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The first author proved that the harmonic convolution of a normalized
right half-plane mapping with either another normalized right half-plane
mapping or a normalized vertical strip mapping is convex in the direction
of the real axis, provided that it is locally univalent. In this article, we prove
that in general the assumption of local univalency cannot be omitted.
However, we are able to show that in some cases these harmonic
convolutions are locally univalent. Using this we obtain interesting
examples of univalent harmonic maps one of which is a map onto the
plane with two parallel slits.
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1. Introduction

Let D be the unit disc. We consider the family of complex-valued harmonic functions
f%upivdefined in D, where u and v are real harmonic in D. Such functions can be
expressed as f ¥ h p g, where

Do D 8
hizb%  a,z" and gizP%  bpz"
n¥al n¥sl

are analytic in D. The harmonic function f¥% h p g is locally one-to-one and sense-
preserving in D if and only if

j9'%zbj 5 jh'azbj 8z2 D:

Let S° be the class of complex-valued, harmonic, sense-preserving, univalent
functions fin D, normalized so that f(0) %0, f,(0) %1 and f ;0P %0. Let K°,and C°,
be the subclasses of S¢ mapping D onto convex and close-to-convex domains,
respectively. We will deal with C° mappings that are convex in one direction.
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P P
For analytic functions fazP%zp [, a:z" and Fizb Yizhp 1, Aqz", their
convolution (or Hadamard product) is defined as f F%zp %%2 anAnz". In the
harmonic case, with
x A
fYU hpg%zp az"p 2Z" and

n¥2 n¥s1l
_ = _
FuuHpGYzp Az"p B,Z",
n%2 n¥l
define the harmonic convolution as

A P8
f F“ah Hpg G¥%zp aA"p b,Bn Z":
nYs2 nYsl

There have been some results about harmonic convolutions of functions [1-4].
For the convolution of analytic functions, if f, f,2 K, then f; f, 2 K. Also, the right
half-plane mapping, -, acts as the convolution identity. In the harmonic case, there
are infinitely many right half-plane mappings and the harmonic convolution of one
of these right half-plane mappings with a function f2 K% may not preserve the
properties of f, such as convexity or even univalence (see [2] for an example). In [5-7],
explicit descriptions are given for half-plane and strip mappings. Specifically, the
collection of functions f% hpg2S® that map D onto the right half-plane,
R % {w:Re(w)4 —1/2}, satisfy

da1p

hazb p gizb % 7 z

and those that map D onto the vertical strip, N, % w: 2" SRewrS ;2—

where 5 .::a 5 n, satisfy

da2p

C ¥
1 1p ze"™
1
hdzb p gizp /42i Sina log Tpze"

In [2], the following results were obtained:

THeorem A Let fy %o hy PGy, T2 ¥4 hy @, 2 K, with hydzP p gedzp ¥ 1% for k%1, 2.
If f, f, is locally univalent and sense-preserving, then f; f,2 S°,and is convex in the

direction of the real axis.

THEOREM B Let f; % h1<b 0, 2 |§g with hydzb p 9162D 1/412Tz and f, ¥ h, b 0 2 Ka with

ha0zP p g0zP Ya52—log 1pe " If f, is locally univalent and sense-preserving,

1pze—ia 1
then f; ,2 S% and is convex in the direction of the real axis.

Note that since all harmonic right half-plane mappings satisfy Equation (1) and
all harmonic vertical strip mappings satisfy Equation (2), then Theorems A and B
apply to harmonic right half-plane mappings and harmonic vertical strip, respec-
tively. In Section 2, we generalize Theorem A for harmonic mappings onto slanted
half-planes given by

Hy % z2C :RekYzb 4 —% , where 0.1y 52n:
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Next, we deal mainly with the convolution of the canonical harmonic right
half-plane mapping [1] given by

2 ~ %Zz
0 —2z¥ 81— 2?

-1
Z 2Z

fodzb ¥4 hodzb p godzp ¥a da3p

with harmonic mappings f that are either right half-planes or strip mappings. We
show that if the dilatation of f is e®z" (n%1,2), then f, f is locally univalent.
However, we give examples when local univalency fails for n2:3. Also, we provide

some results about univalency in the case the dilatation of f is —ig% Finally, we give
examples of univalent harmonic maps obtained by way of convolutions.

