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Preface

Linear algebra is the most widely studied branch of mathematics after calculus.
There are good reasons for this. If you, the reader, pursue the study of mathematics,
you will find linear algebra used everywhere from number theory to PDEs (partial
differential equations). If you apply mathematics to concrete problems, then again
linear algebra is a powerful tool. Obviously you must start by grasping the principles
of linear algebra, and that is the aim of this book. The readership we had in mind
includes majors in disciplines as widely separated as mathematics, engineering and
social sciences. The notes at the end of the book on further reading may be useful,
and allow for many different directions for further studies. Suggestions from readers
on this or any other aspect of the book should be sent to {baker@math.byu.edu}.

We have used Maple for longer computations (an appendix at the back addresses
Maple for beginners). There are, of course, other options.

Occasionally, a sequence of adjacent exercises will have each exercise depending
on the preceding exercise. We will indicate such dependence by a small vertical
arrow.

There are supplementary exercise sets at the web site
https://math.byu.edu/˜klkuttle/LinearAlgebraMaterials
Click on the chapter and then click on any of the pdf files which appear. The

first ten exercise sets each have a key. The second ten exercise sets do not.

iii
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Numbers, vectors and fields

1.1 Functions and sets

A set is a collection of things called elements of the set. For example, the set of
integers, the collection of signed whole numbers such as 1,2,-4, and so on. This set,
whose existence will be assumed, is denoted by Z. Other sets could be the set of
people in a family or the set of donuts in a display case at the store. Sometimes
parentheses, { } specify a set by listing the things which are in the set between
the parentheses. For example, the set of integers between -1 and 2, including these
numbers, could be denoted as {−1, 0, 1, 2}. The notation signifying x is an element
of a set S, is written as x ∈ S. We write x /∈ S for ‘x is not an element of S’.
Thus, 1 ∈ {−1, 0, 1, 2, 3} and 7 /∈ {−1, 0, 1, 2, 3}. Here are some axioms about sets.
Axioms are statements which are accepted, not proved.

1. Two sets are equal if and only if they have the same elements.

2. To every set, A, and to every condition S (x) there corresponds a set, B, whose
elements are exactly those elements x of A for which S (x) holds.

3. For every collection of sets there exists a set that contains all the elements
that belong to at least one set of the given collection.

The following is the definition of a function.

Definition 1.1.1 Let X,Y be nonempty sets. A function f is a rule which yields
a unique y ∈ Y for a given x ∈ X. It is customary to write f (x) for this element
of Y . It is also customary to write

f : X → Y

to indicate that f is a function defined on X which gives an element of Y for each
x ∈ X.

Example 1.1.2 Let X = R andf (x) = 2x.

The following is another general consideration.

1



2 NUMBERS, VECTORS AND FIELDS

Definition 1.1.3 Let f : X → Y where f is a function. Then f is said to be one
to one (injective), if whenever x1 6= x2, it follows that f (x1) 6= f (x2) . The function
is said to be onto, (surjective), if whenever y ∈ Y, there exists an x ∈ X such that
f (x) = y. The function is bijective if the function is both one to one and onto.

Example 1.1.4 The function f (x) = 2x is one to one and onto from R to R. The
function f : R→ R given by the formula f (x) = x2 is neither one to one nor onto.

1.2 Three dimensional space

We use R to denote the set of all real numbers. Let R3 be the set of all ordered
triples (x1, x2, x3) of real numbers. (‘Ordered’ in the sense that, for example, (1, 2, 3)
and (2, 1, 3) are different triples.) We can describe the three-dimensional space in
which we move around very neatly by specifying an origin of coordinates 0 and
three axes at right angles to each other. Then we assign a point of R3 to each point
in space according to perpendicular distances from these axes, with signs showing
the directions from these axes. If we think of the axes as pointing east, north and
vertically (Fig. 1), then (2, 6,−1)‘is’ the point with distances 2 (units) from the N
axis in direction E, 6 from the E axis in direction N , and 1 vertically below the
plane containing the E and N axes. (There is, of course, a similar identification of
R2 with the set of points in a plane.)

