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Abstract. The class SH consists of univalent, harmonic, and sense-preserving
functions f in the unit disk, �, such that f = h+g where h(z) = z+

P
1

2
akz

k,

g(z) =
P
1

1
bkz

k. SOH will denote the subclass with b1 = 0. We present
a collection of n-slit mappings (n � 2) and prove that the 2-slit mappings
are in SH while for n � 3 the mappings are in SOH . Finally we show that
these mappings establish the sharpness of a previous theorem by Clunie and
Sheil-Small while disproving a conjecture about the inner mapping radius.

1. Introduction

A continuous function f = u+iv is a complex-valued, harmonic function if both u
and v are real harmonic. Throughout this paper we will discuss harmonic functions
that are univalent and sense-preserving on � = fz : jzj < 1g. Clunie and Sheil-
Small [2] showed that such a mapping can be written in the form f = h+ g, where
h and g are analytic and jh0(z)j > jg0(z)j. Hence f(z) =

P1
k=0 akz

k +
P1

k=1 bkz
k.

Let SH be the class of such functions for which a1 = 1 and a0 = 0, and let SOH
be the subset of SH in which b1 = 0. Note that the familiar class S of analytic
univalent functions is contained in SO

H
.

Clunie and Sheil-Small provided a method for constructing harmonic univalent
functions for which f(�) is convex in the direction of the real axis. A domain 

is convex in the direction of the real axis if every line parallel to the real axis has
a connected intersection with 
. Using their method examples of harmonic 1-slit
mappings can be found, and it is believed that certain extremal properties are at-
tained among these functions [1]. Their approach makes it also possible to construct
examples of harmonic 2-slit mappings. However, it seems that besides the standard
analytic functions, no one has constructed examples of harmonic symmetric n-slit
mappings, for n � 3.

In their paper, Clunie and Sheil-Small also explored the e�ect of extending the
class S to SOH and SH . In one instance, they consideredR(f)= min fjwj : w 62 f(�)g.

They showed that if f 2 SH , then 0 < R(f) � 2�
p
6

9 < 1:72. For f 2 SOH they proved

that the corresponding value, RO(f), satis�es
1
16 � RO(f) �

2�
p
3

9 < 1:21. Recall

that for the class S, the lower bound is 1
4 and the upper bound is 1. By letting

f(z) = z+�z for j�j < 1, we see that the bound 0 < R(f) is sharp. Also Clunie and
Sheil-Small conjectured that 1

6 � RO(f). At the time of the paper it was not known
whether the upper bounds for R(f) and RO(f) were the best possible. A year later,
Hall [5] showed that the upper bound for R(f) can be decreased to �

2 � 1:57. He
established that this is the best possible constant by providing an example of a
function that is the limit of mappings in SH which take � onto concentric disks
whose radii approach �

2 . See Table 1 for a summary of these known facts and
conjectures.

In a separate paper [6], Sheil-Small discussed the inner mapping radius, �(f),
of the domain f(�) for f 2 SH . The inner mapping radius is de�ned as the real
number F 0(0), where F (z) is the analytic function that maps � onto f(�) and
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Known facts Conjectured Our construction

f 2 S 1
4 � RO(f) � 1

f 2 SOH
1
16 � RO(f) �

2�
p
3

9
1
6 � RO(f) f with RO(f) =

2�
p
3

9 � �
f 2 SH 0 < R(f) � �

2 f with R(f) = �
2 � �

Table 1

satis�es the conditions F (0) = 0, F 0(0) > 0. If f 2 SO
H
then the inner mapping

radius will be denoted by �O(f). Note that �(f) cannot be larger than 2�, because
of the Koebe 1

4 -theorem and Hall's result. Similarily, �O(f) is bounded above by
8�
p
3

9 < 4:837. Based upon Hall's example, Sheil-Small [1, 6] conjectured that
�(f) � �

2 . As far as we know no conjecture has been made on the upper bound for

�O(f). Also, in [6], Sheil-Small proved that 1
4 � �O(f). Since �O(kO) =

2
3 , where

kO is the proposed harmonic Koebe function, he conjectured that 2
3 � �O(f). See

Table 2.

Known facts Conjectured Our construction

f 2 S �O(f) = 1

f 2 SO
H

1
4 � �O(f) �

8�
p
3

9
2
3 � �O(f) f with �O(f) =

25=3�
p
3

9 � �
f 2 SH 0 < �(f) � 2� �(f) � �

2 f with �(f) = � � �
Table 2

In this paper we will present a collection of harmonic n-slit mappings, f(z; n; s),
for n � 2 and parametrized by s, where 0 � s < 1, in which the slits are symmetric
about the origin and move away from the origin as s increases. In this collection,
there is a family of 2-slit mappings with each function, f , in SH , such that f(�)
will contain all the points in the disk whose radius approaches �

2 as s approaches
1. Hence there are functions in this family for which the inner mapping radius can
be made arbitrarily close to �. This provides a counterexample to Sheil-Small's
conjecture. In addition, this collection contains a family of 3-slit mappings that

are in SO
H
and that will establish the value RO(f) =

2�
p
3

9 obtained by Clunie and
Sheil-Small as the best possible. This will also show that the inner mapping radius

for f 2 SOH can be as large as 25=3�
p
3

9 > 1:91. See Tables 1 and 2.

