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Abstract

We introduce the clask (8, y) of holomorphic, locally univalent functions in the unit diBk=
{z: |z| < 1}, which we call the class of doubly close-to-convex functions. This notion unifies the
earlier known extensions. The clak$gs, y) appears to be linear invariant. First of all we determine
the region of variabilitfw: w =log f'(r), f € L(B,y)} for fixedz, |z| = r < 1, which give us the
exact rotation theorem. The rotation theorem and linear invariance allows us to find the sharp value
for the radius of close-to-convexity and bound for the radius of univalence. Moreover, it was helpful
as well in finding the sharp region far< R, for which the integralf (f/(1))*dt, f € L(B.y), is
univalent. Becausé (8, y) reduces t@g-close-to-convex functiong’ = 0) and to convex functions
(B =0 andy = 0), the obtained results generalize several corresponding ones for these classes. We
improve as well the value of the radius of univalence for the class considered by Hengartner and
Schober (Proc. Amer. Math. Soc. 28 (1971) 519-524) fra3d®to 0577.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

We consider functiong’ that are holomorphic if® = {z: |z| < 1} with the normaliza-
tion £(0) =0, f'(0) = 1 and are locally univalent ib (i.e., f'(z) # 0 in D). In particular,
let S denote the class of all holomorphic and univalent functions with this normalization
and letS¢ C S be the subclass consisting of convex functions. A funciios said to be
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close-to-convex of ordes > 0 in D if there existsg € S€ and¢ € R such that

ig &
§'(@

The class of close-to-convex functions of orgewill be denoted byL g [2,5,10]. We ob-

serve thatLo = S¢ and L, = L, whereL denotes the class of close-to-convex univalent

functions inD [3]. If B € [0, 1], thenLg consists of functions that are univalent only in

D and is a linear invariant family of ordé€p + 1) (for all 8 > 0) in the sense of Pom-

merenke [10]. Hengartner and Schober [4] have studied the generalization of thé class

by letting 8 = 1 andg(z) to be a function which is convex in the direction of the imaginary

axis in (1). Another generalization was considered in [1] and [12], whevas taken from

the class of bounded boundary rotation. Here we extend these ideas by studying the more

general class of doubly close-to-convex functions.

arge

S,B%, z € D. (1)

2. Doubly close-to-convex functions

Definition 1. Let 8 > 0 andy > 0 be fixed. We say that a holomorphic, locally univalent
function f in D with the normalizationf (0) =0, f’(0) = 1 belongs to the class(B, y)

if there existg € L, and¢ € R such that (1) holds. We call(8, y) the class of doubly
close-to-convex functions of ordés, y). Of course, we have thdt(0, 0) = S¢, L(B,0) =
Lg,LO,y)=L,.

The following lemmas follow almost directly from the definition.

Lemma 1. A function f € L(8, y) if and only if there exists a functioh € S¢ and
two holomorphic functiong(z) =1+ p1z + -+, q(z) =1+ g1z + --- in D such that
Rde?p(z)] > 0andRdeV ¢ (z)] > 0in D for somep, ¥ € R, and

'@ =h@p" @ @). ()
Proof. By (1) we havef'(z) = g'(z)¢”(z), whereg € L, and Rée'Vq(z)] > 0,z €D
for somey € R (¢(z) = 1+ g1z + q2z% + - --). On the other hang; € L, if and only if

g (2) = W' () p? (z), whereh € §¢ and R¢e'? p(z)] > 0, z € D for someg € R (p(z) =
1+ p1z+---). Therefore, we have (2).0

Remark. Formula (2) can be written in the form

1+e_"‘1’a)1(z))y(1+e""pa)z(z))/S )
1-wi1(2) 1—w2(2) ’
wherew; andw; are holomorphic i) and satisfy the conditions of the Schwarz lemma.

f'@ =h’(Z)<

Lemma 2. The familyL (8, y) is a linear invariant family of ordefg + y + 1).

Proof. The proof of linear invariance is exactly the same adfgigiven in [5] or [2]. The
order follows from the fact that from (1) (z) = z + az® + - -+, g(z) =z + bpz% + ---,
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andq(z) + 1+ g1z +---, we haveaz = by + %,Bql. Sincelby| < 1+ y and|q1] < 2, we
havelap| < B+y +1. O

The next theorem generalizes the classical result for close-to-convex functions from [6]
and corresponding result from [12].