The triples (x1, x2, x3) are called vectors. You can mentally identify a vector
with a point in space, or with a directed segment from 0 = (0, 0, 0) to that point.

µ (x1, x2, x3)

+
e1

6
e3

-
e2

Let us write e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) for the unit vectors along
the axes.

Vectors (x1, x2, x3), (y1, y2, y3) are ‘abbreviated’ using the same letter in bold
face:

x = (x1, x2, x3), y = (y1, y2, y3).

(Similarly in Rn; see below.) The following algebraic operations in R3 are helpful.

Definition 1.2.1 The sum of x and y is

x + y = (x1 + y1, x2 + y2, x3 + y3).

For c ∈ R, the scalar multiple cx is

cx = (cx1, cx2, cx3).

There are algebraic rules that govern these operations, such as

c(x + y) = cx + cy.
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We defer the list of rules until §1.6, when we treat a more general situation; see
Axioms 1, . . . ,8.

Definition 1.2.2 The inner product, sometimes called the dot product of x and
y is

〈x,y〉 = x1y1 + x2y2 + x3y3.

Note that for this product that the ‘outcome’ 〈x,y〉 is a scalar, that is, a member
of R. The algebraic rules of the inner product (easily checked) are

〈x + z,y〉 = 〈x,y〉+ 〈z,y〉,(1.1)

〈cx,y〉 = c〈x,y〉,(1.2)

〈x,y〉 = 〈y,x〉,(1.3)

〈x,x〉 > 0 for x 6= 0.(1.4)

Definition 1.2.3 The cross product of x and y is

x× y = (x2y3 − x3y2,−x1y3 + x3y1, x1y2 − x2y1).

For this product, the ‘outcome’ x×y is a vector. Note that x×y = −y×x and
x×x = 0, among other ‘rules’ that may be unexpected. To see the cross product in
the context of classical dynamics and electrodynamics, you could look in Chapter 1
of Johns (1992). The above definitions first arose in describing the actions of forces
on moving particles and bodies.

In describing our operations geometrically, we begin with length and distance.
The length of x (distance from 0 to x) is

|x| =
√

x2
1 + x2

2 + x3
3 =

√
〈x,x〉.

This follows from Pythagoras’s theorem (see the Exercises). Note that the di-
rected segment cx points in the same direction as x if c > 0; the opposite direction
if c < 0. Moreover,

|cx| = |c||x|.

(multiplication by c ‘scales’ our vector).
The sum of u and v can be formed by ‘translating’ the directed segment u, that

is, moving it parallel to itself, so that its initial point is at v. The terminal point is
then at u + v, as shown in the following picture.
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0

µu

º

v

¸

u + v

I

µ

u

The points 0,u,v,u + v are the vertices of a parallelogram.
Note that the directed segment from x to y, which we write [x,y], is obtained

by ‘translating’ y − x, because

x + (y − x) = y.

Hence the distance d(x,y) from x to y is

d(x,y) = |y − x|.

Example 1.2.4 Find the coordinates of the point P , a fraction t (0 < t ≤ 1) of
the way from x to y along [x,y].

We observe that P is located at

x + t(y − x) = ty + (1− t)x.

Example 1.2.5 The midpoint of [x,y] is 1
2 (x + y) (take t = 1/2).

The centroid a+b+c
3 of a triangle with vertices a,b, c lies on the line joining a

to the midpoint b+c
2 of the opposite side. This is the point of intersection of the

three lines in the following picture.

a b

c

For
1
3
a +

2
3

(b + c)
2

=
1
3
(a + b + c).

The same statement is true for the other vertices, giving three concurrent lines
intersecting as shown.
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Example 1.2.6 The set

(1.5) L(a,b) = {x : x = a + tb, t ∈ R}
is a straight line through a pointing in the direction b (where b 6= 0).

Example 1.2.7 Write in the form 1.5 the straight line through (1, 0,−1) and
(4, 1, 2).