2. The convolution of slanted half-plane mappings

We first prove a generalization of Theorem A for the slanted half-plane, H,,
0.:y52n, described in the introduction. Let S%H,P c S° denote the class of
harmonic functions f that map D onto H,. In the case when y %0 we get the
normalized class of harmonic functions that map D onto the right half-plane
{w:Re(W)4-1/2}.

Lemma 1 If f¥hp g2 S%H,b, then

hdzb p e~2Y gizb ¥4 z2 D:

z
( 1-—zeV’

Proof If f¥%hpg2S%H,p, then Re eVdhizb p gizhb 4 —1=2, which means that
Refe” h(z) p e g(z)}4—1/2. In other words, Refe” (h(z) p e ?Yg(z))}4 —1/2. Since f
is a convex harmonic function, it follows from a convexity theorem by Clunie and
Sheil-Small [1] that the function h(z) p e™*¥g(z) is convex in the direction n/2 —vy,
and so is univalent. It is also clear that z € h(z) p e 2Yg(z) maps D onto H, which

implies the result. g

THeEOREM 2 If f 2 SO(Hyk), k¥1,2,and f; f,islocally univalent in D, then f; f; is
convex in the direction —(y; P y2).

Proof Let
F, Y dhy pe™@igp  oh, — e~2Y2g,b, and
F, Yaohy pe™2Y2god  6hy — e=2Vigyb:
Then

%6F1 b F,pYhy hy — e—2i6y1byzbgl 02:

The shearing theorem of [1] establishes that it is sufficient to show that the function
%6F1 b Fp is convex in the direction —(yipy.), or equivalently, that
F v e'VPYI(F, b F,) is convex in the direction of the real axis. A result by Royster
and Ziegler [8] shows that F is convex in the real direction, if Ref(zF '(z))/" (z)}40
o2z D, where & 2va al_fﬁwith some a «R. Thus, if we show this last condition, we
are done.
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By Lemma 1,

ZF1azb Y4 izoh, — e~ 2V2q, ozl

z
1 —zen
Furthermore,

hazb - e=2Y2glazp (
h%dzb b e-2¥2gJozb

. . )
z0h, — e~ 2Y2g,0azb Yuz hadzb b e~2V2glazb

1— &izp ( : )
Yyz -~ hO —2iyy 40
42 1p Uiz ,0zb p e™“Y2q,0zp
§ D
01 — eW2zp
Since e 19z 51 0on D and &30b %40, if we let py0zb ¥4 ﬁc,—‘!%%‘then we
have that Re{p.(z)}40 for all z2 D. Consequently,
bony L zp,0zP
zF, dzp /q1 “V 3 evig
s o1 zeiyl. zp,dzp
1—zeVr §1 —elvezp?
Zpo0zeVip

1 . e .
81 — eidy:py2bzp?”

Analogously,

zp10ze2p

0 [V e
zF,0zb Y4 PTRpTI—E

where Re{p;(2)}40 for all z2 D. Thus
0 1
eiéylbyzbazFO 0

10zb p zF,dzbp
ze 1by1Py2P
01—e1by2? 202

iy iy

Re@ A ¥, Redpidze 2P p podze “bb 4 0:

This completes the proof. g

3. The convolution of f, with right half-plane mappings

In Theorems A, B, and 2, we require that the resulting convolution function is locally
univalent and sense-preserving. That is,

o glazp .

jlozbj Ya—— 51 with h'dzp 6% 0 822 D:

h'%zb
When is this not a necessary assumption? In the rest of this article we establish cases
of these theorems for which this assumption can be omitted.
The following result about the number of zeros of polynomials in the disc is

helpful in proving the next several theorems.
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Cohn’s Rule ([9] or see [10, p. 375]) Given a polynomial
fozb Yaag pajzp - - p an"
of degree n, let
f dzb %z" fol=zb YVaa, pan_1zp --- p apz™:

Denote by p and s the number of zeros of f inside the unit circle and on it,
respectively. If jagj5jayj, then

£ asp a, fozb-ap f 0zp
1 &
z

is of degree n—1 with p; %p—1 and s, %s the number of zeros of f; inside the unit
circle and on it, respectively.

