Group N 9-11-20

Introduction

We in the _team are grateful for the opportunity to design a cryptosystem
for OCRAI Creative Recursive Acronyms, Inc. We are glad to help you address the problem of
security breaches. An ounce of prevention is truly worth a pound of cure, and we hope our
cryptosystem will be a great help to you.

Our cipher system, modestly named the _Huﬁman encryption, will help
address your problem by encoding messages in a way that makes it very difficult to crack
without knowing the key, which will help your company effectively protect it's messages and
private information.

Cipher System

The cipher system that we’ve prepared for you is based on a system known as Huffman
Compression. Typically, a text message is stored as a series of seven-digit codes of 0’s and 1’s,
known as ASCII. For example, the letter A is represented as 1000001, while the character “*” is
represented as 1011110. Huffman Compression recognizes that some things, like letters, are
used far more frequently than other things like dollar signs and asterisks. In Huffman
Compression, more frequent characters in a text are represented with shorter codes, while
infrequent characters are represented by shorter codes.

To create these shorter codes, Huffman Compression creates a frequency tree. To show
an example of this kind of tree, we’ll compress the phrase “OUR MEETING IS SCHEDULED
FOR FOUR IN THE ROOM AT THE BOTTOM OF THE STAIRS". To start, we count the number

of times each character appears

(@ in this phrase. Some characters,
_go N like C and B, appear only once,
(a) @\ while T appears 8 times and a
_,//0/ j\ T 1\\~ space is used 14 times. Once we
Q 5) () (>) & know the frequency all of the
,0 ! ! N o characters appear, we can
AL) ?% ofs] 1¥ [gy TSPACE W] or ™y combine low-frequency
000 I 11 . . :
\ Iy characters into higher frequency

< 011
i N0 1 0\
H[4' |]4) s]fo ; Rls'/ L pairs. For example, while C and B
(4 ‘) (s Cs)
0010 0011 | 1010 N 1100

Vs ol only appear once each, there are

" {D - ‘/" \‘ ‘ /6 ! two characters in the message
< 2 Fooo| (o] o] (o]] (| thatare either C or B, so they
6 \11/ N have a combined frequency of
B | e [a3 ‘LI 1 two. G and L appear once each,
010110 010111 010100 010101 SO they a|SO have a Comblned

frequency of two. C, B, G, and L
all then have a combined frequency of 4. We can combine lower frequency characters or groups

9-11-20

together until they’ve all been combined into a single tree, as shown in this image. In the case of
ties for difference frequencies, the characters appear left to right in alphabetical order, as is the
case with B, C, G, and L.

Once the frequency tree has been constructed, we can create new codes for each
character by following the path to the character in the tree, with left branches being represented
by 0’s and right branches being represented by 1's. For example, the letter E has the code 000,
because to find it we move left three times in the tree, while U has a code of 11011, because we
move right twice, then left, then right two more times. We then replace all of the characters in
our message with the codes; for example, “OUR” would be replaced with 011 11011 1100, as
the codes for O, U, and R are 011, 11011, and 1100 respectively in this tree.

Once we have replaced the entire message with the codes from our frequency tree, we
can turn the codes back into letters using the codes from this table for the final step of the
Tooo0] cipher. The table gives each of the letters and numbers, as

A 000000(Q O010000|g 100000 | w

B 000001 | R 010001 h 100001|x 110001 well as the space character, a six-digit code. We can use this
C 000010| S 010010 i 100010|y 110010 . — . .

0 oot | T o0om || 100011z moon | tADIE to break up our message in 6-digit codes, padding with
E 000100| U oto100 [k 100100 |0 110100| 1's at the end so the total number of digits is divisible by six.
F 000101 |V 010101 |1 100101|1 110101 . « ”

G 000110 |W 010110 |m 100110 |2 110110 SO, for .Ol‘_lrcombmed code 0f01111011110_0 for “OUR , the
H o001t | x o011 |n 100111 |2 110111 | first 6 digits (011 110) would be replaced with the letter “e”, as
| 00100D) Y 011000} 6 10100014 111000} the code for “e” is 011 110. We would follow this pattern for

J 001001|2Z 011001 |p 101001|5 111001 y g C
K ootom|a omoo|q 10101068 11010 the entirety of the message. As an example, the first 24 digits
L oototr} b omon|r 10101117 111011) of our message after converting to 0’s and 1’s is the following:
M 001100 ¢ 011100|s 101100|8 111100 ‘ a g

N 001101l ¢ 011101 [t 10110119 111101] 011110111100 111110 100000. When converting this using
o ootttofe ot1i0fu 01110 % ni110| our table, we get “e80g”. We would send this encoded

P o011 | f 011111 | v 101141 ["" 111111

message by text to the recipient via text, at which point the
recipient would be able to turn this encoded message back into the regular text.

In a regular Huffman Compression, the frequency tree is attached to the message, as
there’s no way to turn the text “011110111100” back into our original message of “OUR” without
the frequency tree. In our encryption system, we will only send a list of character frequencies
with the message instead of the tree, so that there’s no way that someone intercepting the
message can decipher the message. The recipient will have a key that tells them which
frequencies belong to each character. For example, the message we send could begin with 4 5
3 2. If the recipient’s key began with IRMD, it would signify that the frequencies of I, R, M, and D
would be 4, 5, 3, and 2 respectively. Each person would have a unique key made of all of the
characters a person could type shuffled together. Because this key wouldn’t be sent with the
message, anyone that intercepted the message would only see a series of numbers and the
ciphertext, which no indication how to build the correct frequency tree.

Each key should be a randomized list of all of the valid characters that the people
communicating want to be able to use. For example, the dollar sign can only be used if it is
included in the key. For this reason, we recommend that all characters available on a standard
keyboard be used in the key. However, because every character in the key requires more
padding at the beginning of the message, the encryption system allows for smaller keys. One of
the biggest advantages of having larger keys is the added security; most keyboards have 100+
characters, with the number of keys being equal to the number of characters raised to the power

9-11-20

of the number of characters. In the case of 100 characters, there are 100*100 keys, or 10*200.
In addition, because each pair of keys can include any characters, including emoticons, it is very
difficult to break this code by guessing what characters are based on their frequencies, as no
hacker can know what possible characters are included in the code.

Conclusion

The | Huffman encryption system, which works by building a character
frequency tree for each message and encoding the characters by their position on the tree, will
help your company encrypt messages. For longer messages, because it is based on a
compression algorithm, it may even have the benefit of compressing your data as well. The
encryption will help secure company data and prevent accidental data leakage from employees.
You can rest secure knowing that your data is protected and secure.

Notes: you may find the tool: https://www.csfieldguide.org.nz/en/interactives/huffman-tree/
helpful in developing a huffman tree from a given text string