Solution 1.2.8 We can take b = (4, 1, 2)−(1, 0,−1) = (3, 1, 3). The line is L(a,b)
with a = (1, 0,−1),b = (3, 1, 3).

Observation 1.2.9 The inner product is geometrically interpreted as follows. Let
θ be the angle between the directed segments a and b, with 0 ≤ θ ≤ π. Then

(1.6) 〈a,b〉 = |a||b| cos θ.

To see this, we evaluate l = |a− b| in two different ways.

*

qU

b

a
a− bθ

By a rule from trigonometry,

(1.7) l2 = |b− a|2 = |a|2 + |b|2 − 2|a||b| cos θ.

On the other hand, recalling 1.1–1.3,

|b− a|2 = 〈(b− a), (b− a)〉 = 〈b,b〉 − 2〈a,b〉+ 〈a,a〉(1.8)

= |b|2 − 2〈a,b〉+ |a|2.
Comparing 1.7 and 1.8 yields 1.6.
Note that nonzero vectors x and y are perpendicular to each other, or orthog-

onal, if
〈x,y〉 = 0.

For then cos θ = 0, and θ = π/2, in 1.6.
In particular, x × y is orthogonal to (perpendicular to) both x and y. For

example,

〈x,x× y〉 = x1(x2y3 − x3y2) + x2(−x1y3 + x3y1) + x3(x1y2 − x2y1) = 0.

The length of x× y is
|x| |y| sin θ,

with θ as above. To see this,

(1.9) |x× y|2 = (x1y2 − x2y1)2 + (−x1y3 + x3y1)2 + (x1y2 − x2y1)2,
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while

|x|2|y|2 sin2 θ = |x|2|y|2 − |x|2|y|2 cos2 θ(1.10)

= (x2
1 + x2

2 + x2
3)(y

2
1 + y2

2 + y2
3)− (x1y1 + x2y2 + x3y3)2,

and the right-hand sides of 1.9, 1.10 are equal.
We close our short tour of geometry by considering a plane P through a =(a1, a2, a3)

with a normal u; that is, u is a vector perpendicular to P . Thus the vectors x− a
for x ∈ P are each perpendicualr to the given normal vector u as indicated in the
picture.

a
x i

º
u

Thus the equation of the plane P is

〈u,x− a〉 = u1 (x1 − a1) + u2 (x2 − a2) + u3 (x3 − a3) = 0

Example 1.2.10 Find the equation of the plane P ′ through a = (1, 1, 2),b =
(2, 1, 3) and c = (5,−1, 5).

A normal to P ′ is

u = (b− a)× (c− a) = (2, 1,−2)

since u is perpendicular to the differences b− a and c− a. Hence P ′ has equation

〈(x− a),u〉 = 0,

reducing to
2x1 + x2 − 2x3 = −1.

1.3 An n−dimensional setting

In the nineteenth century (and increasingly after 1900) mathematicians realized
the value of abstraction. The idea is to treat a general class of algebraic or other
mathematical structures ‘all in one go’. A simple example is Rn. This is the set of
all ordered n− tuples (x1, . . . , xn), with each xi ∈ R. We cannot illustrate Rnon
paper for n ≥ 4, but even so, we can think of R as having a geometry. We call the
n− tuples vectors.

Definition 1.3.1 Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be vectors in Rn. We
let

x + y = (x1 + y1, . . . , xn + yn),
cx = (cx1, . . . , cxn) for c ∈ R.
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Clearly R1 can be identified with R. There is no simple way to extend the idea
of cross product for n > 3. But we have no difficulty with inner product.

Definition 1.3.2 The inner product of x and y is

〈x,y〉 = x1y1 + x2y2 + · · ·+ xnyn.

You can easily check that the rules 1.1–1.4 hold in this context. This product is also
called the dot product.

We now define orthogonality.

Definition 1.3.3 Nonzero vectors x,y in Rn are orthogonal if 〈x,y〉 = 0. An
orthogonal set is a set of nonzero vectors x1, . . . ,xk with 〈xi,xj〉 = 0 whenever
i 6= j.

