Group M

initial shiftis 9+4+17+20+ 18+ 0+ 11+ 12 =91. We then take 91 (mod 29) = 4 as our
initial shift index. The mod 29 is because our alphabet of 26 letters has 3 additional characters
appended on to it.

We then take cipher 1 and apply the following operation to it to shift the characters and
call the result cipher 2: add the index of the current character in cipher 1, the initial shift index
calculated in the previous step, and the position of the current character in the alphabet prime.
We then take this number (mod 29) and replace the character with the resulting character at that
position in our alphabet prime. For example, in our cipher 1, the first letter is ‘e’. So, we take the
index of the current character 0, since we are at position 0 in cipher 1, the initial shift index 4,
and the position of the current character in the alphabet prime 9, since ‘e’ is in the ninth position.
We then add 0 + 4 + 9 = 13. Then the first character of cipher 2 1s ‘n” since that 1s the letter at the
13" position in our alphabet prime. The second letter in cipher 1 is ‘0’. So, we take the current
index 1, the initial shift index 4, and the position of ‘0’ in alphabet prime 14, add them together
to get 19, and get ‘t” as the second character of cipher 2. We continue this process on until we get
cipher 2 to be “ntyo,echajempf.wwur sokxedlwglgldww.,pbcwllgp.rajb,wmdridgb”.

For the third and final step of the encryption, we parse the cipher 2 in such a way that we
pass through and grab all the letters that are equivalent to zero (mod the length of the original
key) in order and have that be the beginning of the next message, which will be referred to as
cipher 3. We then pass through cipher 2 and grab all the letters that are equivalent to one (mod
the length of the original key) and append it to the existing letters on cipher 3. We repeat this
process up until we have grabbed all the letters from cipher 2. To best illustrate this concept, we
will not only show what cipher 3 becomes, but also use colors to demonstrate the new placement
of the letters. In our example, we first go through and cipher 2 and collect all the letters in the
locations that are equivalent to 0 (mod 9) since “Jerusalem™ has 9 characters. This would be: “nc
gpri”. We then do the same for those letters that are equivalent to 1 (mod 9), which would be:
“tmslbad”. Following this pattern, we would get cipher 3 to be “nc
gpritmslbadypoqcjgofklwbb,.xdl,ewewlwhwdwgmaul.pdjrw,.r”. We now show the comparison
of cipher 2 and cipher 3 using colors to indicate the position of the letters. Cipher 2:
“ntyo,ehajempf.wwur_sokxed!wglgldww. ,pbewlligp.rajb,wmdridgb” becomes cipher 3:
“nc_gpritmslbad . . xdlL,ewewlwhwdwgm JTwW,.r”.

If the original plaintext message was longer than 160 characters, we will have completed
these steps for each of the blocks of text we parsed at the beginning. At this point the encryption
1s complete, and we send the blocks that are at most 160 characters each in the same order as the
plaintext message would have been sent. Each of these steps is reversible given the key, and
reversing them will yield the original plaintext message. You will want to decrypt them in blocks
and not as a whole with the program.

While this encryption and decryption can be done by hand, we understand that our
method can seem quite intricate. To that end, we have created a python code program that will
complete the encryption and decryption for the employees. Because the key is the important part
of the encryption process, the existence of the program is not a security vulnerability. We will
provide the working program to you as a part of our service.

As a general overview of the process we just covered in the letter, given a plaintext
message to be encoded, it will be split up into blocks, scrambled according to a key in a Caesar
Cipher fashion , shifted by a scrambled alphabet and character location information in a way
somewhat similar to an Affine Cipher but with slightly different technicalities, and then parsed
into a pattern determined by the key. This multi-step encryption process should address the
problem of confidential company information being received by unintended parties, because to
any erroneous recipient, it will seem like gibberish. Regarding any party with malintent who is
trying to intercept the messages, the messages will be secure as long as the malicious party does
not obtain the key. While this was not stated in the original explanation of the problem in your
letter to us, it is an added benefit that comes with encryption. The text messages will still be
easily transmitted using mobile phones since they use the same characters as the original
plaintext message being sent. The messages also remain the same length as the original plaintext,
so overflow is not an issue as long as the plaintext messages are not that long themselves.
Overall, we expect that this encryption will meet all of your needs and be straightforward enough
to use, especially with the aid of the python program. If you have any questions whatsoever,
please feel free to reach out to us. We would be more than happy to help you with any concerns.