The main result of this section is the following.
TBEOREM 3 Let f¥%hp g2 Ke with hizb p gizb ¥4 —2—and 1dzb Y, altzb g, gibzn (n2
z

H 1- h'%zb
and B2 R). If n%1, 2, then fy 2 S° and is convex irfthe direction éf the real axis.

Proof Let the dilatation of f, fbe given by L% &g, gt'=ohy hb'. By Theorem A
and by Lewy’s theorem, we just need to show that jbzvy5 1 oz 2D.
First, note that if F is analytic in D and F(0) % 0, then from Equation (3)

1r
hodzb Fdzb 1/4§ Fozb p zF'azb

ir d4p
godzb  Fdzb 1/45 Fozb - zF%zb -
Also, since g'(z) % ¥(2)h'(z), we know g"(z) ¥4 1 (2)h"(2) b ''(2)h'(z). Hence
zg%zb —z1%zbh%9zb - z13zbh"szb
R ) : 5

2h0zb p zh%azb 2h5zP p zhTazb
Using hdzb p gizP %% and ¢'(z) % 1 (2)h'(z), we can solve for h'(z) and h"(z) in
terms of z and 1(z2):

1

h'%zb ¥4
01 p 1ozbpal — zt?

201 p Yazpp — 1 "9zpd1 — zb

h"zp 3 ; -
01 p 1dzbp?01 — zb

Substituting these formulae for h’ and h" into the equation for &, we derive:

—21%zbh'8zb - z 1 zbh5zb

2h"zp p zh%szp
128zb p41zb - 31 %zbz] p 41 Uézb:
1p#dze - 5 1%zbz] p 3 1 %zbz2

&izb Yy

a6p
Ya-12
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Now, consider the case in Which 1(2)v+e"®z. Then Equation (6) yields

)
1 —|B 1 —|B
.5 POZP
bizb % - 7 Z'B?p P38 ) 4, g P2
ZB 74 1 ble|BZ p Bz z qdzb
Note that qdzb ¥%z? pdl=zp. In such a situation, if z, is a zero of p, then - is a zero

of g. Hence,

0z b Abiz p B

&izb Yy —7628 — A
) i1p Azilp Bz

It suffices to show that jAj, jBj.::1. We will use Cohn’s rule to do this, although the
results can be obtained in other ways. Note that

C ¥
a,pdzb - agp dzp 1 1
y, ST T G0N Ay, e
p10zb Y. 5 z|o 2e T

Hence, p; has one zero at z %4 13— 2ge‘iBZ D, and so by Cohn’s rule p has two zeros,
namely A and B, in D. _
Next, consider the case in which 1(z)%e™®z% In this case,

73 p e—iB

Remark 1 If we assume the hypotheses of the previous theorem with the exception
that n2:3, then for some value of z2 D, jedzbj4 1. To see this, suppose this is not

true. Then letting !(z)% —z", Equation (6) yields

jLozbj va 72 Yijzj? 51: g

)
nblb 5~ 12-3 Y, —72"Rzb:

1p nz 12”—” np1

&izb Y4 —2"

The function R preserves symmetry about the unit circle, because jR(e")j¥ 1 and
1=R01=zp ¥4 RdzP. So, R maps the closed unit disc onto itself. Hence, R is a finite
Blaschke product of order n 1. However, %is the product of the moduli of the zeros
of R in the unit disc. This is a contradiction since n2:3.

I)HEOREM 4 Letf¥% hp g2 K® withhizpb p giz

14zb ¥, 2P witha 2 (-1,

1paz
Then fo 2 S, and is convex in the direction of the real axis.

