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TYPICALLY REAL HARMONIC FUNCTIONS

MICHAEL DORFF, MARIA NOWAK AND WOJCIECH SZAPIEL

ABSTRACT. We consider a class 7, of typically real
harmonic functions on the unit disk that contains the class
of normalized analytic and typically real functions. We also
obtain some partial results about the region of univalence for
this class.

1. Introduction. A planar harmonic mapping is a complex-valued
function f = w + tv, for which both u and v are real harmonic.
If G is simply connected, then f can be written as f = h + G,
where h and g are analytic on G. The reader is referred to [4] for
many interesting results on planar harmonic mappings. Throughout
this paper we will discuss harmonic functions on the unit disk D.
Analogously to the classical family S of normalized analytic schlicht
functions and its subfamilies K of convex mappings and C of close-
to-convex mappings, Clunie and Sheil-Small [3] introduced the class
S9 = {f : D —» C | fis harmonic, univalent with f(0) = h(0) =
0,7.(0) = KW(0) = 1,f:(0) = ¢'(0) = 0} and its corresponding
subclasses K and CJ. Note that S C S5, K C K7 and C C C§.
Another well-known class of analytic functions in D is the family, T', of
typically real functions that have the normalization f(z) = z+ag2z*+---
and are real if and only if z is real. Clunie and Sheil-Small introduced
the family of harmonic typically real functions f for which f(z) is real if
and only if z is real. Then they proposed the following class of harmonic
typically real functions.

Definition [3]. Let Ty be the class of typically real harmonic
functions f = h + g such that |¢'(z)| < |h/(2)] for all z € D, f(0) =0,
|h'(0)] =1, and f(r) > 0 for 0 < 7 < 1. Let T} be the subclass of Ty
with ¢’(0) = 0.
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Note that T, is normal and 777 is compact. Besides Clunie and Sheil-
Small, several other authors have investigated harmonic real functions
(see [2, 18]).

The condition that |h'(z)| > |¢'(z)| means that f = h + g must be
locally univalent and sense-preserving (see Lewy [11]). However, not all
analytic typically real functions are locally univalent. Thus, a problem
with this definition is that it prevents the family of analytic typically
real functions from being a subset of their family of harmonic typically
real functions, that is, T' ¢ T.

To resolve this problem and allow all analytic typically real functions
to also be harmonic typically real functions, we offer a slightly different
definition for a family of harmonic typically real functions, 7. In
particular, we reduce the requirement that the harmonic functions must
be locally univalent. This means that the standard results for harmonic
locally univalent functions must be reconsidered for this family. We
therefore show that for the family 7,2 Clunie and Sheil-Small’s shearing
technique still holds. Also, as in the case for the family of analytic
typically real functions we investigate the region of univalency for the
harmonic family and provide several conjectures for 7,7.

2. The class 7,2. For the harmonic function f = h + g, let w be
given by ¢'(z) = w(2)h'(z). We say that f is sense-preserving at a point
2o if /() # 0 in some neighborhood of 2y and w is analytic at zg with
|w(zo0)] < 1. If f is sense-preserving at zp, then either the Jacobian
J#(20) = |W (20)|> — 19'(20)]* > 0 or h'(z) = 0 for an isolated point
zo as was mentioned by Duren, Hengartner and Laugesen [5]. That
is, zp is a removable singularity of the meromorphic functions w and
|w(z0)| < 1. We say f is sense-preserving in D if f is sense-preserving at
all z € D. By requiring the harmonic function f to be sense-preserving,
we retain some important properties exhibited by analytic functions,
such as the open mapping property, the argument principle, and zeros
being isolated (see [5]). We note that the following harmonic typically
real functions

fi(z) =z—Zand fa(2) =2(1 +4)z +i2% + 2(—1+1)z +i22.

are not sense-preserving, and they do not have the properties mentioned
above.

