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Abstract

We introduce the classL(β,γ ) of holomorphic, locally univalent functions in the unit diskD =
{z: |z| < 1}, which we call the class of doubly close-to-convex functions. This notion unifies
earlier known extensions. The classL(β,γ ) appears to be linear invariant. First of all we determ
the region of variability{w: w = logf ′(r), f ∈ L(β,γ )} for fixed z, |z| = r < 1, which give us the
exact rotation theorem. The rotation theorem and linear invariance allows us to find the shar
for the radius of close-to-convexity and bound for the radius of univalence. Moreover, it was h
as well in finding the sharp region forα ∈ R, for which the integral

∫ z
0 (f ′(t))α dt , f ∈ L(β,γ ), is

univalent. BecauseL(β,γ ) reduces toβ-close-to-convex functions(γ = 0) and to convex functions
(β = 0 andγ = 0), the obtained results generalize several corresponding ones for these clas
improve as well the value of the radius of univalence for the class considered by Hengartn
Schober (Proc. Amer. Math. Soc. 28 (1971) 519–524) from 0.345 to 0.577.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

We consider functionsf that are holomorphic inD = {z: |z| < 1} with the normaliza-
tion f (0) = 0,f ′(0) = 1 and are locally univalent inD (i.e.,f ′(z) �= 0 in D). In particular,
let S denote the class of all holomorphic and univalent functions with this normaliz
and letSc ⊂ S be the subclass consisting of convex functions. A functionf is said to be
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close-to-convex of orderβ � 0 in D if there existsg ∈ Sc andφ ∈ R such that∣∣∣∣argeiφ
f ′(z)
g′(z)

∣∣∣∣ � β
π

2
, z ∈ D. (1)

The class of close-to-convex functions of orderβ will be denoted byLβ [2,5,10]. We ob-
serve thatL0 ≡ Sc andL1 ≡ L, whereL denotes the class of close-to-convex univa
functions inD [3]. If β ∈ [0,1], thenLβ consists of functions that are univalent only
D and is a linear invariant family of order(β + 1) (for all β � 0) in the sense of Pom
merenke [10]. Hengartner and Schober [4] have studied the generalization of the cL

by lettingβ = 1 andg(z) to be a function which is convex in the direction of the imagin
axis in (1). Another generalization was considered in [1] and [12], whereg was taken from
the class of bounded boundary rotation. Here we extend these ideas by studying th
general class of doubly close-to-convex functions.

2. Doubly close-to-convex functions

Definition 1. Let β � 0 andγ � 0 be fixed. We say that a holomorphic, locally unival
functionf in D with the normalizationf (0) = 0, f ′(0) = 1 belongs to the classL(β,γ )

if there existg ∈ Lγ andφ ∈ R such that (1) holds. We callL(β,γ ) the class of doubly
close-to-convex functions of order(β, γ ). Of course, we have thatL(0,0) ≡ Sc,L(β,0)≡
Lβ,L(0, γ ) ≡ Lγ .

The following lemmas follow almost directly from the definition.

Lemma 1. A functionf ∈ L(β,γ ) if and only if there exists a functionh ∈ Sc and
two holomorphic functionsp(z) = 1 + p1z + · · · , q(z) = 1 + q1z + · · · in D such that
Re[eiφp(z)] > 0 andRe[eiψq(z)] > 0 in D for someφ,ψ ∈ R, and

f ′(z) = h′(z)pγ (z)qβ(z). (2)

Proof. By (1) we havef ′(z) = g′(z)qβ(z), whereg ∈ Lγ and Re[eiψq(z)] > 0, z ∈ D

for someψ ∈ R (q(z) = 1 + q1z + q2z
2 + · · ·). On the other hand,g ∈ Lγ if and only if

g′(z) = h′(z)pγ (z), whereh ∈ Sc and Re[eiφp(z)] > 0, z ∈ D for someφ ∈ R (p(z) =
1+p1z + · · ·). Therefore, we have (2).✷
Remark. Formula (2) can be written in the form

f ′(z) = h′(z)
(

1+ e−iφω1(z)

1− ω1(z)

)γ (
1+ e−iψω2(z)

1− ω2(z)

)β

, (2′)

whereω1 andω2 are holomorphic inD and satisfy the conditions of the Schwarz lemm

Lemma 2. The familyL(β,γ ) is a linear invariant family of order(β + γ + 1).