Definition 1.3.4 The length of x in Rn is

|x| =
√

x2
1 + · · ·+ x2

n =
√
〈x,x〉.

The distance from x to y is d(x,y) = |y − x|.
Several questions arise at once. What is the largest number of vectors in an

orthogonal set? (You should easily find an orthogonal set in Rn with n members.)
Is the ‘direct’ route from x to z shorter than the route via y, in the sense that

(1.11) d(x, z) ≤ d(x,y) + d(y, z)?

Is it still true that

(1.12) |〈x,y〉| ≤ |x||y|

(a fact obvious from 1.6 in R3)?
To show the power of abstraction, we hold off on the answers until we discuss

a more general structure (inner product space) in Chapter 6. Why give detailed
answers to these questions when we can get much more general results that include
these answers? However, see the exercises.

1.4 Exercises

1. Explain why the set
{

(x, y, z) ∈ R3 : (x− 1)2 + (y − 2)2 + z2 = 4
}

, usually

written simply as (x− 1)2 + (y − 2)2 + z2 = 4, is a sphere of radius 2 which
is centered at the point (1, 2, 0).

2. Given two points (a, b, c) , (x, y, z) , show using the formula for distance be-
tween two points that for t ∈ (0, 1) ,

|t (x− a, y − b, z − c)|
|(x− a, y − b, z − c)| = t.
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Explain why this shows that the point on the line between these two points
located at

(a, b, c) + t (x− a, y − b, z − c)

divides the segment joining the points in the ratio t : 1− t.

3. Find the line joining the points (1, 2, 3) and (3, 5, 7) . Next find the point on
this line which is 1/3 of the way from (1, 2, 3) to (3, 5, 7).

4. A triangle has vertices (1, 3) , (3, 7) , (5, 5) . Find its centroid.

5. There are many proofs of the Pythagorean theorem, which says the square
of the hypotenuse equals the sum of the squares of the other two sides, c2 =
a2 + b2 in the following right triangle.

c

b

a

Here is a simple one.1 It is based on writing the area of the following trapezoid
two ways. Sum the areas of three triangles in the following picture or write
the area of the trapezoid as (a + b) a+ 1

2 (a + b) (b− a) , which is the sum of a
triangle and a rectangle as shown. Do it both ways and see the pythagorean
theorem appear.

c

c

a

b

a

b

6. Find the cosine of the angle between the two vectors (2, 1, 3) and (3,−1, 2).

7. Let (a, b, c) and (x, y, z) be two nonzero vectors in R3. Show from the prop-
erties of the dot product that

(a, b, c)− (a, b, c) · (x, y, z)
x2 + y2 + z2

(x, y, z)

is perpendicular to (x, y, z).

8. Prove the Cauchy-Schwarz inequality using the geometric description of the
inner product in terms of the cosine of the included angle. This inequality
states that |〈x,y〉| ≤ |x| |y|. This geometrical argument is not the right way
to prove this inequality but it is sometimes helpful to think of it this way.

1This argument involving the area of a trapezoid is due to James Garfield, who was one of the
presidents of the United States.
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9. The right way to think of the Cauchy-Schwarz inequality for vectors a and b
in Rn is in terms of the algebraic properties of the inner product. Using the
properties of the inner product, 1.1 - 1.4 show that for a real number t,

0 ≤ p (t) = 〈a + tb,a + tb〉 = |a|2 + 2t 〈a,b〉+ t2 |b|2 .

Choose t in an auspicious manner to be the value which minimizes this non-
negative polynomial. Another way to get the Cauchy-Schwarz inequality is to
note that this is a polynomial with either one real root or no real roots. Why?
What does this observation say about the discriminant? (The discriminant is
the b2 − 4ac term under the radical in the quadratic formula.)

10. Define a nonstandard inner product as follows.

〈a,b〉 =
n∑

j=1

wjajbj

where wj > 0 for each j. Show that the properties of the innner product 1.1
- 1.4 continue to hold. Write down what the Cauchy-Schwarz inequality says
for this example.

