT JIBvouKgDbsi

At the first iteration, the character we are looking at is A and the digit in the encryption
key is 3. Thus, we remove the 3 characters after A to get

AleaiDHcpenggW CbwaxnSqfftsGkQ eVtGXok FUSNsMRenqdIOLp aWkf
xpmy XeMsgGersxxagueXHWY tbKfolT JIBvouKgDbsi

We continue this process until we reach the end of the message, looping through the encryp-
tion key like we did with encrypting the message.

A careful analysis shows that our method of encryption will not produce a message over
800 characters. Suppose we have the maximum number of characters allowed in the text
message (160 characters) and the maximum encryption key (4,444,444,444). This means
that 160 of the characters will have 4 characters added after them, so the total characters
after encryption is 800.

3 Conclusion

As we can see, this method preserves the message, including punctuation, symbols, and
the case of the letter, while keeping the encrypted message within the specified parameters.
This method also allows a unique prime "identity” to be assigned to each employee, thus
allowing sender and recipient verification, as well as a secure way for the recipient to be
able to read the message. We believe that once implemented, this app will allow OCRAI’s
employees to communicate easily and securely, and avoid any future mishaps with leaking
secure company data.

Group H Math 485
Dr. Jenkins
September 10, 2020

Encryption Proposal

1 Introduction

Dear Mr. Andrews,

We are sorry to hear that your company has been struggling with security breaches. We are happy
to offer our assistance, and we promise not to charge as much as Dr. Paul Jenkins.

Now, as we understand your problem, you need a system for encrypting text messages sent by your
workers. It is imperative that the encryption system we provide can comfortably and securely encrypt a
message of up to 160 characters while producing a cipher text no longer than 300 characters.

We propose a system based upon a known method- using an invertible matrix for the encoding key-
with a slight twist. As we learn from Kerckhoff’s principle, the power of a cipher cannot lie in the method
alone, but must also lie in the key used. Our system would allow your company to choose from an infinite
number of keys- making attack by brute force impossible- while using a simple computation to enact the
key.

In this document we provide a detailed explanation of our method of encryption. We hope that you
choose to work with us, and promise the results that you desire.

2 Encryption and Decryption

2.1 The Encryption Process

In order to increase the security of your messages, we propose the following system of encryption. For
your convenience, a step by step sample of the encryption and decryption process is included below.

We will start by translating the characters of the message into their ASCII codes, which will instantly
make them less available to any outsider. We will then add the number 1 twice between the digits, so
that we end up with 4 digit numbers representing each character.

Each 4 digit number will then be converted to a 2x2 matrix by entering each digit into the matrix,
from the top left to the top right, and then from the bottom left to the bottom right. After this process,
we will have a matrix for each character in the message.

Now comes the part that makes the system truly secure. We use a different 2x2 matrix as the
encryption key and multiply (using matrix multiplication) each character matrix by the encryption key
matrix. This will produce new matrices from each of the original matrices. The reason this is so secure
is because the encryption key could be any 2x2 matrix, and without the inverse of the matrix, we cannot
convert back to the original matrices.

We then extract the matrix values from the matrices, and line them up without spaces between them.
This creates a seemingly random string of a mixture of positive and negative integers, and that is what
an attacker would see upon acquiring any messages sent by company employees.

Decryption, with the inverse of the encryption matrix is simple. We simply divide the digits into
groups of 4 digits, put them back into matrix form (from the top left to the top right, and then from the
bottom left to the bottom right), and multiply each matrix by the inverse of the encryption matrix (the
decryption key). This will produce the original matrices. We then write them in groups of 4 numbers
again, remove the 11 from between each group, and convert the ASCII codes back into characters.

3 Conclusion

By implementing a method of encryption that requires a key that can be chosen from an infinite number
of possibilities, we can guarantee that your messages will be kept private and secure. The system is
multi-leveled, implementing the translation of letters to numbers, numbers to matrices, and matrices to
different matrices. To the naked eye, the encryption will appear completely undecipherable. Even to the
most skilled attacker who is aware of cur method of encryption, the prospects of deciphering by brute
force are impossible.

Again, we are sorry to hear that your company has been affected by breaches and attacks. Our system
of encryption will provide security and peace of mind, so that you can continue to succeed and grow as
an organization.

Sincerely,

Group I

Introduction

We have received your request to build a nontrivial cryptographic algorithm that can convert
up to 160 characters of plaintext into up to 800 characters of ciphertext, for use in employee
communications. Our algorithm uses as its encryption key an integer between 1 and 27, and
our algorithm converts each character of plaintext into one character of ciphertext.

Encryption Overview

To encode any specific character in the plaintext, we take the integer value corresponding to
the last ciphertext integer and multiply that integer by the encryption key. We take the newly
created integer and add the position of the character in the text and the value of the plaintext
character. Finally, we take the modulus of that sum and 27, and end up with an integer
between 0 and 26, which corresponds to the value of a letter in the alphabet. That
corresponding letter is used as the ciphertext character.

So, the steps in order are:
cipherValue = lastCipherValue * encryptionKey
cipherValue = cipherValue + plaintextPosition + plaintextValue
finalCipherValue = cipherValue mod 27

To compute the value of a modulo b, compute the following, with a, b, g, and r being integers:
amod b = r, where:
r=a—bqg,and 0 <r < |b|

The value of a character is its position in the alphabet, starting indexed from 0, with space
taking on the value of 26.

AB|ICID|E|FIGIH[I|J|K|L|M|N[O|P|Q|R|S|T|U[VIW|X|Y]|Z
0/1|2|/3|4|5/6|7(8(9|10|11(12|13(14|15|16(17|18{19(20|21|22(23|24|25(|26

The last ciphertext value is assumed to be 0 for the first character encrypted and is updated
after each new character is encoded from left to right. The position of the character in the text
is assumed to be indexed starting from 0.

For an example, let us assume that we are encoding the second character of a message, which
is the plaintext character ‘w’, our encryption key is 25, and the ciphertext character value for
the first character of the message was an ‘e’, which has a value of 4. Because this is the second
character of the message, it is in position 1, and because it is a ‘W’, it has a value of 22.

So, in the above steps, lastCipherValue is 4, encryptionKey is 25, plaintextPosition is 1, and
plaintextValue is 22.

cipherValue = 4 = 25 =100
cipherValue = 100 + 1 + 22 = 122
finalCipherValue = 122 mod 27 = 15

By following the steps, we discover that we would get a value of 15, so we check our alphabet
and find that ‘p’ has a value of 15. So, the ciphertext assigned is the letter ‘p’.

Decryption Overview

To decrypt any specific character, we take the alphabet value of the previous ciphered
character, and multiply it by the encryption key, just as we did in the encryption, and then add
the ciphered characters position. We then take that sum mod 27, and call this number the
decryption value. We take the alphabet value of the current ciphered character and subtract
the decryption value, before adding 27. We then take that sum mod 27, and end up with an
integer between 0 and 26, which corresponds to the value of a letter in the alphabet. That
corresponding letter is used as the plaintext character.