Proof Using Equation (6) with 1! 1/4—”£ where-15a51, we have

1paz '
(
zzls)lb?’—azb- fozp dz p Apdz p BP
Lizb Vs — ) Y- Vi —2 :
‘ |oJ°—z|oJ°—z2 T Tap Amilp B2

Again using Cohn’s rule,

f10zb Ya

afizb-agf 6zb 6a b 3pd1 — ap 01 p 3abdl — ab
Z s ‘P 2 :

So f; has one zero at zg ¥a -%’%‘Which is in the unit circle since —15a51. Thus,
JAJ, jBjS1. g
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Next, we provide some examples.
with %z, Then

Example 1 Let f; Y4 h; p T, where h& P 1%
¥

1pz 1 z
Yy inl i - -
hy % 'Og i-z P7i—7

(1|oz¥ z

Yy —— PR
9L Iog 1-z IC)21—2
Consider F; Y% fy, f, ¥4 H; p Gi. Using Equation (4) We have
1pz 32317

Hi Yahg hy % —%hlazb b zh! 102b] Y4 —Iog b

1-z “a1-z0%1pzp
1pz pﬁz— 122 -178
1-z 1—zb261|ozb

Gi%Qgo 01% —%glézb 2g0zb] Ya — —Iog

and from Equation (6) ¢ v

Lizb Y4 -2z 2§2|o—z|ol :

e Z?pbzp?2
We show that F; maps the unit disc onto the domain whose boundary consists of the
1;_our half-lines given by fx + %, x . : : £ gand Lpiy,jyj 2" g (Figure 1). In doing

S0, we use a similar argument to that used by Clunle and Shell Small in Example 5.4
of [1]. We have

C ¥ C C. ¥ ¥
FobyiRe 225728 piim 4o Pz 1z
4 _— — N
! i1 p b3l — zb? 47 1-z V281 - 22
2_
1_

Jp 4

Figure 1. Image of concentric circles inside D under the convolution map f, f;%F;.
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Applying the transformation ¢ ¥ 222 ¥4 § p il], §40, we get

¥ C ¥
1 1 ,...1 1,
Fiizb%Re; 3¢—2-- pilm-" Ingp_d°—1p
8 9 4 2
L € A ¥ < _
vt oqp o ! J .
/48 3¢-2 VP b 2 arctan ®bw :

Observe first that the positive real axis {¢§ %2 ¢ pil7:11% 0, § 40} is mapped monoton-
ically onto the whole real axis. Next we find the images of the level curves

]
arctan% boliYac, U140

The polar coordinates equations of these level curves are

Bpr?sinBcosB ¥c, 05852: 7p

Hence

§% 8 —BpcotB
p o0
7+s4 dc—BbtanB, 05B5 min c,—2 :

Fix ¢40. Then the image of the curve given in (7) under F;

is
ﬁﬁﬂﬁﬂhﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁm !
p i SiNBCOSB . i
F152|31/4— 3 6C—BDCOtB—2— T bzc

| -

Y4 udc, Bp b% c:

If 05c¢57% then B2(0,c), and one easily finds that limg sopu(c,B)%1 and
limgs._u(c,B)¥ —1. The intermediate value property implies that in this case the
image of the level curve under F; isthe entire horizontal line fx p "1—0 -1 5x51g:
If c2:9 then limguopu(c,B)¥a1 and limg xn=p-udc, BP % -l So in this case the

images of the level curves are horizontal half-lines fx p 25 - _Zl 5x51g. This
means that images of the level curves under F; fill the domain whose boundary
consists of the real axis and two half-lines fx p %i, x . 1 : 4 g and F1 piy, y 2: 0.

Finally, our claim follows from the fact that the range of F; is symmetric with respect
to the real axis.

The images of concentric circles inside D under the harmonic maps f, and under
f; are shown in Figure 2. The images of these concentric circles under the
convolution map f, f,%F; are shown in Figure 1.

Example 2 Let f,Y%h, b T2 be the harmonic mapping in the disc D such that
ho0zP p g28zP %412 and 1,0z /4% Y, —72. One can find that

lbz z 1 z
1-z 521—zb461—zb2'
1pz 1 z 1 z
1-z ID21—z 451 — zp2

h,dzp 1/4—In

g,0zP Y4 — 8 In
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27 21

(—
=

—24 —24

Figure 2. Image of concentric circles inside D under the maps f, and f, respectively.