Thus, we give the following definition.
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Definition 1. Let 7, be the class of typically real harmonic
functions, f, such that f is a sense-preserving harmonic function, f(z)
is real if and only if z is real, f(0) = 0, |h'(0)| = 1, and f(r) > 0 for
0 <r < 1. Let 7,¢ be the subclass of T, with ¢’(0) = 0.

Also, notice that T"U Ty C 7, and, with this definition as in the
analytic case, a harmonic typically real function need not be univalent
or even locally univalent.

Theorem 1. If f € Ty, then f is strictly increasing on the real
interval (—1,1). Moreover, if f = h+7g € T2 and g(0) = 0, then
W(0) = £.(0) = 1.

Proof. Observe that the derivative f’ exists on the interval (—1,1)
and f' = h' 4+ ¢’, Inh = Im g there. Suppose that there exists a point
zo € (—1,1) such that f’'(z¢) = 0. This implies that J¢(zo) = 0. As we
know this can only occur if A'(zg) = 0 = ¢'(xo) with the order of zero
of g’ greater than or equal to the order of h'. Hence, (h — g)'(z9) =0
contrary to the fact that h — g is a typically real analytic function and
such functions are known to be univalent in the lens domain bounded
by the circles |z & i| = v/2 [6, 12]. o

Now, we note that the basic shearing theorem by Clunie and Sheil-
Small [3, Theorem 5.3] still holds when local univalence is omitted.
That is, we have the following version.

Theorem 2. Let f = h + g be sense-preserving harmonic on D.
Then f is univalent and convez in the horizontal direction on D if and
only if h — g has the same properties.

Proof. We only need to prove the reverse direction. So assume that
F = h — g is univalent and convex in the horizontal direction. Consider

G(w) = f(F~H(w)) = h(F~}(w)) + g(F~"(w))
=w + 2Re {g(F *(w))}.

If G is locally univalent in @ = F(D), then we can apply the same
approach as in Clunie and Sheil-Small’s proof. In particular, by their
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lemma ([3, page 13]), G is univalent in Q and has an image that is
convex in the horizontal direction, and consequently, so is f. Therefore,
we only need to show that G is locally univalent. To do this, consider
the Jacobian of G:

2 2
Jo= L hort|
dw

d
el F1
‘dwg °

=(h o P =g o F7H%) - |(F71)?
— Jpor—r - [(F7Y)'2.

Now suppose there exists a point zp € D such that Jg(F(29)) =
Since (F~1)'(w) # 0 on F(D), we have that |h'(20)| = |g'(20)|- As
mentioned above, this is only possible when h'(zp) = 0 = ¢'(zp) which
contradicts the assumption that F' = h — g is univalent. O

Next, we give a representation formula and extreme points for func-
tions in the class 7,9.

Let P denote the class of all functions of the form p(z) =1+ pyz +
p222 + -+ that are analytic in D and such that Rep(z) > 0 for 2z € D.
By the well-known Herglotz representation formula p € P if and only
if there exists a unique probability measure g on 0D such that

(2.1) p:) = [ py@)dula). 2D,
where
(2.2) Py(2) = (L +n2)/(1 - nz).

Moreover, if p € P has real Taylor coefficients, then

1 1— 22
p(2) [41_%Z+£ u(t), ze

with the unique probability measure v on the segment [—1,1]. This in
turn implies that for an analytic function F' in the class 7" we have the
following Robertson representation formula

Lozdv(t)
2. F(z) = —_— D
(23) () /,ll—ztz+z2’ ZE€D
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where v is as above. Recall Rogosinski’s result [14] that a (normalized)
typically real function f can be written as f(z) = (z/1 — 22)p(z) for
some p € P. The set of extreme points of the class T consists of the
functions

z

oot T Sist

(2.4) z— qi(2) =

The shearing construction can be applied to the class 7,¢. Conse-
quently, we see that every f = h+ g € 7,2 can be written in the form

(25)  f(z) = Re / PP Q) dC +i Tm F(2) = k(z,p, F),

where F =h—g €T andp = (1+w)/(1—w) € P withw = g'/h’/, where
removable singularities are admitted. Also, given p € P and F € T,
the function f defined by (2.5) is in 7,2 and k(-,p, F) = h + g, with

B = [ GO+ DFQde =2+ azs? oo
9(z) = %/Oz(p(C) —D)F'(C)dC = byz® + g2 + -+ - .