So, the steps in order are:
decryptionValue = lastCipherValue * encryptionKey
decryptionValue = decryptionValue + plaintextPosition
decryptionValue = decryptionValue mod 27
cipherValue = currentCipherValue — decryptionValue + 27
finalDecipheredValue = cipherValue mod 27

For an example, let us use the same values as we did for the encryption example. We have an
encryption key of 25, we are on the second character of the ciphered message, so the position
is 1. The current ciphered character is a ‘p’ and so has a value of 15. The first character of the
ciphered message is a ‘e’, and so has a value of 4.

decryptionValue = 4 % 25 =100
decryptionValue = 100 + 1 =101
decryptionValue = 101 mod 27 = 20
cipherValue = 15— 20+ 27 = 22
finalDecipheredValue = 22 mod 27 = 22

By following the steps, we discover that we would get a value of 22, so we check our alphabet
and find that ‘W’ has a value of 22. So, the plaintext is the letter ‘w’.

Conclusion

In conclusion, we have presented above our non-trivial cryptographic method to encrypt the
data in your employee communications. By converting each plaintext character into a singular
ciphertext character, we have kept the length of communications to a max of 160 characters a
message, and with a key size of two digits, we believe our method will be of minimal impact on
employee devices.

We hope this method meets your specifications, and that you will have a great day.

Sincerely,

Postscript: This report has some parts simplified for ease of explanation and reuse in your
application. For better security, position could be assigned starting from a number other than 0,
giving us another key to work with, and making the code harder to break.

Independent Math Contractors Group J

We at Independent Math Contractors are happy to be trusted with your business. As we
understand it, you require a secure method of sending sensitive information over text. You wish
to give a normal message in plaintext to be encoded in a ciphertext, which you can send out
without fear for its security. To provide you with maximum security, we have combined two
well-known methods of encryption with one of our own invention, greatly reducing the
possibility of a successful security breach in the near future. For your convenience, we have also
created a computer program to perform the encryption so your employees can allocate their time
to something more valuable.

The first part of our encryption process includes choosing a 9 letter keyword with no
repeating letters. For the examples in this report, we will use the keyword COPYRIGHT. We
used the keyword to create a matrix of the alphabet with the keyword in the top row. We then
rearranged the columns of the matrix based on the alphabetical order of the keyword (as shown
below). A basic substitution cipher was implemented by matching the positions of each letter in
the old matrix with the new rearranged matrix. Since 9 does not evenly divide 26, if there was a
gap in the matrix, the letter just matches the next available letter in the matrix. In the example
below, this means that y=W and z=V.

C|O(P|Y|R|I|G|H|T C|I||G|H|O|P|R|T|Y
albl|c|d|e|f|g|[h]i a|flg|lh|b]|c|e |l |d
j (K|l [m|n]o|p|q|r ﬁj Olplql|lk|l [n|r|m
s |t jujv|wix|y(z]_ s [X|yl|z [t [u|w]|_|[v

For the second step of encryption, we use an affine cipher. In an affine cipher, letters A-Z
are numbered 0-25. To determine how the plaintext (for this stage) letters correspond to
ciphertext, we perform the equation NewV alue = o+ OldV alue+ 3 , mod 26, on the value
assigned to our plaintext letter. (Mod 26 means we do normal arithmetic, but when we get to the
number 26, we start over at 0, like counting on a clock).

To make our affine cipher more difficult to break, we change our values of a and 3 for
each word. For the very first word, the a value equals the numerical value assigned to the first
letter of the keyword. However, if the value of a is not relatively prime to the number of
characters in the alphabet (in this case 26), then a is reduced (by subtracting 1) until it is
relatively prime. If a is zero, then it wraps around to 26 and is reduced from there until it is
relatively prime. For our example, with our keyword COPYRIGHT, the first letter is C, with a
value of 2. Thus, the a value for the first word 1s 2. However, 2 1s not relatively prime to 26, so it
is reduced to 1, which is relatively prime. In a similar manner, 3 for each word equals the
numerical value assigned to the last letter of the keyword. In our example, that is T, with a
numerical value of 19, so B is 19. For the next word, we change the plaintext using another affine
cipher. For this cipher, instead of using the numbers assigned to the first and last letters of the

Independent Math Contractors

keyword, we assign a and 3 based on the first and last letters, respectively, of the previous word.
We continue to use affine ciphers based on the previous word for all remaining words until the
entire plaintext sequence has been encoded using various affine ciphers.

Ex. If our “plaintext” from the first step is
Yib bayibm hiapebs rzdhpqw
The first word 1s coded with affine cipher NewV alue = 1 x OldV alue + 19 , as explained
above.
YIB
2481
24*%1+19=17 (mod 26) | 8*1+19 =1 (mod 26) | 1*1+19 =20 (mod 26)
17120
RBU
The first word, encoded, 1s now rbu.
The second word is encrypted using the affine cipher NewV alue = 23 x OldV alue + 1
based on the former previous word yib. Remember that a must be reduced (by subtracting
1) until 1t 1s relatively prime to 26.
BAYIBM
10248112
241732417
YBHDYR
The second word, encoded, is now ybhdyr.

For the final stage of encryption, we manipulate the text on a word-by-word basis. To
retain the original order of the words, we now use the encoded keyword as a kind of marker for
each word. Every word will be surrounded by two letters from the keyword. This allows for a
plaintext of up to 81 words, but more letters from the keyword could be used to surround the
words if the plaintext is longer than 81 words. The first letter at the beginning of the word takes
priority in ordering, and the other leiters are used to increase the number of possible orderings of
a word.

We choose the letters from the keyword thusly: for the first word in our text, we place the
first letter of the keyword in front of it. We then place the last letter of the keyword at the end of
the word. For the next word, we place the first letter of the keyword at the front of the word, but
the second letter of the keyword as the last letter. The third word starts with the first letter and
ends with the third letter, and so on, until the end of the keyword is reached. We repeat the same
pattern until the keyword has been iterated through once. Then we use the second letter of the
keyword at the front of the word and iterate through the keyword as the last letter again. We
continue this pattern until all of the words have been labeled. This method could be extended for
plaintexts greater than 81 words by adding two letters to the front and end of each word.

Independent Math Contractors

Ex. 1. A sequentially ordered set of surrounding letter groups would be as follows:
¢-C, C-0, C-p, ... , C-t, 0-C, 0-0, 0P, ... , O-t, p-C, p-0, p-p, etc.

Ex. 2. If our “plaintext” is rbu ybhdyr, and our keyword is COPYRIGHT, rbu, as the first
word in our coded message, becomes crbuc (bold added to make encryption steps
clearer), and ybhdyr becomes cybhdyre.

1RBU2 *underlined numbers indicate positional ordering priority
COPYRIGHT
123456789 *numbers below letters indicate letter ordering priority
Arranging alphabetically we get
crbuc cybhdyro
Which happens to be the same word order as in the “plaintext” because there were only
two words.

We have now completely encrypted our plaintext. Each of our encryption examples uses
less than 81 words. If a significantly longer plaintext needs to be encrypted, this part of the
cipher could be extended to cover more words if two or three letters were used before and after
each word, but such a strategy would have to be given in the key, which could be done by
sending the number of letters before and after each word along with the keyword. Following the
contract we received, 1 letter before and after should be plenty, so when there is no number
given, we will assume it would be “|.”

