Group T

Progressive Key Cipher Encryption
|

Introduction

Information governs the world around us; it is used in marketing, strategy planning,
product development, business management, job hiring, and even restaurant
recommendations. This in turn makes information-based security breaches a major threat to
individuals and organizations alike. Our goal for this project is to minimize the damage dealt to
any party in the event of a zero-day attack or an unintentional leak of information.

How Our System Works

We call our cryptosystem the “Progressive Key Cipher”. We start with the key K =
K, K,K; -+ K, which is an alphabetic string of length 2 < n < 10. Let P be a string of
alphabetic plaintext. For our purposes we will ignore non-alphabetic characters—we encrypt
the plaintext as if they were not there. Define the bijective mapping u from the English
alphabet to the integers modulo 26 by assigning each letter to the equivalence class of the
number representing its position in alphabetical order (e.g. u(A) = 0,u(B) = 1,u(C) =
2,...,u(Z) = 25). We now outline the procedure by which we encode the plaintext using the
key:

1. Break P into chunks of characters Py, P,, P, ..., P, of length n — 1. It is okay if the last
chunk does not have n — 1 characters.

2. Apply the key to the first chunk P; = C;C,C; -+ C,,—; by mapping each character C; to
the character ,u‘l(u(Ci) + ,u(Ki)). So we shift the i’th character of the chunk by the i’th
letter of the key.

3. Now that we have applied the key to the first chunk, we use the n’th character of the
key to alter the key for the second chunk. To do this, we add the position of the final
character in the key to the position of each character in the key (including the final
character) and reduce modulo 26. In other words, C; becomes p~*(u(K;) + u(K,)). Set
K equal to the new key.

4. Apply K to the next chunk of plaintext as in step 2, and afterward generate the new key
using the process described in step 3.

5. Repeat step 4 until you have encrypted all of the chunks.

Let E be a string of Ciphertext and let K be the original key. Decryption is essentially the above
process, but reversed:

1. Break E into chunks of n — 1 characters as before.

2. Decrypt the first chunk E; = C;C,C3 ++- C,,—1 by subtracting the corresponding K;
alphabetic position from the C; alphabetic position. In other words, plaintext C; will be
equal to = ((C;) — p(K)).

3. Generate the key for the next chunk exactly as in step 3 of the encryption process, and
decrypt the next chunk using the new key following the process in step 2.

4. Repeat until all chunks are decrypted.

A Worked Example

To demonstrate our cryptosystem, we will work through a simple example. Suppose our
key text is “CODE”, and our plaintext is “CRYPTO FUN”. We begin by breaking the plaintext into
chunks of 3 letters. We have “CRY-PTO-FUN". We start with the first chunk, “CRY”. Adding the
position values of corresponding letters in the key “COD”, we obtain cyphertext “EFB” for our
first chunk. The following table outlines these computations in greater detail.

Plaintext Character C R Y
Position in Alphabet (0-25) 2 17 24

Key Character C (o] D
Position in Alphabet (0-25) 2 14 3

New Position in Alphabet (0- 2+2=4(mod 17 + 14 =5 (mod 24 +3 =1 (mod
25) 26) 26) 26)
Cyphertext Character E F B

Now we change the key. To change the key, we look at the last letter of the key, “E”, which has
position 4 in the alphabet. We then add this to the position of the first 3 letters to obtain our
new, shifted key, “GSHI”.

Key Character C (o) D E
Position in 2 14 3 4
Alphabet (0-

25)

New Position 2+4=6(mod 14 + 4 = 18 (mod 3+4=7(mod 4+4=8(mod
in Alphabet 26) 26) 26) 26)
(0-25)

New Key G S H |
Character

Now we apply the new key to the next chunk, “PTO”. Adding the corresponding alphabetic
positions of “GSH”, we obtain the encrypted chunk “VLV”.

Plaintext Character P T (o)

Position in Alphabet (0-25) 15 19 14

Key Character G S H

Position in Alphabet (0-25) 6 18 7
New Position in Alphabet (0- | 15+6=21(mod26) | 19+ 18 =11 (mod 14 + 7 =21 (mod
25) 26) 26)
Cyphertext Character Vv L \'

.l‘n‘IH

To make the key for the next chunk, we add the position of the last letter (“I”) of the new key,

“GSHI”, to the position of all the letters in the key.

Key Character G S H |

Position in 6 18 7 8
Alphabet (0-

25)

New Position 6+ 8 =14 (mod 18 + 8 =0 (mod 7 + 8 =15 (mod 8 + 8 =16 (mod 26)
in Alphabet 26) 26) 26)

(0-25)

New Key o A P Q
Character

Then we apply this key, “OPAQ”, to the next chunk, “FUN”. That gives us “TUV”. Hence, our
encrypted ciphertext is “EFBVLV TUV”. To decrypt this text, simply reverse the operations
shown in the table.

Conclusion

Our cryptosystem aims to minimize the risk of a security breach or leakage by
preventing an unauthorized agent from extracting important information quickly. The pattern is
difficult to detect, and is resistant to low-level frequency analysis attacks. Unless a more
sophisticated attack is employed, an unauthorized agent will not be able to break the cipher in
a short amount of time. Changing the key frequently will further ensure the confidentiality of
the encrypted data. Thus, we can confidently say that this achieves our goal for this
cryptosystem—to minimize the damage dealt to any agent at the event of a zero-day attack or
an unintentional leak of information. It is imperative to recognize the danger of putting the
safeguard of information solely on one system, so we strongly recommend the use of other
security measures in addition to our cryptosystem.