Note also that the function f = k(-,p, F') is locally univalent if and
only if F is a locally univalent function. This is a consequence of the
equality

(2.6) Ji(2) = |F'(2)|*Rep(z), =z€D.

Furthermore, we have

Theorem 3. The class T is compact (in the topology of uniform
convergence on the compact subsets of D) and the set ext (T,Y) of its
extreme points consists of the functions k(-, py,q:), where p, and q;
are given by (2.2) and (2.4), respectively. The class T,2 is not convez.

Proof. Compactness of the class 7Y follows immediately from com-
pactness of both classes T and P. Assume that f = k(,p,F) €
ext (7,2) and there is a 0 < A < 1 such that either
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(i) p = (1 = A)p1 + Ap2, with p1, p2 € P, p1 # p2,
or
(ii) F = (1 — \Fy + AFy, with F1, Fy € T, F, # Fy.
Then
f=Q0=XNfi+Afe,

where, in case (i):
fj = k('apij) with (fl)z - (f2)z = (pl 7p2)F,/2)
which implies f; # f2, a contradiction; and in case (ii):

F—F
2 )

fi = k(p, Fy)  with (fi): = (f2): = (p+1)

a contradiction again. Thus, by the Herglotz and Robertson formulas,
we get ext (7,9) C {k(-, Py, ), 7| =1,—1 <t < 1}. Now if

f=k(ppar) =1 XN fi+ A= (1—NEk(-,p1, F1) + Ak(-, p2, F2),

then
:fz fz—( )Fl)‘F2a

which gives q; = F; = F»; and
Pnd; = f2 4 f: = (L= N)p1Fy + Ap2 Fy = ((1 — A)p1 + Ap2)q,

which implies p; = p2 = p,. Consequently, f; = f2 and f € ext (7,7).

Finally, we show that the class 7,2 is not convex. More exactly, we
show that for arbitrary £,n € 0D, s,t € [-1,1], £ # n, s # t and
0<A<,

f=1=Nk(,pe as) + Ak("pmq” & Ty -

Suppose, contrary to our claim, that f € 7,2. Then there exist p € P
and F € T such that f = k(-,p, F) and

=f.—f: = (1= Nd} + A\q;.
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This implies that F = (1 — \)qs + Aq;. Moreover, we have
PF' = f.+ fz = (1 = M)peq; + Apyq;.

Since the image of D under an analytic branch of \/q’/q} contains
the upper and lower half planes, there exists an a € D \ {0} such that
d.(a)/qi(a) = =X/(1 — X). Hence F'(a) = 0 and

p(a)F'(a) = (1 = \)pe(a)di(a) + Apy(a)a;(a)
= Aq;(a)(py(a) — pe(a) # 0,

a contradiction. O

As a corollary to Theorem 3 we get the same sharp coefficient
estimates for the class 7 and 7,2 as were found by Clunie and Sheil-
Small [3] for Ty, C T and TF C T,9.

3. Region of univalence. For z; € C and positive r, let D(zo;r)
denote the open disk centered at zy with radius r. We mentioned in
the Introduction that an analytic function f € T need not be univalent
in D, but it is univalent in the lens domain

L = D(—4;V2) N D(5;V2).

The result was obtained by Goluzin [6] and by Merkes [12] indepen-
dently. They also noted that this region of univalence for class T' cannot

be extended, because for each zg € 0L N D there exists a parameter
to € (0,1) such that f; (20) = 0, where

_ tz (1-1%)z
(3.1) fi(2) = TESE + .