To decrypt a message, simply go through the above steps in reverse. First, rearrange the
words in order of the first and last letters (based on the keyword). Then decrypt the affine cipher
for the first word using the first and last letters of the keyword for a and 3. Use the decrypted
first word to get a and B for the second word. Continue until the whole text has completed the
affine cipher decryption. Then use the keyword to create the alphabet matrix that is the key for
the substitution encryption. Use the matrix to solve the substitution encryption for the whole text.

We have a few more notes to present for consideration. First, it would be most secure if
the keyword chosen was not a word at all, but rather a scrambled bunch of non-repeating letters.
This prevents potential attackers from simply unscrambling the keyword. Second, our method
can handle 81 words in plaintext, but if you wish to send longer messages, you can just add a
third letter position, follow the same pattern, and notify the recipient of the system change.

Third, it is rather painful to go through this entire process by hand for a long message. With that
under consideration, we have attached a program file that can perform the encryption for you.

We hope that you are satisfied with this improved way to send your sensitive information
over text. The combination of multiple encryption methods provides a secure encryption that is
difficult for an attacker to break. Thank you for entrusting us with your safety and good luck

encrypting.

Independent Math Contractors

Link to program:
https://drive google.com/file/d/1fdyYrUIqtBChO6FAIOnL.mx7 UvnZthxp/view?usp=sharing

Group K

without knowledge of the key. We firmly believe that the cryptographic system that we have
developed and explained will be of great benefit to the advancement of OCRAL

Sincerely,

Co-founders
IMC

Group L

that as an added bonus, generates random characters to add in as well as random encryption keys.
This will certainly save you the effort of choosing your own.

We hope that our cryptosystem will be sufficient for your needs.

Yours sincerely,

Independent Math Contractors

Group M

initial shiftis 9+4+17+20+ 18+ 0+ 11+ 12 =91. We then take 91 (mod 29) = 4 as our
initial shift index. The mod 29 is because our alphabet of 26 letters has 3 additional characters
appended on to it.

We then take cipher 1 and apply the following operation to it to shift the characters and
call the result cipher 2: add the index of the current character in cipher 1, the initial shift index
calculated in the previous step, and the position of the current character in the alphabet prime.
We then take this number (mod 29) and replace the character with the resulting character at that
position in our alphabet prime. For example, in our cipher 1, the first letter is ‘e’. So, we take the
index of the current character 0, since we are at position 0 in cipher 1, the initial shift index 4,
and the position of the current character in the alphabet prime 9, since ‘e’ is in the ninth position.
We then add 0 + 4 + 9 = 13. Then the first character of cipher 2 1s ‘n” since that 1s the letter at the
13" position in our alphabet prime. The second letter in cipher 1 is ‘0’. So, we take the current
index 1, the initial shift index 4, and the position of ‘0’ in alphabet prime 14, add them together
to get 19, and get ‘t” as the second character of cipher 2. We continue this process on until we get
cipher 2 to be “ntyo,echajempf.wwur sokxedlwglgldww.,pbcwllgp.rajb,wmdridgb”.

For the third and final step of the encryption, we parse the cipher 2 in such a way that we
pass through and grab all the letters that are equivalent to zero (mod the length of the original
key) in order and have that be the beginning of the next message, which will be referred to as
cipher 3. We then pass through cipher 2 and grab all the letters that are equivalent to one (mod
the length of the original key) and append it to the existing letters on cipher 3. We repeat this
process up until we have grabbed all the letters from cipher 2. To best illustrate this concept, we
will not only show what cipher 3 becomes, but also use colors to demonstrate the new placement
of the letters. In our example, we first go through and cipher 2 and collect all the letters in the
locations that are equivalent to 0 (mod 9) since “Jerusalem™ has 9 characters. This would be: “nc
gpri”. We then do the same for those letters that are equivalent to 1 (mod 9), which would be:
“tmslbad”. Following this pattern, we would get cipher 3 to be “nc
gpritmslbadypoqcjgofklwbb,.xdl,ewewlwhwdwgmaul.pdjrw,.r”. We now show the comparison
of cipher 2 and cipher 3 using colors to indicate the position of the letters. Cipher 2:
“ntyo,ehajempf.wwur_sokxed!wglgldww. ,pbewlligp.rajb,wmdridgb” becomes cipher 3:
“nc_gpritmslbad . . xdlL,ewewlwhwdwgm JTwW,.r”.

If the original plaintext message was longer than 160 characters, we will have completed
these steps for each of the blocks of text we parsed at the beginning. At this point the encryption
1s complete, and we send the blocks that are at most 160 characters each in the same order as the
plaintext message would have been sent. Each of these steps is reversible given the key, and
reversing them will yield the original plaintext message. You will want to decrypt them in blocks
and not as a whole with the program.

While this encryption and decryption can be done by hand, we understand that our
method can seem quite intricate. To that end, we have created a python code program that will
complete the encryption and decryption for the employees. Because the key is the important part
of the encryption process, the existence of the program is not a security vulnerability. We will
provide the working program to you as a part of our service.

As a general overview of the process we just covered in the letter, given a plaintext
message to be encoded, it will be split up into blocks, scrambled according to a key in a Caesar
Cipher fashion , shifted by a scrambled alphabet and character location information in a way
somewhat similar to an Affine Cipher but with slightly different technicalities, and then parsed
into a pattern determined by the key. This multi-step encryption process should address the
problem of confidential company information being received by unintended parties, because to
any erroneous recipient, it will seem like gibberish. Regarding any party with malintent who is
trying to intercept the messages, the messages will be secure as long as the malicious party does
not obtain the key. While this was not stated in the original explanation of the problem in your
letter to us, it is an added benefit that comes with encryption. The text messages will still be
easily transmitted using mobile phones since they use the same characters as the original
plaintext message being sent. The messages also remain the same length as the original plaintext,
so overflow is not an issue as long as the plaintext messages are not that long themselves.
Overall, we expect that this encryption will meet all of your needs and be straightforward enough
to use, especially with the aid of the python program. If you have any questions whatsoever,
please feel free to reach out to us. We would be more than happy to help you with any concerns.

Best regards,

Python Code:

from collections import OrderedDict

def remove duplicate(strl):
return "".join (OrderedDict. fromkeys (strl))

def split_text(plaintext, chunk size):
return [plaintext[i:i + chunk size] for i in range(0, len(plaintext),
chunk size)]

def encrypt(key data, plaintext data):

& eyl RS, i R
r LUrn inputs i1nto strings

key = remove duplicate(str(key data) .lower())
plaintext = str(plaintext _data).lower ()
key length = len(str(key data))

create a cyclcical pattern to cycle some letters through
cycle = key + key[0]