(
and the image of D under f, is the right half-plane, R ¥a Reé'b4—— We note
here that fode'p ¥ -1pif;, if 05t5nand fle"pYa—5—i 7, if n5t52n. Next let

F21/4h0 thgo g21/4H2 bG_z

By Equation (4)

1
1|oz 1 z 1 z z

b 3 ,
01 —zr°0l p zp 1

¥
1 1 1pz (1 z 1 z z
Gaizb Ya— —=In -
T T8 1-2 b21—2 461—2u2b61—zb361pzb

Hyizb Yot i
2020 %7 g 77 Poi 7 Pag 22

and

a0 S22 1 2.
2 H azp e

Analysis similar to that in Example 1 can be used to show that F, maps the disc onto

the plane minus two half-lines given by x + i, x . . We have
C ¥ C ( ¥ ¥
122-zpz% . 1pz 6 z
Fizp uRe - ———— pilm ZIn ,
? 281 - %1 p 2 bilm gln 7% Pean_z»

which under the same transformation as in Example 1 becomes
( ¥ C ¥

Faizb 1/4— §3-30P pag—4— 7 Ig 5 p% arctan %psw :

Analogously, we find that the images of the level curves

3
B > rsin28 Y, 05352
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are
ARG C ¥ y #
11 1 3sin 2B i
F262t11/4E ééc—BbcotB dc — Bp écotB—tanB b4-

-4 bo
20C — B bg¢

Y4 udc, Bb p %c:

If 05¢c5 7 (or c4 %, respectively), then limgy .- u(c,B)% —1 (or limgs pudc, BP %
-7, respectively) and limg s oo u(c, B)% . This means that the images of the level
n

curves are entire horizontal lines. If cl/U; then limg woP U52,BD Yap1l and
limg u n=2- UGZ, BP 1/4—%. So, F, maps the first quadrant onto the upper half-plane

minus the half-line fx pif;:x . :: Zl g, and the result follows from the symmetry.

4. The convolution of f, with vertical strip mappings

In this section we replace right half-plane maps with vertical strip maps and prove
the corresponding analogues for Theorems 3 and 4.

Clop )
Theorem 5 Let f¥%hpg2Kg with hizb pgizh Y ydt—log gR%—", where

K ze~'a
2.ra5n and V(2)%€e®2". If n%1,2, then f, f2 SO and is convex In the direction

of the real axis.

Proof By Theorem B we nee(d to esta)blish that f; f% H p G is locally univalent.
Using hdzb b gizb s 52— log 1bzle'?ze and ¢'(z) % 1 (2)h'(z), we get
1
01 1dzPbdl o zeiabdl o ze-iap
-Y528cos a pp zpP81 p 1dzpb p 1%zP81 p 2cosaz p z2p]
01 p 16zpb%01 p zeiab?01 p ze-iap? ’
Substituting these intg Equation (5) yields

h'dzb ¥,

h"szb ¥,

; o) O
Vb ys_, (0P teb-jVlmz 5V GRGEE 385
- lpecosaz” _ " 157p _% 10§7p7 1%%2%% p% 105zbz2
e
~ Tcosapz

First, consider the case in which !(z)%e®z. We have
,ig 2 P dcosa p lepz? — le—®

&izb Yaze - =
! 1pdcosa p 3ei®pz — Lei®z®
. Fozb
v, 2iB
T

ZpAvzpBYzpCh
01 Azbil p Bzpdl p Czb”
We will show that A,B,C2D. Let
sig 2 P ocosa p leBpz? — Lo

1/42(32iB

&izb Y4 ze - =
! 1pdcosa p Lei®pz — Lel®z®
., Tozb
v, 2iB
S

sig 0z o Apdz b BPiz o Cb
81 p Azbdl p Bzpil p Czp’

/4 7€
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where a2 12, nb, B2 [-n,n]. We apply Cohn’s rule to fizp ¥4z% p dcosa b je~pz%—
1e7® Note that jie ®j% 3 51, thus we get

C ¥ ¢ ¥
azfozb-apf dzp ; ; ;
f,0zp 1/4%1/4 2132 ’b cosab -21e‘IB zp -Zle"B cosa p -21e B

Since %e‘iBacos_a b %_eisb_ tjcosajpi 5 tpivad (note that a6Yin), we can use
Cohn’s rule again; this time on f,.