This can also be shown by noting that

4
6LmD:{zeD:<ijz> <0}

o=(() )

and
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Let us observe that actually for each zp € D \ L there exist ¢y € (0,1)
and R € (v/2 — 1,1] such that Rz € dL and fio r(20) = 0, where
ft.r(2) = ft(Rz)/R and f; is defined by (3.1). Note that the function
ft,r as a convex combination of univalent functions with real coefficients
is in class T'.

As in the analytic case, a harmonic typically real function need not
be univalent. Therefore, Ztotkiewicz posed the problem of determining
the region of univalence for harmonic typically real functions. Before
we give a partial answer to this question we present a simple proof of
the Goluzin-Merkes result for analytic typically real functions (based
on Merkes’s idea). To this end, note first that the function

(32 C= ) = 1o

maps conformally the disk D onto the two-slit plane cut along the
real intervals (—oo,—1] and [1,00). Since the function 1 is typically
real, there is a one-to-one correspondence between the class 7" and
the class of normalized and typically real functions in @ = C\
((—o0, —1]U[1, 00)). Moreover, using the Robertson formula, we get the
following formula for a typically real function F' in 2 with normalization
F(0) = F'(0) — 1 = 0 and the one-to-one correspondence:

(3 ro - [ $29,

where v is a probability measure on [—1,1]. It has been observed in
[15, 16] that F restricted to disk D is univalent. Consequently, any
function f € T is univalent on the preimage of the unit disk under the
function ¢ given by (3.2), which is the lens domain L.

1
f:§FO¢€T,

In 1936 Robertson observed that an analytic function F' with real
coefficients is univalent and convex in the vertical direction if and only
if the function z — 2F’'(z) is typically real (see [8, page 206]). Hence
the functions given by (3.3) are convex in the direction of the imaginary
axis (see also [12, 13]). Therefore, the sets f(L), f € T, are convex in
the vertical direction. Moreover, we will show the following interesting
property of class T'.

Proposition. For a z € 0L N D there exists a unique f € T for
which f'(z) = 0.
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Proof. By (3.3) it is enough to consider the equation

— ! (pl) — ! dV(t)
=P = | T

1 2
1-—t¢
= ———dv(t
/1‘l—te“"|4 v(t)

1 —
 9cosa / Hl=—teosa)

L |1 teie]t

1
. t(1 — tcosa)
+2’LSIHOZ‘/71 Wdl/(t),

where 0 < o < 7. It then follows

(i)
/1 t(1 —tcosoz)d’/(t) _o

1 |1 —tetet
and, consequently,
(ii)
1 2
1—t
——dv(t) = 0.
/_1 |1 —tete|* v(t)

From equality (ii) we get v = (1 — A)d_1 + Ad; for some A € [0,1],
Finally, equality (i) gives A = sin®(a/2). o

Corollary. Let f € T. Then either f is univalent on L\ {—1,1} or
there is a unique t € (0,1) such that f = fi, where f; is given by (3.1).

Moreover, fi(L) = C\ {(1—2t)/4+ix: A€ R, || > /t(1 —1t)/2}.

Proof. Clearly f is analytic on v = 9L\ {—1,1} and Re f(z) changes
monotonically. It is sufficient to show that Re f(z) is not constant on
any arc 9 C vy or f = f; for some ¢ € (0,1). If f is constant on an arc
o C v lying in the upper half-plane, then the function given by

zZ—1

g(Z)Zf(Z)+f<i+_2 )

is analytic on a neighborhood of vy and g(z) = 2Re f(z) on 7. So,
g(z) = const on vy and, consequently, g is a constant function. This



576 M. DORFF, M. NOWAK AND W. SZAPIEL

means that Re f is constant on 7. Consequently, the boundary value
of f at 1 and —1 is equal to oo, so there is a z € L N D such that
f'(2) =0 = F'(¢(z)) = 0. Hence by the Proposition f = f;, where
t=(1—-Revy(2))/2. O