Theorem 1. The region of variabilityG (z) = {w: w =1l0g f'(z), f € L(B,y)} for fixed
z=re'? eD,0<r <1,is aclosed and convex set whose boundary has the equation

(1—rei%2)p+y

w:w(t):logm, IE[O, 27'[], (3)
where
01 =01(t) = — arcsinr sing), 02 = 02(t) =  + t + arcsinr sing). 4)

Proof. First observe thafi(z) = G(r), r = |z| < 1, because the claggg, y) is rotation-
ally invariant. The seG (r) is closed because the clakgs, y) is compact. The convexity
of G(r) is the consequence of the property thafiif f> € L(B, y), then for allx € [0, 1]

Zz
filz) = f [AO] [ 20] " dr e LB.y).
0

Therefore, it will be enough to find the equation of the bounday @f). By (2), it suffices
to consider

f'ry = @)p" (g’ o). (5)

It is well known that the function& € S¢ corresponding to the boundary points of

{w: w=~h'(r), h € §¢} have the form

@) =1

Zeir

, 0€l0,2r],

and that the functiong corresponding to the boundary points{ef: w = p(r), Rep(z)

>0, zeD, p(0)=¢', |§| <n/2} have the form

el — 7oi(s—8)
1—zels

The same is true fog(z). These facts along with (Rimply that the functionfy corre-

sponding to the boundary points 6fr) has by the form

1 1—er\ (1—er)’
/
- , 6
Jor) (1—65V)2<1—62r) (1—64r> ©)
wheree; =%, 0; €[0,27], j =1,2,3,4,5.

The convexity ofG (r) implies that finding the boundary @f(r) is equivalent to deter-
mining the maximum of the function

Re[e " log f'(r)] = Re{e "'[~2log(1 — esr) + Blog(1 — e3r)
+ylog(l—err) — Blog(l —ear) — ylog(l—e2r)]} ()

p(z) = , s€l0,2r].
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with respect t9; < [0, 2] for fixed ¢ € [0, 2], wherer denotes the angle between the
imaginary axis and supporting line @(r). Moreover, we observe from (7) thét(r) is
symmetric with respect to the real axis, because the image of the &ieeld — rei?,
¢ € [0, 2], under the mapping = logé is a convex curve symmetric about the real axis.
Therefore one can restrict considerations [0, 7 ].

One can verify directly that the function

u(0) = Refe " log(1 — re'?)}

attains its maximum fof; = 62(¢) and minimum fo® = 61(¢) as givenin (4). O

Corollary 1. If f € L(B, y), then for|z| = r < 1 we have the following sharp bounds

|argf'(2)| < 2(8 +y + D) arcsin, ®)
a- r)/s"')’+2 , (1_|_r)/3+V+2
@rrp S @IS 5m ©

The extremal function has the fo(®) with 61 and 6, given by(4) with an appropriate .

Proof. Using the symmetry of7 (r) we see that the maarg f/(r)) is attained for = /2
while the bounds foff’(z)| is attained for = 7 andr = 0, which implies (8) and (9). O

Theorem 2. The radius of convexity of the claggs, y) is equal to

reBy)=B+y+D -/ (B+y+12-1 (10)

In particular, (1, 1) = 3— /8, r.(1, 0) = 2 — /3 with these results being sharp.

The formula (10) follows from the Pommerenke result for linear invariant families
[9, p. 133] and Lemma 2. The rotation theorem (8) and the linear invariance of the family
L(B, y) determine the possibility of finding the radii of univalence and close-to-convexity
for L(B, y).

Theorem 3. The radius of univalenceg, (8, y) of the class.(8, y) satisfies the inequality
ru(B,y) = rp,y, Where

T
—tan—— if 1. 11
By anz(ﬂ+y+1) fB+y> (11)

If 84+y <1, thenr,(8,y)=1
Corollary 2. We haver, (1, 1) > +/3/3= 0.577, which improves the corresponding result

for the class considered by Hengartner and Schob@tlinbecause their class of functions
is a subclass oL.(8, y). (The constant for, in [4] was approximatel.345)
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Proof. If M is a linear invariant family, then Pommerenke [9] proved thai\t) > 7 =
ro/(1+,/1— rg), whererg € (0, 1] is the radius of the disk| < rg in which f(z)/z # 0,
f € M, andrg is determined from the equation
max |argf’(z)| = 2n.
leMl‘ 0f'()|=2r
Zl=r<

From the boundin (8) we findthag =1 andr =1if 8+y <1andrg= sinﬁ if 8+
y > 1. By the above formula fat := rg,,, Eq. (11) and Corollary 2 follow directly. O

The result of Theorem 3 can be sharpened by the exact value of the radius of close-to-
convexity which is the consequence of (8) and the following less known sharp result of
Campbell and Ziegler [1, p. 19] (in our formulation):

LemmaA. If M is a linear invariant family for which
max |argf’(z)| = 2t arcsirv,
max largf'(2)]
|z|]=r<1

then the radius of close-to-convexity.bt is 1 if 1 < t < 2 and is the unique solution of
the equation

2arccotw — 2t arccottw) = —, (12)
where
1—r2

w= if t > 2.
\/4r2r2 —(1+47r?)2

Therefore we have the following sharp result.