Proof. The proof of linear invariance is exactly the same as forLβ given in [5] or [2]. The
order follows from the fact that from (1)f (z) = z + a2z

2 + · · · , g(z) = z + b2z
2 + · · · ,
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andq(z)+ 1 + q1z + · · · , we havea2 = b2 + 1
2βq1. Since|b2| � 1 + γ and|q1| � 2, we

have|a2| � β + γ + 1. ✷
The next theorem generalizes the classical result for close-to-convex functions fro

and corresponding result from [12].

Theorem 1. The region of variabilityG(z) = {w: w = logf ′(z), f ∈ L(β,γ )} for fixed
z = reiφ ∈ D, 0< r < 1, is a closed and convex set whose boundary has the equation

w = w(t) = log
(1− reiθ2)β+γ

(1− reiθ1)β+γ+2 , t ∈ [0,2π], (3)

where

θ1 = θ1(t) = t − arcsin(r sint), θ2 = θ2(t) = π + t + arcsin(r sint). (4)

Proof. First observe thatG(z) = G(r), r = |z| < 1, because the classL(β,γ ) is rotation-
ally invariant. The setG(r) is closed because the classL(β,γ ) is compact. The convexit
of G(r) is the consequence of the property that iff1, f2 ∈ L(β,γ ), then for allλ ∈ [0,1]

fλ(z) =
z∫

0

[
f1(t)

]λ[
f2(t)

]1−λ
dt ∈ L(β,γ ).

Therefore, it will be enough to find the equation of the boundary ofG(r). By (2), it suffices
to consider

f ′(r) = h′(r)pγ (r)qβ(r). (5)

It is well known that the functionsh ∈ Sc corresponding to the boundary points
{w: w = h′(r), h ∈ Sc} have the form

h(z) = z

1− zeiτ
, θ ∈ [0,2π],

and that the functionsp corresponding to the boundary points of{w: w = p(r), Rep(z)
> 0, z ∈ D, p(0) = eiδ, |δ| < π/2} have the form

p(z) = eiδ − zei(s−δ)

1− zeis
, s ∈ [0,2π].

The same is true forq(z). These facts along with (2′) imply that the functionf0 corre-
sponding to the boundary points ofG(r) has by the form

f ′
0(r) = 1

(1− ε5r)2

(
1− ε1r

1− ε2r

)γ (
1− ε3r

1− ε4r

)β

, (6)

whereεj = eiθj , θj ∈ [0,2π], j = 1,2,3,4,5.
The convexity ofG(r) implies that finding the boundary ofG(r) is equivalent to deter

mining the maximum of the function

Re
[
e−it logf ′(r)

] = Re
{
e−it

[−2 log(1− ε5r)+ β log(1− ε3r)

+ γ log(1− ε1r) − β log(1− ε4r)− γ log(1− ε2r)
]}

(7)
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with respect toθj ∈ [0,2π] for fixed t ∈ [0,2π], wheret denotes the angle between t
imaginary axis and supporting line toG(r). Moreover, we observe from (7) thatG(r) is
symmetric with respect to the real axis, because the image of the circleξ = 1 − reiφ ,
φ ∈ [0,2π], under the mappingw = logξ is a convex curve symmetric about the real a
Therefore one can restrict considerations tot ∈ [0,π].