We also note that the radius of starlikeness for class T is V2 — 1
[9]. Moreover, every f € T is univalent on D(0;v/2 — 1) and the curve
f(@D(0; /2 — 1)) is strictly starlike with respect to the origin. Indeed,
if we put g = z2f'/f, then the function defined by G(z) = g(z) +
9((3 — 24/2)/Z) is analytic on a neighborhood of the circle D(0; v/2 —
1). Hence for |z| = v/2 — 1 we have G(z) = 2Re{zf'(2)/f(2)} > 0,
except for a finite number of points at which it vanishes.

We have already shown that every harmonic typically real function

in the sense of Definition 1 is strictly monotonic on the interval (—1,1).
Moreover, we have the following

Theorem 4. For each function f in TS there exists an open set V,
(—1,1) C V C D, such that f is univalent on V.

Proof. Let f = k(-,p, F) with p € P and F € T. We first show that,
for a compact interval [a,b] C (—1,1), there is an open set U containing
[a,b] and such that f is univalent on U. Clearly, [F(a), F(b)] C F(L),
where L is the lens domain defined above. Since F(L) is an open set,
there exist § > 0 and ¢ > 0 such that (F'(a) — §, F(b) + d) x (—c¢,¢) C
F(L). Let U be the preimage of set (F(a)— 6, F(b) + ) x (—c¢, ¢) under
F. Then

U=Ulabe,d)= |J zal(Fla)—5,F()+0)),

—c<d<c

where z4(t) = F~(t +id), F(a) —§ < t < F(b) + 6. Now note that,
since F' is univalent on L, the curves z4, —c < d < ¢ are disjoint and

d
S Re S (za(t) = Re{p(za()F" (za(t))z4(t)} = Rep(za(t)) > 0.
This and the fact that Im f = Im F' imply the univalence of f on U.

Let {a,} be a strictly decreasing sequence of negative numbers
converging to —1 and {b,} a strictly increasing sequence of positive
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numbers converging to 1. Then, for each positive integer n, we can
find §,, > 0, ¢, > 0 and the open set U,, = U(an, by, cpn,dy) such that
f is univalent on U,,. Now set §;, = min{F(a,) — F(an+1), F(bn+1) —
F(b,),0,} and ¢} = c1, ¢, 41 = min{c},,cr41}, n =1,2,..., and define

V=) U(an,bn,ch,,d,).

ny ~nr¥n

s

n=1

Clearly, (—1,1) C V. Moreover, f is univalent on V. To see
this suppose that f(z) = f(w) and z € U(an,bn,c,,0,), w €

U(@ntksOniksCrypyOpyr)s B > 1. Since ImF = Im f, we get 2z €
U(@n1ksOnik,Cryp» 0541) and consequently, z = w. O

Remark 1. Tt is clear that, for every continuous mapping f of a
neighborhood of interval (—1,1) into C such that f((—1,1)) C R and
f is a local homeomorphism of (—1,1), there is a domain © and a
simply connected domain G such that (—1,1) C © and f is a local
homeomorphism of Q onto G. If the pair (Q,f) is an unlimited
covering space of domain G, then by the Monodromy theorem f is
a homeomorphism of Q onto G [1]. In general, such a situation is
rare. The example below shows that f may be infinite-valent on 2, so
that the typically real property in the proof of Theorem 4 seems to be
essential.

Example. Let u(z) = (42)/(1+ 2)2, f(€) = £e~¢. It is clear that
the function f o w is locally univalent on D. By the Great Picard
theorem, f o u(D) = C and every value w € C\ {0} is assumed by
f o u at infinitely many points of each set DN {z: |2 4+ 1| < §}, where
0<d<2.

Next, we show that the region, L, of univalency for class 7" is not the
region of univalency for class 7,2.