We get
3 f,0zb - e ®dcosa p Le®pf, ozb
fodzb yu 4t 2 b2t
Z ! ¥ (
9 1 1’ 30 1 1o 1y’
v 3 - -
s 16 4cosab2e z|o4 cosabze 2e cosa|02e

Clearly f, has one zero at

( ) o ( )
3 1n-iB 1a-iB 108 2
L1, T4 cosapse pse" cosapsze

1 1,-iB 2 3,-iB 1,iB
1/4—Zcosa pse "cos‘a —ze™ pge®
9 _1 1aiB 2 1_leo2 g —1L
2 -1 cosap e 5 — ;C0S” @ — 7C0sacosB
We show that jzj.::1, or equivalently,

2

3 o 1. 2
2 4 _ —iB B L.
cos” a —e8 |08e

1 1 s 1 1 2.1 .
—4cosa |o2e 5~ 408" a 4cosacosB :
If we put x¥%cos a, y%cos B, then x2 (-1,0], y2 [-1,

becomes

[_

1] and the above inequality

34y 3,2, 6 6 3221 3,2, 3 2 2 5.0
16X P 1gX p16x3y 6% 16x?y P gy a8l — XX — yp 2:0:

Therefore, by Cohn’s rule, f has all its 3 zeros in D, that is A,B,C2D and so
jlizpj 51 for all z2 D.
Next, consider the case in which 1(z)%e®z% In this case,
' ( ¥
e|BZ3_ dpcos az
)

A Sapz R
Lazb ¥4 —7%e'™® C gooab Y, —7%e':
_ Apcosaz p eiBZS

cosapz

Hence, jLizpj 5 1. g

In proving the last theorem, we will use the following corollary of the
Schur-Cohn algorithm.

CoROLLARY TO THE ScHUR—CoHN ALGoRrITHM [10, p. 383] Givena polynomial
fozb Yaag pa;zp - - p anz"

of degree n, let
¥
M 1/det<B A i Yl np
4 A B 4 1,...,NP,



500 M. Dorff et al.

where A ¥ A~ is the conjugate transpose of A, and A and B are the triangular
matrices

0 1 O_ 1
8 ar -+ a-g Ay dp-1 ' dn- pi
aQ a2 B an an—|02€
A Y A S 1/45 . G
. " . A
=) an
The f has all of its zeros inside the unit circle if and only if the determinants My, ..., M,

are all positive.

()
THeorem 6 Let f% hp §2 KS withhdzb p gizp Ya5-t—log P27 wherg? .::a5n

pze-ia
and ldzp 1/41%521 with a2 [0,1). Then fy f2 S9 and is convex in the direction of the
real axis.

Proof Using Equation (8) with ! */4%% and simplifying, we have
n (6]

2 p & plapcosabz’ pdap2acosabzpdacosap fa -1
Lizb Yaz 5 o

1p&ip2apcosabz pap 2acosabz? pdacosa p ja — pz°

. 0z p Abdz p Bpiz p Cb
81 p AzPil p Bzbil p Czp~

By the corollary to the Schur-Cohn algorithm, we need to show that the
determinants M;, M,, M; are all positive (for convenience, let cosa¥ix; so
-15x.:0and —-15a51):

¥ -
a o 1 axpia-1

C
Ysdet 1 1
ad a3 axpsza-3 1

1
V4162ax bap 1pi3 —2ax —ab 40,

Ya

!
M1 Y4 det

a3 0 ag g
a a3 0 a
M21/4detE N OE
3G 0 a3 @
a 3 0 a3
0 1 0 axpla-1 ap2ax
13 1a_1
pae) IPEPX 10 ablaci
axpsza—j3 0 1 sPsapx
ap2ax axpila-} 0 1

1
Ya701 — XPO1 — apb1 — 2ax — api2 p 4ax pAapx — 2a?x? —5a?x — 2a% — 2ax?h 4.0,

ifP(a, X) %42 pdax p4a p x — 2a’* — 5a’x — 2a” — 2ax*40. We will show that P(x, a)4
0for 0.:a51and —15x.::0 (although it seems to be true for — 1§ 5a51). Now

0 2 2 r 2 T 2
@—XPaa,xD1/44ap1—4ax—5a —dax ¥4 4adl —xP- 4a“dlpxp p 1-a° 40,
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since 05a51 and —15x.::0. Assume a¥% ap40 is fixed. Then, P(ayg, X) is increasing
and attains its minimum at x % —1. Thus,