One can verify directly that the function

u(θ) = Re
{
e−it log(1− reiθ )

}
attains its maximum forθ2 = θ2(t) and minimum forθ = θ1(t) as given in (4). ✷
Corollary 1. If f ∈ L(β,γ ), then for|z| = r < 1 we have the following sharp bounds:

∣∣argf ′(z)
∣∣ � 2(β + γ + 1)arcsinr, (8)

(1− r)β+γ+2

(1+ r)β+γ
�

∣∣f ′(z)
∣∣ � (1+ r)β+γ+2

(1− r)β+γ
. (9)

The extremal function has the form(6) with θ1 andθ2 given by(4) with an appropriatet .

Proof. Using the symmetry ofG(r) we see that the max(argf ′(r)) is attained fort = π/2
while the bounds for|f ′(z)| is attained fort = π andt = 0, which implies (8) and (9). ✷
Theorem 2. The radius of convexity of the classL(β,γ ) is equal to

rc(β, γ )= (β + γ + 1)−
√
(β + γ + 1)2 − 1. (10)

In particular, rc(1,1) = 3− √
8, rc(1,0)= 2− √

3 with these results being sharp.

The formula (10) follows from the Pommerenke result for linear invariant fam
[9, p. 133] and Lemma 2. The rotation theorem (8) and the linear invariance of the f
L(β,γ ) determine the possibility of finding the radii of univalence and close-to-conv
for L(β,γ ).

Theorem 3. The radius of univalenceru(β, γ ) of the classL(β,γ ) satisfies the inequalit
ru(β, γ ) � rβ,γ , where

rβ,γ = tan
π

2(β + γ + 1)
if β + γ > 1. (11)

If β + γ � 1, thenru(β, γ )= 1.

Corollary 2. We haveru(1,1) �
√

3/3 ∼= 0.577, which improves the corresponding res
for the class considered by Hengartner and Schober in[4], because their class of function
is a subclass ofL(β,γ ). (The constant forru in [4] was approximately0.345.)
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Proof. If M is a linear invariant family, then Pommerenke [9] proved thatru(M) � r̂ =
r0/(1+

√
1− r2

0), wherer0 ∈ (0,1] is the radius of the disk|z| < r0 in whichf (z)/z �= 0,
f ∈M, andr0 is determined from the equation

max
f∈M

|z|=r<1

∣∣argf ′(z)
∣∣ = 2π.

From the bound in (8) we find thatr0 = 1 andr̂ = 1 if β+γ � 1 andr0 = sin π
β+γ+1 if β +

γ > 1. By the above formula for̂r := rβ+γ , Eq. (11) and Corollary 2 follow directly. ✷
The result of Theorem 3 can be sharpened by the exact value of the radius of cl

convexity which is the consequence of (8) and the following less known sharp res
Campbell and Ziegler [1, p. 19] (in our formulation):

Lemma A. If M is a linear invariant family for which

max
f∈M

|z|=r<1

∣∣argf ′(z)
∣∣ = 2τ arcsinr,

then the radius of close-to-convexity ofM is 1 if 1 � τ � 2 and is the unique solution o
the equation

2 arccotw − 2τ arccot(τw) = −π, (12)

where

w = 1− r2√
4τ2r2 − (1+ r2)2

if τ > 2.

Therefore we have the following sharp result.

Theorem 4. Let f ∈ L(β,γ ). If β + γ � 1, thenf is close-to-convex univalent inD. If
β + γ > 1, then the radius of close-to-convexityrcc(β, γ ) of L(β,γ ) is given by(12)with
τ = (β + γ + 1).

Corollary 3. We have

rcc(1,1)=
{
12

√
3− 19− 2

√
198− 114

√
3
}1/2 ∼= 0.553. (13)

Proof. Whenβ = γ = 1, thenτ = 3 and (12) can be reduced by the formula for cotα

and after some calculations to the equation

t2 − 2(2
√

13− 19)t + 1 = 0, t = r2,

which yields (13). This value improves the result forru given in [4].
Formula (13) shows thatru(β, γ ) > rcc(β, γ ) for the classL(β,γ ). However, they shar

the same region{(β, γ ): β + γ � 1} in whichf is univalent. ✷
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3. Univalence of an integral operator of L(β,γ )

The univalence of some integral operators for univalent families likeS,L,Sc , and in
particular the univalence of

Fα(z) = Fα(f )(z) =
z∫

0

(
f ′(t)

)α
dt, α ∈ R(C), (14)

was studied in several papers. Here we solve the problem of univalence of (14) fof ∈
L(β,γ ) andα ∈ R by applying the method from [11]. According to Pfaltzgraff’s theor
[8] the integral in (14) is univalent forf ∈ L(β,γ ) if

|α| � 1

2(β + γ + 1)
, α ∈ C.