Best regards,

Python Code:

from collections import OrderedDict

def remove duplicate(strl):
return "".join (OrderedDict. fromkeys (strl))

def split_text(plaintext, chunk size):
return [plaintext[i:i + chunk size] for i in range(0, len(plaintext),
chunk size)]

def encrypt(key data, plaintext data):

& eyl RS, i R
r LUrn inputs i1nto strings

key = remove duplicate(str(key data) .lower())
plaintext = str(plaintext _data).lower ()
key length = len(str(key data))

create a cyclcical pattern to cycle some letters through
cycle = key + key[0]

Cycle through the key letters once

cipherl = "n

for char in range (0, len(plaintext)):
location = cycle.find(plaintext[char])
if (location != -1):
cipherl += cycle[location + 1]
else:
cipherl 4= plaintext([char]

alphabet = "abcdefghijklmnopgrstuvwxyz .," # a string with 2

characters, and 29 is prime

alﬁhabet_prime = nn
for char in range (0, len(alphabet)):
location = cycle.find(alphabet[char])

if (location != -1):
alphabet prime += cycle[location + 1]
else:
alphabet prime += alphabet [char]
cipher2 = mn

start_position = 0
for char in range (0, len(key)):
start_position += alphabet prime.find(key([char])

for char in range (0, len(cipherl)):
location = alphabet prime.find(cipherl[char])
cipher? 4= alphabet prime[(start position + location + char) % 29]

cipher3 = "n
for i in range (0, key length):
cipher3 += cipher2[i::key length]

return cipher3

def decrypt(key data, ciphertext data):

turn inputs

into strings

key = remove_duplicate(str(key data).lower())
str(ciphertext data) .lower()
len(str(key data))

ciphertext =
key length =
find out ho

lenath
lengtlil

bonus_chars =

plainl = "»
extra cycle =

W

many extra charac ~ter Lnere are past a muld

len(ciphertext) % key length
num iters = len(ciphertext) // key length

0

if (bonus_chars > 0):
extra cycle =1
for 1 in range(0, num_iters + extra_cycle):
character number = i
if (i != num iters):
plainl += ciphertext[i]
for j in range(l, key length):
character number += num_iters
if (jJ <= bonus_chars):

character number += 1

plainl += ciphertext[character number]

else:

for j in range(0, bonus_chars):
character number = i + j * (num_iters + 1)
plainl += ciphertext[character number]

create a cy

vel

cical pattern to cycle some letters through

cycle prime = key + key([O0]

cycle length

reverses th

e

len(cycle prime)

cycle for the decryption cycle

cycle = cycle prime[cycle length::-1]

alphabet - “abcdafghljklmnopqrstuvwxyz .," # a string wi

Q,

I1

location

O

is .Lt"“ -

alphabet
alphabet _prime = "v
for char in range (0, len(alphabet)):

cycle prime.find(alphabet[char])

if (location == -1):
alphabet prime += alphabet[char]

else:

alphabet prime += cycle prime[location + 1]

plain2 = "»

start _positio

n

=0

for char in range (0, len(key)):
start_position += alphabet prime.find(key([char])

for char in range (0, len(ciphertext)):

location
position

alphabet prime.find(plainl[char])
(location - start position - char) % 29

oug!

plain2 += alphabet prime[position]

plain3 = "»

for char in range (0, len(plain2)):

location = cycle.find(plain2[char])

if (location != -1):

plain3 += cycle[location + 1]

else:
plain3 += plain2[char]

return plain3

encryption = encrypt ("key goes here",
print (encryption)

decryption = decrypt ("key goes here",
print (decryption)

"plaintext goes here")

"ciphertext goes here")