Pdag, Xb 4 Pdag, —1b Yadag — 10> 4 0:
Note, P(0, x) Y22 p x40.

a3 0 0 a a3 a

0
a a3 0 0 a
a a3 0 0

o ©
o L
=IO Y~

M3 Yadetb o
ac 0 0 a3 @ a
a a 0 0 ;3 &
a4 a a9 0 0 a3
0 1 0 0 axpla-% ap2ax lplapx 1
1b3abx 1 0 0 axpia-1 ap2ax
3apx ap2ax 1 0 0 axpla-14
Ysdet 113
xpza—— 0 0 1 —2|o—2a|ox ap2ax C
8 ap2ax axpla-1 0 0 1 ip3apx
ip3apx ap2ax axpla-} 0 0 1

1
1/4Zax b 1681 — xp331 — ap®s1 — 2ax — ap?i1 p 3ab 4.0:

Therefore, A,B,C2 D and j&izbj 51 for all z2 D. g

Remark 2 Unlike Theorem 4, this result does not hold for —15&15—1§ since
M550 for these values of a.

)
Example 3 Let fs%hgpg;, where hgpgs% Llog PZ° (that is, a %™
in

. 5 2i 1-iz 2
Theorem 5) with 1% —z°. Then
¥ ¥
1 (1 bz i (1|3 iz
hs 1/4— log —— —-log -
1<— v 4 1(— iz v
Os 1/4__|Og E _I_l() 1b|Z

1-z 4% 1%
Consider F3 % fy f3 ¥4 Hs p G3. From Equation (4) we derive

¥
1 1 lpz i 1piz 1 z
1 1/, = 0 1, — -
Hs Yaho hs /42]/2h362|3b2h362p] /48Iog 1(_2 ¥8'09 1—iz 221_24
1 1 1pz i 1piz 1 28
1 1/, = _ 790 1, _ = - .
G3¥%go O3 /42%g3ézb 29 JzP) Vs 8Iog -5 8Iog T3, |o21 —

From Equation (8), 14zb %72

We now show that the image of the first quadrant of D under the mapping F; is
the domain whose boundary consists of the positive real axis, upper imaginary axis
and the lines f3 p iy, y 2:4g, fx p §i, x 2:%g. We have

aj1|3|z z ¥ ( 1bz z ¥

-1z IO21—z2 pilm "'Og 1- IO21|oz2 :

Fs0zb Y4Re — ‘lllog
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As in the previous two examples, we use the transformation ¢ Y4 1—1_|°Z—21/4 § pill, $40,
This transformation maps the part of the disc in the first quadrant onto the exterior
of the unit disc contained in the first quadrant, and we note that the interval [0,i) is
mapped onto the quarter of the unit circle. If we put §%r'®, r2:1, B2 [0, n/2), then
we get

1 C 1 C YooY
1, = — I'p- r=-=
Re F3dzp /44 arctan 505 B b 5 r ; cos B
1 2sin 2B
ImFsizP %~ Bp ) :
4 r —“p4cos?B

One can see that the image of the quarter of the unit circle in the first quadrant in the
¢-plane under F3 is the upper imaginary axis and the image of the line §41 is the
positive real axis. Now we consider the level curves

2sin 2B

72
r—+ p4cos?B

Bp < Yac, c4Q:

Since r41 and B2 (0, n/2), from above we get

A
tanB 59

1
r—— Y%2cosB ———1:
r —-B

Let B2 (0, n/2) be the number satisfying the equation tan B.¥%c —B.. If 05c¢5n/2,
we assume that B.5B5c, while if c2:n/2, we assume that B.5B5n/2.

I\
5 Q / 2

_od

Figure 3. Image of concentric circles inside D under the convolution map f, f3%Fs.
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Using Equation (9) we find that on the level curve we have

1 ﬁtmmmmgmmmmm rwmmmBmmmm !
an an

Yy = = _ 2g 2P _q .

Re F3 /44 arctan p— 1pcos“B 3 1:

Using an analysis similar to the one in the previous examples, we get the result.
The images of concentric circles inside D under the convolution map f, f3%Fs
are shown in Figure 3.
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