Cycle through the key letters once

cipherl = "n

for char in range (0, len(plaintext)):
location = cycle.find(plaintext[char])
if (location != -1):
cipherl += cycle[location + 1]
else:
cipherl 4= plaintext([char]

alphabet = "abcdefghijklmnopgrstuvwxyz .," # a string with 2

characters, and 29 is prime

alﬁhabet_prime = nn
for char in range (0, len(alphabet)):
location = cycle.find(alphabet[char])

if (location != -1):
alphabet prime += cycle[location + 1]
else:
alphabet prime += alphabet [char]
cipher2 = mn

start_position = 0
for char in range (0, len(key)):
start_position += alphabet prime.find(key([char])

for char in range (0, len(cipherl)):
location = alphabet prime.find(cipherl[char])
cipher? 4= alphabet prime[(start position + location + char) % 29]

cipher3 = "n
for i in range (0, key length):
cipher3 += cipher2[i::key length]

return cipher3

def decrypt(key data, ciphertext data):

turn inputs

into strings

key = remove_duplicate(str(key data).lower())
str(ciphertext data) .lower()
len(str(key data))

ciphertext =
key length =
find out ho

lenath
lengtlil

bonus_chars =

plainl = "»
extra cycle =

W

many extra charac ~ter Lnere are past a muld

len(ciphertext) % key length
num iters = len(ciphertext) // key length

0

if (bonus_chars > 0):
extra cycle =1
for 1 in range(0, num_iters + extra_cycle):
character number = i
if (i != num iters):
plainl += ciphertext[i]
for j in range(l, key length):
character number += num_iters
if (jJ <= bonus_chars):

character number += 1

plainl += ciphertext[character number]

else:

for j in range(0, bonus_chars):
character number = i + j * (num_iters + 1)
plainl += ciphertext[character number]

create a cy

vel

cical pattern to cycle some letters through

cycle prime = key + key([O0]

cycle length

reverses th

e

len(cycle prime)

cycle for the decryption cycle

cycle = cycle prime[cycle length::-1]

alphabet - “abcdafghljklmnopqrstuvwxyz .," # a string wi

Q,

I1

location

O

is .Lt"“ -

alphabet
alphabet _prime = "v
for char in range (0, len(alphabet)):

cycle prime.find(alphabet[char])

if (location == -1):
alphabet prime += alphabet[char]

else:

alphabet prime += cycle prime[location + 1]

plain2 = "»

start _positio

n

=0

for char in range (0, len(key)):
start_position += alphabet prime.find(key([char])

for char in range (0, len(ciphertext)):

location
position

alphabet prime.find(plainl[char])
(location - start position - char) % 29

oug!

plain2 += alphabet prime[position]

plain3 = "»

for char in range (0, len(plain2)):

location = cycle.find(plain2[char])

if (location != -1):

plain3 += cycle[location + 1]

else:
plain3 += plain2[char]

return plain3

encryption = encrypt ("key goes here",
print (encryption)

decryption = decrypt ("key goes here",
print (decryption)

"plaintext goes here")

"ciphertext goes here")

Group N 9-11-20

Introduction

We in the _team are grateful for the opportunity to design a cryptosystem
for OCRAI Creative Recursive Acronyms, Inc. We are glad to help you address the problem of
security breaches. An ounce of prevention is truly worth a pound of cure, and we hope our
cryptosystem will be a great help to you.

Our cipher system, modestly named the _Huﬁman encryption, will help
address your problem by encoding messages in a way that makes it very difficult to crack
without knowing the key, which will help your company effectively protect it's messages and
private information.

Cipher System

The cipher system that we’ve prepared for you is based on a system known as Huffman
Compression. Typically, a text message is stored as a series of seven-digit codes of 0’s and 1’s,
known as ASCII. For example, the letter A is represented as 1000001, while the character “*” is
represented as 1011110. Huffman Compression recognizes that some things, like letters, are
used far more frequently than other things like dollar signs and asterisks. In Huffman
Compression, more frequent characters in a text are represented with shorter codes, while
infrequent characters are represented by shorter codes.

To create these shorter codes, Huffman Compression creates a frequency tree. To show
an example of this kind of tree, we’ll compress the phrase “OUR MEETING IS SCHEDULED
FOR FOUR IN THE ROOM AT THE BOTTOM OF THE STAIRS". To start, we count the number

of times each character appears

(@ in this phrase. Some characters,
_go N like C and B, appear only once,
(a) @\ while T appears 8 times and a
_,//0/ j\ T 1\\~ space is used 14 times. Once we
Q 5) () (>) & know the frequency all of the
,0 ! ! N o characters appear, we can
AL) ?% ofs] 1¥ [gy TSPACE W] or ™y combine low-frequency
000 I 11 . . :
\ Iy characters into higher frequency

< 011
i N0 1 0\
H[4' |]4) s]fo ; Rls'/ L pairs. For example, while C and B
(4 ‘) (s Cs)
0010 0011 | 1010 N 1100

Vs ol only appear once each, there are

" {D - ‘/" \‘ ‘ /6 ! two characters in the message
< 2 Fooo| (o] o] (o]] (| thatare either C or B, so they
6 \11/ N have a combined frequency of
B | e [a3 ‘LI 1 two. G and L appear once each,
010110 010111 010100 010101 SO they a|SO have a Comblned

frequency of two. C, B, G, and L
all then have a combined frequency of 4. We can combine lower frequency characters or groups

9-11-20

together until they’ve all been combined into a single tree, as shown in this image. In the case of
ties for difference frequencies, the characters appear left to right in alphabetical order, as is the
case with B, C, G, and L.

Once the frequency tree has been constructed, we can create new codes for each
character by following the path to the character in the tree, with left branches being represented
by 0’s and right branches being represented by 1's. For example, the letter E has the code 000,
because to find it we move left three times in the tree, while U has a code of 11011, because we
move right twice, then left, then right two more times. We then replace all of the characters in
our message with the codes; for example, “OUR” would be replaced with 011 11011 1100, as
the codes for O, U, and R are 011, 11011, and 1100 respectively in this tree.

Once we have replaced the entire message with the codes from our frequency tree, we
can turn the codes back into letters using the codes from this table for the final step of the
Tooo0] cipher. The table gives each of the letters and numbers, as

A 000000(Q O010000|g 100000 | w

B 000001 | R 010001 h 100001|x 110001 well as the space character, a six-digit code. We can use this
C 000010| S 010010 i 100010|y 110010 . — . .

0 oot | T o0om || 100011z moon | tADIE to break up our message in 6-digit codes, padding with
E 000100| U oto100 [k 100100 |0 110100| 1's at the end so the total number of digits is divisible by six.
F 000101 |V 010101 |1 100101|1 110101 . « ”

G 000110 |W 010110 |m 100110 |2 110110 SO, for .Ol‘_lrcombmed code 0f01111011110_0 for “OUR , the
H o001t | x o011 |n 100111 |2 110111 | first 6 digits (011 110) would be replaced with the letter “e”, as
| 00100D) Y 011000} 6 10100014 111000} the code for “e” is 011 110. We would follow this pattern for

J 001001|2Z 011001 |p 101001|5 111001 y g C
K ootom|a omoo|q 10101068 11010 the entirety of the message. As an example, the first 24 digits
L oototr} b omon|r 10101117 111011) of our message after converting to 0’s and 1’s is the following:
M 001100 ¢ 011100|s 101100|8 111100 ‘ a g

N 001101l ¢ 011101 [t 10110119 111101] 011110111100 111110 100000. When converting this using
o ootttofe ot1i0fu 01110 % ni110| our table, we get “e80g”. We would send this encoded

P o011 | f 011111 | v 101141 ["" 111111

message by text to the recipient via text, at which point the
recipient would be able to turn this encoded message back into the regular text.