Theorem 5. There exist functions f € T2 that are not univalent
on L.
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Proof. Put

PO = e =3 (o * o) #€D

and define f € T2 by the formula

f(Z)ZRe/O TP dc i ().

Suppose that f is univalent on L. Then the function g = fot~!, where
1 is given by (3.2), is univalent on D. A calculation gives

()_ 14+w 1+w 1 /1—w
g\w Ri-oViw Vitw
iy
*3 m<lw )

where we assume that v/1 = 1. Now, note that, for 0 < o < 7/2,

Im (g(ie **) — g(ie’®)) = 0.

Moreover, we have

where
o

T 1
¢ = cot <4 + 2> T2 ot (D) (@)2)

This means that, for 0 < a < 7/2,

Re (g(ieiio‘) — g(iem)) <0.
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To get a contradiction consider function m defined by
m(r, ) = Re (g(rie™**) — g(rie*®)).

The function m is uniformly continuous on the rectangle [0, 1] x [0, /4]
and m(1,a) < 0 for 0 < @ < w/4. On the other hand,

m(r,a) = r(sina +o(1)) asr —0F.

Consequently, for every o € (0,7/4) there is an r, € (0,1) such
that m(ro,a) = 0. This means that g(roie'*) = g(rqie'®), a
contradiction. O

Theorem 6. FEvery function f € TS is univalent in any of the
following domains:

(a) the disk D(0;1/6 — +/5),
(b) {zeD:|(22)/(1+2%)| < v2-1}.

Proof. Tt follows from (2.6) that every f = h+7g € T2 is locally
univalent on lens domain L. Moreover, by the results in [17], F = h—g
is convex on D(0; V6 — \/5) Thus, by the shearing theorem of Clunie
and Sheil-Small, f is univalent on D(0; V6 — \/5) Note also that it has
been shown by Koczan [10] that for the class T the radius of convexity
in the horizontal direction is exactly V6 — /5. Now we observe that
a function f € 7.2 is univalent on the given region in (b) if and only
if function f o ¢, where ¢ is given by (3.2), is univalent on the disk
D(0;4/2 — 1). The last follows from the fact that an analytic function
F given by (3.3) maps the disk D(0;v/2—1) onto a convex domain (see
[13, page 292]) and from the shearing theorem of Clunie and Sheil-
Small. O

Clearly, class Ty of typically real harmonic functions introduced
by Clunie and Sheil-Small contains locally univalent functions from
class T. It would be interesting to find the region of univalence for
locally univalent functions that are in T'. The following example of the
function G € T that is locally univalent has been described in [7]:
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We note that G is univalent in the region S = {z € D : |[Re((nz)/
(1+2%)| < w/2} which contains the disk D(0;1/4/3). Indeed, for
|z| = 1//3, we have

Tz
e
14 22

IN

R

| 37Rez ™
~ |9Re2z +1 2

Moreover, if zg = (1 4 iv/2)/3, then 25, —Z5 € dD(0;1/4/3) N dS and
G(z0) = G(—%p). This shows that radius of univalence for the class of
locally univalent functions from 7T is less than or equal to 1/+/3.

Now let r}, respectively r,, denote the radius of univalence of Ty,

respectively 7,2, that is, the supremum of all » > 0 such that every
f € Ty, respectively f € 7,2, is univalent on D(0;r). Clearly,

0213+ =v6—v5<r, <r; <1/V3=057T---

and
Te <V2—1=0414--- .

By examining some computer computations, that will be presented
in an upcoming paper, we make the following conjectures.

Conjecture 1. r, = V2 -1,

Conjecture 2. Every function f € T2 is univalent on the half-lens
Ln{z:Rez > 0}.

We finish the paper with a list of open problems.

(1) Give analytic proofs of Conjectures 1-2.

(2) Prove or disprove that r* = 1/+/3.

(3) Does there exist an open set U, (—1,1) C U C D, such that every

f € T2 is univalent on U?
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