2. A collection of symmetric n-slit mappings

For z 2 �, n = 2; 3; 4; :::, and 0 � s < 1, consider the collection of functions

f(z; n; s) = (1� s)f1(z; n) + sf2(z; n)

= (1� s)
z

(1� zn)2=n
+ s

�
�

n sin �
n

�
1

2�

Z 2�

0

Re

�
1 + ze�it

1� ze�it

�
ei'(t)dt;

where '(t) = �(2k+1)
n ( 2�kn � t < 2�(k+1)

n ; k = 0; :::; n � 1). We will show that
for n = 2, f 2 SH and it maps � onto the 2-slit domain with the tip of the slits
at � 1�s+s�

2 and the slits lying on the imaginary axis. Similarily, for n � 3 we will
demonstrate that f 2 SO

H
and f(�) is an n-slit domain whose slits start at points

symmetrically placed on the circle of radius (1� s)( 14 )
1
n + s �

n sin �
n
, (0 � s < 1).

For each n, f1 is an analytic function that maps � onto a n-slit domain that is
symmetric with respect to the origin and to the real axis and where the slits start

at the points ( 12 )
2
n

�
ei�(2k+1)=n

�
and form the angle (2k+1)�

n with the positive real
axis, where k = 0; :::; n� 1. We know that



(1) f1(z) = z

1X
k=0

(�1)k
�

k
�2=n

�
znk

where ( k

�2=n
) = 1 if k = 0 and ( k

�2=n
) = (�2=n)(�2=n�1)���(�2=n�k+1)

k! otherwise.

Note that f2 is the Poisson integral of boundary values concentrated at e
i�(2k+1)=n; k =

0; : : : ; n� 1. In particular, for n = 2, f2(�) is a slit on the imaginary axis from �
2 i

to ��
2 i. For n � 3, f2 is a harmonic function that maps � onto the region inside

the regular n-gon whose vertices are at the points ( �
n sin �

n
)ei�(2k+1)=n [4]. Notice

that f2 can be written as

(2)

�
�

n sin �
n

� n�1X
k=0

ei�(2k+1)=n

2�

Z 2�(k+1)=n

2�k=n

Re

�
1 + ze�it

1� ze�it

�
dt

Since f2 is a harmonic function, f2 = h2 + g2, where h2; g2 are analytic functions
in �.

Each vertex of the polygonal region, f2(�), lies on one of the slits of f1(�).

The following lemma has been proved in [7]; we include our proof for complete-
ness.

Lemma 2.1. : Let n � 2. Then

(1) h2(z) =
1X
k=0

1

kn+ 1
zkn+1 and g2(z) =

1X
k=1

�1

kn� 1
zkn�1,

(2) h02(z) =
1

1� zn
,

(3) g02(z) =
�zn�2

1� zn
, and

(4) g02(z) = �zn�2h02(z).

Proof: To prove the �rst part, notice that

Re

�
1 + ze�it

1� ze�it

�
= Re

�
1 + 2ze�it

�
1

1� ze�it

��
= 1 +

1X
k=1

(zke�ikt + zkeikt):

Hence by (2)

f2(z) =

�
�

n sin �
n

� n�1X
k=0

ei�(2k+1)=n

2�

Z 2�(k+1)=n

2�k=n

2
41 + 1X

j=1

�
zje�ijt + zjeijt

�35 dt:
We have

(3) a0 = f2(0) =

�
�

n sin �
n

�
ei�=n

n

n�1X
k=0

�
ei�2=n

�k
= 0:

The coeÆcient of zj , for j � 1, is

aj =

�
�

n sin �
n

� n�1X
k=0

ei�(2k+1)=n

2�

Z 2�(k+1)=n

2�k=n

e�ijtdt

=

 
sin j�

n

jn sin �
n

!
e�i�(j�1)=n

n�1X
k=0

�
e�i�2(j�1)=n

�k
Summing the geometric series we see that

(4) aj =

(
1
j if j = mn+ 1 (m = 0; 1; 2; : : :)

0 otherwise.



The 2-slit Mapping The 3-slit Mapping
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Figure 1. Images of circles of radius r=0.4, 0.6, and 0.8.



Similarily,

(5) bj =

( �1
j if j = mn� 1 (m = 1; 2; : : :)

0 otherwise.