In a regular Huffman Compression, the frequency tree is attached to the message, as
there’s no way to turn the text “011110111100” back into our original message of “OUR” without
the frequency tree. In our encryption system, we will only send a list of character frequencies
with the message instead of the tree, so that there’s no way that someone intercepting the
message can decipher the message. The recipient will have a key that tells them which
frequencies belong to each character. For example, the message we send could begin with 4 5
3 2. If the recipient’s key began with IRMD, it would signify that the frequencies of I, R, M, and D
would be 4, 5, 3, and 2 respectively. Each person would have a unique key made of all of the
characters a person could type shuffled together. Because this key wouldn’t be sent with the
message, anyone that intercepted the message would only see a series of numbers and the
ciphertext, which no indication how to build the correct frequency tree.

Each key should be a randomized list of all of the valid characters that the people
communicating want to be able to use. For example, the dollar sign can only be used if it is
included in the key. For this reason, we recommend that all characters available on a standard
keyboard be used in the key. However, because every character in the key requires more
padding at the beginning of the message, the encryption system allows for smaller keys. One of
the biggest advantages of having larger keys is the added security; most keyboards have 100+
characters, with the number of keys being equal to the number of characters raised to the power

9-11-20

of the number of characters. In the case of 100 characters, there are 100*100 keys, or 10*200.
In addition, because each pair of keys can include any characters, including emoticons, it is very
difficult to break this code by guessing what characters are based on their frequencies, as no
hacker can know what possible characters are included in the code.

Conclusion

The | Huffman encryption system, which works by building a character
frequency tree for each message and encoding the characters by their position on the tree, will
help your company encrypt messages. For longer messages, because it is based on a
compression algorithm, it may even have the benefit of compressing your data as well. The
encryption will help secure company data and prevent accidental data leakage from employees.
You can rest secure knowing that your data is protected and secure.

Notes: you may find the tool: https://www.csfieldguide.org.nz/en/interactives/huffman-tree/
helpful in developing a huffman tree from a given text string

Group O

Cryptographic System for OCRAI

11 September 2020

Introduction: The problem we are faced with is a serious one. Our business competitors have
gained potential access to our company’s classified information via missent text messages. Our
goal with this report is to explain the solution our team has come up with 1n order to gain control
over these security breaches of the past and prevent them from reoccurring in the future. Human
error can be a serious cause of security problems, and our goal is to mitigate that as much as
possible. By creating a secure encryption system where company messages are sent, we will
prevent the accidental data leaks that can happen when someone mistakenly sends information to
someone it was not meant for.

Encrypting in our system: Our nontrivial encryption method encrypts each single letter to another
letter, in sequence through the whole text. It uses the original letter as well as where that letter is
positioned in the text. This yields extra strength over simpler methods that always translate a
given letter to another given letter, no matter where the original letter appears in the text. As
such, our system is more resistant to letter frequency analysis' attacks.

Our random key 1s two positive integers: call them a and b. The greatest common divisor

between a and 27 must be 1.

" An example of frequency analysis is as follows: “E” is very common in English text, so an attacker
looks at the most common symbol in the encrypted text and assumes it is “E”

Group P

Dear OCRALI,

Thank you for your letter. We realize that, especially in these times of competition and of computing
progression, the need for secure cryptosystems becomes increasingly important and needed. We
commend your ability in identifying the vulnerabilities within your process. Mobile phone usage has
long been a security vulnerability, and we hope that our proposed cryptosystem will satisfy your needs
as a company.

In order to properly encrypt and secure the data, we have endeavored to find a cryptosystem and a
corresponding algorithm in order to code the messages, per the company’s request. The method we
describe here has been constructed to be a combination of the Vigenére cipher and the Hill Cipher. We
hope that the duality of this cipher will help prevent attempts to decode the messages by those who are
not meant to read them, and we will outline the reasons why we believe it will be so.

To encrypt using our process, we must first obtain the first part of a key which is 4 to 6 letters long. We
convert these letters to numbers (by assigning a=0, b=1, and so on until z=25). This algorithm will
then roll through each letter of the message (omitting spaces) and shift the letter by that number of
letters in the alphabet. An alternative way of calculating this, is assigning each letter of the plaintext to
a number (using the system just discussed) and add the key’s number to that letter. We use the
following table in our example.

A|B|C|D|E|F|G|H|I|J|K|L|M
0|12 |3 |4 |5|6|7 |8 |9)|10)11 12

NIO|IP I Q|R|(S|T|U |V | W|X|Y|Z
13|14 |15 |16 (17 (18 (19 |20 |21 |22 (23 | 24 | 25

For example, if the key i1s “OCRAI”, then the corresponding shift factor is
[14, 2, 17,0, 8]. Let us have a plaintext that begins with “Four score and seven...” We now convert
this sequence to their corresponding numbers, which gives us

514201718214174013318421413

We then add each key to each letter, adding the first letter of the key to the first letter of the plaintext,
second to second, and so on, and once we reach the end of the key (in this case, after 5 letters), we
begin again. We note that if our resulting number is greater than or equal to 26, we subtract 26 from it.
We also note that if the message has an odd number of letters, we will add a random letter to the
ciphertext at the end of the message, which is necessary for the next step in our cipher. So our resulting
ciphertext will be based on (where R is a random number chosen to make the number of letters even).

19161170161684815943 1815R

We note that multiple times in our cipher, we had to subtract 26 in order to keep the answer between 0
and 25.

We now explain the second part of the 2-step cipher. We now manipulate the cipher using Linear
Algebra to further encrypt our data. The second part of the key should be 4 letters long, which will
correspond to 4 numbers. In our case, let our full key be OCRAIFIRD. These last 4 numbers will
represent a matrix, which will look like

5 8

d=
f-17 3

c
e
We then take numbers from our previous ciphertext, two at a time, and multiply them by the matrix. So,

given letters a and b, and numbers in our 2 x 2 matrix c, d, ¢, f, we can multiply them, and the resulting
formula is

a*ct+b*e and a*d+b*f

two numbers which will replace what we previously had in our ciphertext. Using our previous example
and key, this will give us (using S in computations using R):

3188712228220412239690SS
Giving us the resulting ciphertext
dsgymwiwaemxjgjaSS

We note that in our choice of a key, the first 4-6 letters are completely arbitrary, but the last 4 (for the
matrix) must be a matrix that is invertible (modulus 26). The way that we can ensure that a matrix 1s
invertible (mod 26) is seeing if ged(26,(cf-de))=1.

In order to decode, we must find the invertible matrix of the key, and follow the same process in
reverse (multiplying two elements at a time to the inverted matrix and subtracting the first key amount).

We have performed a frequency analysis, and have discovered that in this process, the frequency of the
letters is very similar, eliminating most possibility to decrypt using that method. Eliminating spaces
also eliminates the ability to use word length to determine the message. The double layer of encryption
adds an extra layer of security, making it difficult to test all of the combinations of the two keys. The
Vigenére cipher has the weakness of being able to test all the combinations of cipher lengths, and from
that be able to determine the key. The duality of this cipher covers that weakness. The Hill cipher
alone has the vulnerability of a plaintext attack, and by having a piece of plaintext and the
corresponding cipher, the matrix key is easily obtained. Again, this duality covers this vulnerability.