Theorem 4. Let f € L(8,y). If 8+ y <1, thenf is close-to-convex univalent . If
B+ y > 1, then the radius of close-to-convexity(8, y) of L(8, y) is given by(12) with
t=PB+y+1D.

Corollary 3. We have

1/2
ree(L, 1) = {12@ —19-2,/198— 114J§} ~0.553 (13)

Proof. Whenpg =y =1, thent =3 and (12) can be reduced by the formula for eot3
and after some calculations to the equation

12 —2(2v/13-19:t+1=0, t=r?

which yields (13). This value improves the result fprgiven in [4].
Formula (13) shows thay, (8, y) > rec(B, y) for the clasd. (8, y). However, they share
the same regiof(8, y): B+ y < 1} in which f is univalent. O



60 M. Dorff et al. / J. Math. Anal. Appl. 290 (2004) 55-62

3. Univalence of an integral operator of L(8, y)

The univalence of some integral operators for univalent familiesSike, S¢, and in
particular the univalence of

Fo(2) =Fa(f)(Z)=/(f’(t))a dt, aeR(O), (14)
0

was studied in several papers. Here we solve the problem of univalence of (14)for
L(8,y) anda € R by applying the method from [11]. According to Pfaltzgraff's theorem
[8] the integral in (14) is univalent fof € L(B, y) if
la] < 1 eC
(04 IS o .
2+y+1

However, fore € R the above region can be extended considerably and will be sharp.
We will use the following result.

Lemma 3. The minimal invariant family containing the set, (z): f € L(B, y)} is the set
of functions

(f' ()"

Go(2) =Go(f)(2) = ) A—gg)22

dt, &eD\{0}, xeR. (15)

The order of the familyG (1)} is equal to
lel(B+y +1)+|1—al

Proof. The first part of Lemma 3 holds for any invariant family and was proved in [11].
To calculate the order, notice that by Lemma 2

1 4
sup S|G,(O)]= sup leaz+(1-wié|=lelB+y+D+1-al. O
SeLB.y) feLB.y)

Theorem 5. Let f € L(B, y) anda € R. The integral in(15)is univalent in the diskz| <
e (B,v), where

T
) - minl 11 . 16
ru(B.v) m'”{ a”2[|a|(ﬁ+y+1)+ll—“”} Y

The same conclusion holds for the integiid).

Proof. From (15) and (8) we obtain

largG,, (2)| < laljargf’(z)| + 2|11 — a||argl — £2)|
<2{lel(B+y +1) + [1—«af} arcsirr. (17)

The rest of the proof follows the same line of reasoning as in the proof of Theorem 3.
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Using Lemma 3 and Lemma A with= |¢|(8 + y + 1) + |1 — «| and the bound given
in (17), we can find region fax € R, when f is close-to-convex univalent i which will
strengthen and make sharp the conclusion given in (16). Namely, we have the following
theorem by Lemma A.

Theorem 6. If f € L(B8,y) anda € R, then the integral in(15) is univalent and close-
to-convex for alle € R such thatje|(B+y + D)+ 1 —a| <2. If [¢|(B+y + 1 +
|1 — «| > 2 then the radius of close-to-convexity @b)is the unique solution of E¢12)
witht = |a|(8 + v + 1) + |1 — «|. The same conclusion holds for the integra{14) with
f € L(B, y) and this is sharp.

Corollary 4. If f € L(B, y), then the integral if(14)is univalent for

-1 3
I= , fB+y <1
* [/3+y+2 /3+y+2} Pty
and
-1 1
I= , ifB+y>1
* [/3+y+2 /3+y} Bty

The result is sharp.

Puttingg =y =0 andB =1, y = 0 we get the following results proved in [7] by
different methods.

Corollary 5. If f € §¢, then the integral in(14) is univalent and close-to-convex for all
a €[—1/2,3/2] and this is sharp.

Corollary 6. If f € L, then the integral in(14) is univalent and close-to-convex for all
a € [—1/3, 1] and this is sharp.

Remark. Does the clas&.(8, y) and in particular.(1, 1) or L(1/2,1/2) have any inter-
esting geometric interpretation (like accessibility/afD) by angles from the complement
of f(D))?
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