By di�erentiating the series for h2 and g2, we get the remaining three parts of the
lemma.

Comment: These results about f1 and f2 provide us with some information about
the function f . Recall that f(z) = (1 � s)f1(z; n) + sf2(z; n). Note that f is
harmonic and hence f = h+ g =

P1
k=0 akz

k+
P1

k=1 bkz
k. Let s be �xed such that

0 � s < 1. It follows from (1), (3), (4), and (5), that if n = 2, then the function f
has the coeÆcients a0 = 0, a1 = 1, and b1 = �s. If n � 3, the only change is that
b1 = 0.

Lemma 2.2. : For any n � 2, f is sense-preserving.

Proof: Clunie and Sheil-Small [2] showed that it is suÆcient to verify that jh0(z)j =����(1� s)
1 + zn

(1� zn)
2
n+1

+ s
1

1� zn

���� >
����s�zn�21� zn

���� = jg0(z)j. Since z 2 � and s 2 R, we

need

���� (1�s)(1+zn)(1�zn)
2
n

+ s

���� > jsj, or Re

�
1 + zn

(1� zn)
2
n

�
> 0. Letting w = zn, for all z 2 �,

we are left to showing that

Re

�
1 + w

(1� w)
2
n

�
> 0:

Since Re(z) > 0 is equivalent to jArg(z)j < �
2 , it suÆces to show that jArg(1+w)�

2
nArg(1�w)j < �

2 , where Arg(f) is the principal value of the argument of f . Now
for w 2 �, (1�w) and (1+w) are points in the disk centered at 1 of radius 1. Hence
Arg(1�w) and Arg(1+w) are both between ��

2 and �
2 . In fact, the line connecting

the two points has 1 as its midpoint. Also jArg(1 + w) � Arg(1 � w)j < �
2 , and

Arg(1+w) and �Arg(1�w) have the same sign. Further, 2
n jArg(1�w)j � jArg(1�

w)j. Using these facts we see that if w 2 R, then jArg(1 +w)� 2
nArg(1�w)j = 0

and if w 62 R, jArg(1 + w)� 2
nArg(1� w)j < �

2 :

Lemma 2.3. : Let s be �xed such that 0 � s < 1. For any n � 2, f is univalent

in �.

Proof: Fix r0 such that 0 < r0 < 1 and consider 
 � � the region bounded by
�1 [ f0g; �2; �3; and �4, where �1 = fr : 0 < r � r0g, �2 = frei�=n : 0 < r � 1g,
�3 = fei�(1�r)=n : 0 � r � r0g, and �4 = fz = tr0 + (1� t)ei�(1�r0)=n : 0 � t � 1g.
We will prove this claim in three steps. First, we will show that f is univalent in 

for r0 arbitrarily close to 1, and that 0 � Arg(f(
)) � �

n . Second, we verify that f
is univalent in the sector 
[
0, where 
0 is the re
ection of 
 across the real axis,
and ��

n � Arg(f(
 [
0)) � �
n . Finally, we will verify that f is univalent in �.

Step One: The argument principle for harmonic functions [3] is valid if f is
continous on D, f(z) 6= 0 on @D, and f has no singular zeros in D, where D is
a Jordan domain. Note z0 is a singular point if f is neither sense-preserving nor
sense-reversing at z0. Because of lemma 2.2, we can use the argument principle.
We will show that for arbitrary M > 0, we may choose r0 < 1 so that each value
in the region bounded by jwj < M and 0 < Arg(w) < �

n is assumed exactly once
in the sector bounded by jzj < 1 and 0 < Arg(z) < �

n , while no value in the region
bounded by jwj < M and �

n < Arg(w) < 2� is assumed in this sector.
Observe that f 01(z) = 0 only if z is an nth root of -1. Thus, on �1, f1 is an

increasing function of r with Arg(f1) = 0. Also, as jzj increases on �2 and Arg(z)
decreases on �3, jf1(z)j increases. Note that Arg(f1(�2 [ �3)) =

�
n . For f2, if we



let z = �ei� and use the fact that f2 = h2 + g2, we get

@

@�

�
f2(�e

i�)
�
=

ei�

1� �nein�
+
��n�2ei(n�1)�

1� �nein�
:

Note that f2(0) = 0. For z 2 �1 and n � 3, d
d� (f2(�)) =

1��n�2
1��n > 0, and so f2 in-

creases on �1 as r increases. Also f2(�) > 0; hence Arg(f2(�1)) = 0. (Recall that for

n = 2; f2(�1) = f0g). For z 2 �2 and n � 2, d
d� (f2(�e

i�=n)) = ei�=n
�
1+�n�2

1+�n

�
6= 0,

and so f2(�2) does not reverse its direction. Further, f2(�e
i�=n) = ei�=n(

P1
k=0

(�1)k�kn+1
kn+1 �P1

k=1
(�1)k�kn�1

kn�1 ) = ei�=n~�, where ~� 2 R; hence Arg(f2(�2)) =
�
n . Recall f2 is con-

stant on �3. Therefore, we see that for j = 1; 2; 3, f(�j) is a simple curve with
Arg(f(�1)) = 0 while Arg(f(�2 [ �3)) =