For your convenience, we have included a Python file that automates the process of encryption and
decryption.

Sincerely,

Independent Mathematical Contractors, Inc.

Group Q

MATH 485 - CRYPTO PROJECT

1. INTRODUCTION

We are glad to inform you that Independent Math Contractors, Inc has completed the project as described
in your previous letter. We have created an entirely new cipher for your exclusive use, to prevent any further
embarrassment caused by careless employees. Rest assured we have had our top eryptological math experts
work tirelessly on this cryptosystem since receiving your message. The system deseribed herin will encumber
any third party’s attempt to understand what your internal communication is without the key. Below, we
will give an overview of how the system works, and provide a short example of how to encrypt a message.

2. THE CIPHER

2.1. Theory. Consider the function f,, : Zgg — Zgs defined by f,(z) = a™. Since f, is defined on Zsg, we
note that we are working (mod 26) in all computations. To obtain a decryptable cipher, we wish to choose
values for n that give a bijective function. This will give us a unique mapping from the English alphabet to
itself, allowing us to reverse the encryption process. After numerical experimentation, the only values n for
which this function is bijective on Zgs are n = 1,5,7,11. For n € {1,5,7,11} we see that the values for f
are given by

alphabet A|[B|C|D|E|F|G|H|I|J|K|L|MN|N|O|P|Q|R|[S|T|U|V|W|X|Y]zZ

T 01| 2 (3[4 [5|6|7 |8 |0o|10[11[12[13[14]15| 16|17 |18] 19|20 |21 |22 23|24 |25
filz)=2"(mod26) [0]1] 2 3[4 [5] 6] 78 [9[10]11[12][13[14[15] 1617 |18[19[20[21[22]23]24[25
fo(@)=a"(mod26) |0 1] 6 |0[10[5 | 2|11 |8 |34 |7 |12]13|14|19]22 (231815242116 172025
frlx)=a"(mod26) |0 | 124 |34 (2120 19|18]9[10 15| 12|13 |14|11 16|17 8| 7|6 |5 |22|23] 2|25
(@) =2 (mod 26) |0 | 1]20|9 |10 |21 |24 15|18 |3 | 4 |19 |12 |13 14| 7 |22 |23 |8 [11| 2 | 5 |16 17| 6 |25

We notice that these functions perform a series of transpositions (swapping two elements with each other)
that are distinct (we don’t swap 2 with 3 and then 3 with 6). For example, note that f5(2) = 6 and f5(6) = 2.
So, this gives that f2(2) = (fn o f2)(2) = fu(fa(z)) =z for n € {1,5,7,11}. Hence f,, = f,*. We also note
that if we add a constant shift to these functions to get ¢g(z) = f,.(z) + s for some s € Zsag, then the inverse
function is given by g7 (z) = f,(x — s) since

(gog ™)(@) =9g(g7 (@) =g(falx —5)) = falfu(z —s) +s=2—5+s=2x
and

(971 o 9)(@) = g7 (9(@)) = g7 (fn(@) +) = fa(fu(@) +5—5) = fi(@) ==

2.2. Key. Our cryptosystem requires a key to be used for encryption and decryption. The basic structure of
the key is a tuple of a permutation of {1,2,3,4} and a number in the interval [1, 25], concatenated together.
So, the key is 5-6 characters long, where the first four digits are a permutation of {1, 2, 3,4} and the last 1-2
digits are an integer in the interval [1,25]. 14321, 34222, 123413 are all valid keys.

This key is used to define the order cf which encryption/decryption functions to use and an offset.

Suppose that the key has the form key = djdadsdydsds, where dy,ds,d3,dy € [1,4],d5 € [1,9], and
de € [0,5] are integers. Let s be the integer formed by concatenating the digits d5 and ds together. Note
that dg is optional and need not be included in the key. Then we choose our encryption functions to be an
ordering of the functions g,(z) = f.(x) + s with corresponding decryption functions g, '(z) = fa(z — s)
depending on the values of dj. for k € {1,2,3,4}. This ordering is explained more in section 2.4.

Since there are 4 ways to pick each of d;,ds, ds,ds and 25 ways to pick the pair dsdg, we have that there
are 4-4-4-4-25=4%.25 = 6400 possible keys.

Date: September 2020.

2 I

2.3. Inputs and Alphabet. Once we have obtained our encryption/decryption functions using the key, we
can encrypt each letter of the plaintext. Note that the only acceptable inputs to our cipher are a letter in
the alphabet, without case. Spaces or other punctuation are skipped by this algorithm; they are not present
in the output.

We are using a zero-based representation of the alphabet, meaning 0 corresponds to a, and 25 corresponds
to z. This maps the alphabet into Zag.

2.4. Transformation. The basic equations used to encrypt are:

(1) fnlz) =2"

(2) gn(z) = fa(z) +5

Where z is the number to encrypt (according to the alphabet defined above) and s is the number at the
end of the key (s described in section 2.1), and n is one of 1, 5, 7, or 11.

We determine the order of which g, (z) to use to encrypt a plaintext character in a cyclical pattern given
by the first four characters of the key. The first four characters of the key define a simple mapping to which
gn () to use.

1 in the key maps to g;(x)
2 in the key maps to gs(x)
3 in the key maps to g7(x)
4 in the key maps to gy, ()

® o o o

In other words, if the first few characters of plaintext to encrypt are ¢y, ¢, ¢3,¢4,¢5,¢6,. .., and the key

is 423111, the pattern of which g,(x) to use is g11(c1), gs(c2), gr(c3), g1(ca), gr1(cs), gs(cs), gr(cr), g1(cs)
repeating until the end of the message.

2.5. Example. As an example, suppose that we wish to encrypt the plaintext CRYPTO and we choose the
key 132417.

For readability, we use the plaintext letters as input to the functions g, rather than their representatives
in Zog. Because of the pattern in the key, we use ¢; to encrypt the first plaintext letter, g7 to encrypt the
second plaintext letter, and so forth.

701(C)=fi(C)+17=19=T
gr(R) = fr(R) +17=8=1I
g5(Y) = f5(Y) +17T=11=L
mP)=fuP)+17=24=Y
0 (T) = fi(T) +17=10=K
97(0) = f7(0) +17=5=F
Hence the final encrypted message is TILYKF. If we were to decrypt this same message, all that is needed
are the decryption functions given by g; ' (z) = fi(z — 17),97 ' () = fz(z — 17),¢5 '(x) = fs(x — 17), and

gl_ll(w) = fu(z —17). Using g ! to decrypt the first ciphertext letter, g7 ! to decrypt the second ciphertext
letter, and so forth, we see that the plaintext letters are

gl T =AT-17)=2=¢C
g I)=fz(I-17)=1T=R
GL)=fL-1T)=A4=Y

)=
gt (Y)=fm(Y-17)=15="P
9 ' K)=fiK-17)=19=T
g (F)=f(F-17)=14=0

Thus the decrypted message is the original plaintext we started with, namely CRYPTO.

Group R

You have reached out to us to create an encryption method to transmit sensitive information
while maintaining a relatively small size for encrypted text. Additionally, the text must also
only use characters available on standard keyboards. We have devised a system that is both
difficult for third parties to break and results in a very minimal increase in size from plain text
to cipher text.