However, forα ∈ R the above region can be extended considerably and will be sharp
We will use the following result.

Lemma 3. The minimal invariant family containing the set{Fα(z): f ∈ L(β,γ )} is the set
of functions

Gα(z) = Gα(f )(z) =
z∫

0

(f ′(t))α

(1− ξz)2−2α dt, ξ ∈ D \ {0}, α ∈ R. (15)

The order of the family{Gα(f )} is equal to

|α|(β + γ + 1)+ |1− α|.

Proof. The first part of Lemma 3 holds for any invariant family and was proved in [
To calculate the order, notice that by Lemma 2

sup
f∈L(β,γ )

1

2

∣∣G′′
α(0)

∣∣ = sup
f∈L(β,γ )

∣∣αa2 + (1− α)ξ
∣∣ = |α|(β + γ + 1)+ |1− α|. ✷

Theorem 5. Letf ∈ L(β,γ ) andα ∈ R. The integral in(15) is univalent in the disk|z| �
rαu (β, γ ), where

rαu (β, γ )� min

{
1; tan

π

2[|α|(β + γ + 1)+ |1− α|]
}
. (16)

The same conclusion holds for the integral(14).

Proof. From (15) and (8) we obtain
∣∣argG′

α(z)
∣∣ � |α|∣∣argf ′(z)

∣∣ + 2|1− α|∣∣arg(1− ξz)
∣∣

� 2
{|α|(β + γ + 1)+ |1− α|}arcsinr. (17)

The rest of the proof follows the same line of reasoning as in the proof of Theorem 3✷



M. Dorff et al. / J. Math. Anal. Appl. 290 (2004) 55–62 61

n

owing

-

y

ll

ll

nt

r and

Sect.

Amer.

th. 8
Using Lemma 3 and Lemma A withτ = |α|(β + γ + 1)+ |1− α| and the bound give
in (17), we can find region forα ∈ R, whenf is close-to-convex univalent inD which will
strengthen and make sharp the conclusion given in (16). Namely, we have the foll
theorem by Lemma A.

Theorem 6. If f ∈ L(β,γ ) and α ∈ R, then the integral in(15) is univalent and close
to-convex for allα ∈ R such that|α|(β + γ + 1) + |1 − α| � 2. If |α|(β + γ + 1) +
|1− α| > 2 then the radius of close-to-convexity of(15) is the unique solution of Eq.(12)
with τ = |α|(β + γ + 1)+ |1− α|. The same conclusion holds for the integral in(14)with
f ∈ L(β,γ ) and this is sharp.

Corollary 4. If f ∈ L(β,γ ), then the integral in(14) is univalent for

α ∈
[ −1

β + γ + 2
,

3

β + γ + 2

]
if β + γ � 1

and

α ∈
[ −1

β + γ + 2
,

1

β + γ

]
if β + γ � 1.

The result is sharp.

Puttingβ = γ = 0 andβ = 1, γ = 0 we get the following results proved in [7] b
different methods.

Corollary 5. If f ∈ Sc, then the integral in(14) is univalent and close-to-convex for a
α ∈ [−1/2,3/2] and this is sharp.

Corollary 6. If f ∈ L, then the integral in(14) is univalent and close-to-convex for a
α ∈ [−1/3,1] and this is sharp.

Remark. Does the classL(β,γ ) and in particularL(1,1) or L(1/2,1/2) have any inter-
esting geometric interpretation (like accessibility off (D) by angles from the compleme
of f (D))?
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