�
n . To complete the proof that f is uni-

valent on 
, it suÆces to show that given any M > 0 there exists an r0 such that
jf(z)j > M for all z 2 �4. To see this note that jf2(z)j �

�
n sin �

n
for all z 2 � while

for s �xed (0 � s < 1) and for z 2 �4, (1�s)f1(z)!1 as r ! 1. Hence for a given
M the inequality will hold if we take r0 suÆciently close to 1. The proof is now
complete since we have shown that every point outside the wedge is not assumed
while every point inside the wedge is assumed exactly once by f .

Step Two: Since f is univalent in 
, we can use re
ection across the real axis
to establish that f is univalent in the sector 
0. In particular, suppose z1; z2 2 
0

with f(z1) = f(z2). Then by symmetry f(z1) = f(z1) = f(z2) = f(z2). Hence,
f(z1) = f(z2), or z1 = z2. Arguing in the same manner as in Step One, we can
show that 0 � Arg(f(
0)) � ��

n . Therefore, f is univalent in 
 [
0 and its image

is in the wedge between the angles ��
n and �

n .

Step Three: First, it is true that ei�2j=nf(ze�i�2j=n) = f(z), for all z 2 � where
j = 0; 1; :::; n. To see this note that

ei�2j=nf1(ze
�i�2j=n) = ei�2j=n

�
ze�i�2j=n

(1� zne�i�2j)2=n

�
= f1(z):

Then by letting u = t+ 2�j=n and using the periodicity of f2, we derive that

ei�2j=nf2(ze
�i�2j=n)

= �
n sin �

n

�
ei�=n

2�

�"n�1X
k=0

ei�2(k+j)=n
Z 2�(k+j)=n

2�(k+j+1)=n

Re
1 + ze�iu

1� ze�1u
du

#

= f2(z):

Now, using this fact that ei�2j=nf(ze�i�2j=n) = f(z), we see that if z is any point
in �, it can be rotated so that it is in the sector 
0, in which f is univalent, and
then rotated back by multiplying by the constant ei�2j=n and hence preserving uni-
valency.

Comment: From the proof of lemma 2.3 we see that f(�) is an n-slit domain with
the slits lying on the line rei�j=n, for j = 1; : : : ; n� 1 and 1 � r <1.

Theorem 2.1. : For n � 3, f 2 SOH . If n = 2, then f 2 SH .

Proof: This follows from lemmas 2.2, and 2.3, and the comment after lemma 2.1.

3. The inner mapping radius and n-slit mappings

The function f maps � onto the n-slit domain whose slits start at points sym-

metrically placed on the circle of radius (1� s)( 14 )
1
n + s �

n sin �
n
, (0 � s < 1). Hence

as the value of s begins at 0 and increases, the slits start at a distance of ( 14 )
1
n and

move away from the origin. When s > (1�4�1=n)=[�=(n sin(�=n))�4�1=n], the unit
circle is completely contained in the image of f . For n = 2, f 2 SH and as s ! 1,
f(�) will contain all the points in the disk whose radius approaches �

2 � 1:57. Hall



[5] showed that for f 2 SH , f(�) cannot contain any larger disk. Also, since the
analytic function F (z) = z

1�z2 maps � onto the 2-slit domain whose slits start at

� i
2 , we have that

~F (z) = (1 � s+ s�) z
1�z2 , where 0 � s < 1, maps � onto f(�).

Hence as s approaches 1, the inner mapping radius of the harmonic 2-slit map f
approaches �. Thus f provides a counterexample to Sheil-Small's conjecture [1, 6]
that �(f) � �

2 . For n = 3, f 2 SO
H
and its image will contain all the points in the

disk whose radius approaches 2�
p
3

9 < 1:21. Clunie and Sheil-Small [2] proved that
f(�) cannot contain any larger disk. Our example shows that this number is sharp.
We have not found a conjecture in the literature about the upper bound for the

inner mapping radius of a function in SOH . Using the map F (z) = 2
5
3 �
p
3

9 ( z
(1�z3)2=3 ),

we see that for our 3-slit map f , �O(f) !
2
5
3 �
p
3

9 > 1:91. For all of these n-slit
mappings, where n � 3, the 3-slit mapping gives the largest value for �O(f).

In conclusion, the author would like to thank T.J. Su�ridge and the referee for
their helpful suggestions.
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