The basis of the system is matrix multiplication. The message is first transformed into a
matrix, then (left) multiplied with an invertible matrix given by an encryption key. To decrypt
the message, the matrix is (left) multiplied by the inverse of the matrix given by the
encryption key.

We start by generating a square matrix based on the contents of the message [1]. We define
the size as being the square root of the character length of the message rounded up to the
nearest whole number. We extend the length of the message to match the length of the
created matrix, if necessary, by appending tilde (~) characters to the end as padding. From
here, we fill in the matrix right to left, top to bottom, with the ASCII value of each character in
the message.

We then need to create an invertible matrix that we will use to encrypt the message matrix
[2]. This matrix must be invertible so that we can undo its multiplication when decrypting the
message.

We know by the Invertible Matrix theorem that a matrix is invertible if it is row equivalent to
the identity matrix. This means that we can start with the identity matrix and modify it with
multiple successive elementary row operations while preserving its invertibility.

In order to derive this matrix from the key, we first iterate over each row n of the identity
matrix and multiply it by the nth digit in the key. We wrap around to the beginning of the key
if we reach row numbers greater than the length of the key.

For further modification, we then perform a series of pivot operations, which involve adding a
multiple of one row to another row. We grab pairs of digits from the key left to right, and for
each pair, we generate three numbers: a starting row number, a destination row number,
and a multiplier. We multiply the row referenced by the starting row number by the multiplier,
and add the result to the destination row.

We then take the message matrix and multiply it with the key matrix to produce the
encrypted matrix. The encrypted matrix is converted to a text format by placing a hex
representation of each digit in the matrix followed by a space separator, with the entries
written left to right, top to bottom [3].

We now have our ciphertext. Decryption is done by performing the above process in reverse:
put the received message into a matrix, multiply by the inverse of the key matrix generated
from the key, and read out the ASCII values of the resulting matrix right to left, top to bottom.

Code Appendix

[1] Generate matrix from text

def text_to_matrix(plain_text: str) -> np.ndarray:
side_length = math.ceil(math.sqrt(len(plain_text)))
text_matrix = np.zeros((side_length, side_length), dtype=np.uint32)
make the text have as many symbols as the array has elements
padded_text = plain_text + ''.join(['~' for _ in range(side_length ** 2 - len(plain_text))])
text_index = 0
for i in range(side_length):
for j in range(side_length):
text_matrix[i][j] = ord(padded_text[text_index])
text_index += 1

return text_matrix

[2] Generate matrix from key

def key_to_matrix(key: str, n: int) -> np.ndarray:

Creates an invertible matrix from the provided string.

key_matrix = np.identity(n, dtype=np.uint32)
new_key = "'
for i in range(n):

new_key += key[i % len(key)]

for i, key_element in enumerate(new_key):
key_matrix[i] *= ord(key_element) % 32

for i in range(®, len(new_key)-1, 2):
print(new_key[i:i+2])
rowl, row2, x = substring_to_numbers(new_key[i:i+2], n)
key_matrix[row1] += (x % 32) * key_matrix[row2]

return key_matrix

def substring_to_numbers(sub_str: str, n: int):
Substring should contain two characters
:return: Two numbers in range(n)
numl = ord(sub_str[0]) % n
num2 = (5 * ord(sub_str[1])) % n
num3 = (ord(sub_str[@]) + ord(sub_str[1])) % n
print((num1, num2, num3))
return numl, num2, num3

[3] Convert encrypted matrix to text

def matrix_to_text(matrix: np.ndarray) -> str:
text = "'
for row in matrix:
for num in row:
text += num_to_str(num)
return text

def num_to_str(num: int) -> str:
return hex(num)[2:] + ' '

Group S

]
MATH 485 Section 1

9 September 2020
OCRAI Message Encryption Report
Given the constraints for your secure messaging system, we have determined that the best
method of encrypting and decrypting messages between employees is an approach similar to
what is known as a One-time pad. The approach is a key-based algorithm that effectively
obfuscates the message and any patterns that may allow an attacker to decipher the message.
The encryption algorithm takes a plaintext message and uses a predetermined or
calculated key, shared between both the sender and receiver, to encrypt the plaintext into
ciphertext, then decrypt it back into plaintext for the receiver. To begin, the algorithm takes the
plaintext message and removes any spaces or punctuation, and for simplicity, capitalizes all
characters. For example, the plaintext message, “Hello, World!”, is converted into the plaintext
message, “HELLOWORLD.”
Hello, World! - HELLOWORLD
Initial Message Modified Message
This prevents an attacker from being able to make any guesses or inferences from the ciphertext
based on patterns in the language of the message.
With the plaintext message refactored, the algorithm then uses the predetermined key to
encrypt the updated plaintext. The algorithm accomplishes this by shifting each character in the
plaintext by the number of characters determined by the corresponding character in the key.

Before we can make sense of this, we give each character of the alphabet a number:

B|C|DIE|F|G|H[I |J|K|]L |[M[N]JO|P |Q|R|S |T |U |V |W|X]|Y |Z

o

11213 |/4|5]6]718]9]10]11)12113|14]15]16|17[18]19120|21|22]23|24]|25

These numbers are used to determine how many shifts will be performed, so A = 0 shifts, B =
1 shift, C = 2 shifts, etc. We define a “shift” as an increment in the alphabetic value of the
character. For example, the letter A shifted three times becomes the letter D. If the shift goes
passed the letter Z, we loop back around to A and continue the shifting. So, the letter Y shifted
three times becomes the letter B.

We then use the key to determine how many characters to shift each character of the
plaintext. Using the example key, “PASSWORD ”, we determine that we must shift the first
character of the plaintext 15 times (since P=15), the second character 0 times (A=0), the third
character 18 times (S=18), and so forth. Because the messages are typically longer than the key,
we start back at the beginning of the key when the end is reached and there is more plaintext to

encrypt. We can visualize this by lining up the key with the plaintext as follows:

Plaintext: H E L L @) W @) R L D

Key: P A S S W @) R D P A

Now we can see how the key is used to determine how many characters to shift the plaintext to

give us the ciphertext:

Plaintext: H E L L (0] w (0] R L D

of shifts: +15 +0 +18 +18 +22 +14 +17 +3 +15 +0

=Ciphertext: | W E D D K K F U A D

So, the plaintext message “Hello, World!” encrypted with the key “PASSWORD ” yields the
ciphertext “WEDDKKFUAD.”

This process can be simplified mathematically by thinking of the plaintext and key in
terms of their numbers:

¢; = p; + k; (mod 26)

where pi is the numerical value of the i character in the plaintext, kj is the numerical value of

the j character in the key, and c; is the numerical value of the i*" character in the ciphertext.

Decrypting the ciphertext is very straightforward. Using the shared key, the reverse of
encryption is applied to the ciphertext. The key is aligned with the ciphertext and then the

characters are shifted back based on the key values:

Ciphertext: | W E D D K K F U A D
Key: P A S S w 0] R D P A

of shifts: -15 -0 -18 -18 -22 -14 -17 -3 -15 -0
=Plaintext: H E L L 0] W 0] R L D

Mathematically, this can be described using the same symbols as before with the following
equation:

pi = ¢; — k;j (mod 26)

There are a few other security factors to consider, such as how the key will be shared
between users and the security of that key, but from an encryption standpoint and the
requirements provided, this encryption algorithm will provide the security the company needs to

safely transmit messages.

Group T

Progressive Key Cipher Encryption
|

Introduction

Information governs the world around us; it is used in marketing, strategy planning,
product development, business management, job hiring, and even restaurant
recommendations. This in turn makes information-based security breaches a major threat to
individuals and organizations alike. Our goal for this project is to minimize the damage dealt to
any party in the event of a zero-day attack or an unintentional leak of information.

How Our System Works

We call our cryptosystem the “Progressive Key Cipher”. We start with the key K =
K, K,K; -+ K, which is an alphabetic string of length 2 < n < 10. Let P be a string of
alphabetic plaintext. For our purposes we will ignore non-alphabetic characters—we encrypt
the plaintext as if they were not there. Define the bijective mapping u from the English
alphabet to the integers modulo 26 by assigning each letter to the equivalence class of the
number representing its position in alphabetical order (e.g. u(A) = 0,u(B) = 1,u(C) =
2,...,u(Z) = 25). We now outline the procedure by which we encode the plaintext using the
key:

1. Break P into chunks of characters Py, P,, P, ..., P, of length n — 1. It is okay if the last
chunk does not have n — 1 characters.

2. Apply the key to the first chunk P; = C;C,C; -+ C,,—; by mapping each character C; to
the character ,u‘l(u(Ci) + ,u(Ki)). So we shift the i’th character of the chunk by the i’th
letter of the key.

3. Now that we have applied the key to the first chunk, we use the n’th character of the
key to alter the key for the second chunk. To do this, we add the position of the final
character in the key to the position of each character in the key (including the final
character) and reduce modulo 26. In other words, C; becomes p~*(u(K;) + u(K,)). Set
K equal to the new key.

4. Apply K to the next chunk of plaintext as in step 2, and afterward generate the new key
using the process described in step 3.

5. Repeat step 4 until you have encrypted all of the chunks.

Let E be a string of Ciphertext and let K be the original key. Decryption is essentially the above
process, but reversed:

1. Break E into chunks of n — 1 characters as before.

2. Decrypt the first chunk E; = C;C,C3 ++- C,,—1 by subtracting the corresponding K;
alphabetic position from the C; alphabetic position. In other words, plaintext C; will be
equal to = ((C;) — p(K)).

3. Generate the key for the next chunk exactly as in step 3 of the encryption process, and
decrypt the next chunk using the new key following the process in step 2.

4. Repeat until all chunks are decrypted.

A Worked Example

To demonstrate our cryptosystem, we will work through a simple example. Suppose our
key text is “CODE”, and our plaintext is “CRYPTO FUN”. We begin by breaking the plaintext into
chunks of 3 letters. We have “CRY-PTO-FUN". We start with the first chunk, “CRY”. Adding the
position values of corresponding letters in the key “COD”, we obtain cyphertext “EFB” for our
first chunk. The following table outlines these computations in greater detail.

Plaintext Character C R Y
Position in Alphabet (0-25) 2 17 24

Key Character C (o] D
Position in Alphabet (0-25) 2 14 3

New Position in Alphabet (0- 2+2=4(mod 17 + 14 =5 (mod 24 +3 =1 (mod
25) 26) 26) 26)
Cyphertext Character E F B

Now we change the key. To change the key, we look at the last letter of the key, “E”, which has
position 4 in the alphabet. We then add this to the position of the first 3 letters to obtain our
new, shifted key, “GSHI”.

Key Character C (o) D E
Position in 2 14 3 4
Alphabet (0-

25)

New Position 2+4=6(mod 14 + 4 = 18 (mod 3+4=7(mod 4+4=8(mod
in Alphabet 26) 26) 26) 26)
(0-25)

New Key G S H |
Character

Now we apply the new key to the next chunk, “PTO”. Adding the corresponding alphabetic
positions of “GSH”, we obtain the encrypted chunk “VLV”.

Plaintext Character P T (o)

Position in Alphabet (0-25) 15 19 14

Key Character G S H

Position in Alphabet (0-25) 6 18 7
New Position in Alphabet (0- | 15+6=21(mod26) | 19+ 18 =11 (mod 14 + 7 =21 (mod
25) 26) 26)
Cyphertext Character Vv L \'

.l‘n‘IH

To make the key for the next chunk, we add the position of the last letter (“I”) of the new key,

“GSHI”, to the position of all the letters in the key.

Key Character G S H |

Position in 6 18 7 8
Alphabet (0-

25)

New Position 6+ 8 =14 (mod 18 + 8 =0 (mod 7 + 8 =15 (mod 8 + 8 =16 (mod 26)
in Alphabet 26) 26) 26)

(0-25)

New Key o A P Q
Character

Then we apply this key, “OPAQ”, to the next chunk, “FUN”. That gives us “TUV”. Hence, our
encrypted ciphertext is “EFBVLV TUV”. To decrypt this text, simply reverse the operations
shown in the table.

Conclusion

Our cryptosystem aims to minimize the risk of a security breach or leakage by
preventing an unauthorized agent from extracting important information quickly. The pattern is
difficult to detect, and is resistant to low-level frequency analysis attacks. Unless a more
sophisticated attack is employed, an unauthorized agent will not be able to break the cipher in
a short amount of time. Changing the key frequently will further ensure the confidentiality of
the encrypted data. Thus, we can confidently say that this achieves our goal for this
cryptosystem—to minimize the damage dealt to any agent at the event of a zero-day attack or
an unintentional leak of information. It is imperative to recognize the danger of putting the
safeguard of information solely on one system, so we strongly recommend the use of other
security measures in addition to our cryptosystem.

Group U

Professor Jenkins
MATH 485
10 September 2020
Encryption Report

Dear OCRAI, we understand the need for an encryption system for your company. We
know that keeping private company information is very important in today’s day and age of
getting ahead of the competition. Especially when this privacy is reliant upon the employees,
things can be casily leaked to the public and rival business. We have put together an encryption
method that you can apply to your company's mobile application to use for peer-to-peer
encryption with your employees. This system allows for punctuation and special symbols and
preserves the case of each letter.

Our cryptosystem requires a private key composed of any letters, numbers, or special
symbols available on a standard computer or mobile phone. Per your specifications, the key does
not need to be of great length. Although you can technically use as little as one character, we
recommend 6-10 characters for maximum security. This key can be set by an administrator as
often as desired; setting a randomized key daily will increase encryption security. There will be
no need to memorize this key as it is only being used by the encryption method for encrypting
messages sent that day. The keysetter only needs to provide a novel key daily and the
cryptosystem will handle the rest.

The system works by first converting the characters of the plaintext to their ASCII

Decimal representations. For the curious, these can be found at https://www.ascii-code.com/. The

column marked “DEC” contains the decimal for the character in the corresponding row. We

	GroupA
	GroupB
	GroupC
	GroupD
	GroupE
	GroupF
	GroupG
	GroupH
	GroupI
	GroupJ
	GroupK
	GroupL
	GroupM
	GroupN
	GroupO
	GroupP
	GroupQ
	GroupR
	GroupS
	GroupT
	GroupU