11. The normal vector to a plane is n = (1, 2, 4) and a point on this plane is
(2, 1, 1) . Find the equation of this plane.

12. Find the equation of a plane which goes through the three points,

(1, 1, 2) , (−1, 3, 0) , (4,−2, 1) .

13. Find the equation of a plane which contains the line (x, y, z) = (1, 1, 1) +
t (2, 1,−1) and the point (0, 0, 0).

14. Let a,b be two vectors in R3. Think of them as directed line segments which
start at the same point. The parallelogram determined by these vectors is

P (a,b) =
{
x ∈ R3 : x = s1a+s2b where each si ∈ (0, 1)

}
.

Explain why the area of this parallelogram is |a× b| .
15. Let a,b, c be three vectors in R3. Think of them as directed line segments

which start at 0. The parallelepiped determined by these three vectors is the
following.

P (a,b, c) =
{
x ∈ R3 : x = s1a+s2b + s3c where each si ∈ (0, 1)

}

A picture of a parallelepiped follows.

-

Á

3

a

b

c

6
N

θ

Note that the normal N is perpendicular to both a and b. Explain why the
volume of the parallelepiped determined by these vectors is |(a× b) ·c|.
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16. There is more to the cross product than what is mentioned earlier. The vectors
a,b,a× b satisfies a right hand rule. This means that if you place the fingers
of your right hand in the direction of a and wrap them towards b, the thumb
of your right hand points in the direction of a× b as shown in the following
picture.

y

¼

±

a

b

c

Show that with the definition of the cross product given above, a,b,a× b
always satisfies the right hand rule whenever each of a,b is one of the standard
basis vectors e1, e2, e3.

17. Explain why any relation of the form {(x, y, z) : ax + by + cz = d} where a2 +
b2 + c2 6= 0 is always a plane. Explain why 〈a, b, c〉 is normal to the plane.
Usually we write the above set in the form ax + by + cz = d.

18. Two planes in R3are said to be parallel if there exists a single vector n which is
normal to both planes. Find a plane which is parallel to the plane 2x+3y−z =
7 and contains the point (1, 0, 2).

19. Let ax + by + cz = d be an equation of a plane. Thus a2 + b2 + c2 6= 0. Let
X0 = (x0, y0, z0) be a point not on the plane. The point of the plane which
is closest to the given point is obtained by taking the intersection of the line
through (x0, y0, z0) which is in the direction of the normal to the plane and
finding the distance between this point of intersection and the given point.
Show that this distance equals |ax0+by0+cz0−d|√

a2+b2+c2 .

O

µ

n
θ

(x0, y0, z0) = X0

P0

1.5 Complex numbers

It is very little work (and highly useful) to step up the generality of our studies by
replacing real numbers by complex numbers. Many mathematical phenomena (in
the theory of functions, for example) become clearer when we ‘enlarge’ R. Let C be
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the set of all expressions a + bi, where i is an abstract symbol, a ∈ R, b ∈ R, with
the following rules of addition and multiplication:

(a + bi) + (c + di) = a + c + (b + d)i,
(a + bi)(c + di) = ac− bd + (bc + ad)i.

We write a instead of a + 0i and identify R with the set {a + 0i : a ∈ R}, so that

R ⊂ C.

Notation 1.5.1 We write X ⊂ Y if every member of the set X is a member of
the set Y . Another symbol which means the same thing and which is often used is
X ⊆ Y.

Note that if we ignore the multiplication, C has the same structure as R2, giving
us a graphical representation of the set of complex numbers C.

a + ib

a

b

We write ci instead of 0 + ci. Note that i2 = −1. Thus the equation

(1.13) x2 + 1 = 0,

which has no solution in R, does have solutions i,−i in C. There is a corresponding
factorization

x2 + 1 = (x + i)(x− i).

In fact, it is shown in complex analysis that any polynomial of degree n, (written
deg P = n),

P (x) = a0x
n + a1x

n−1 + · · ·+ an−1x + an

with a0 6= 0, and all coefficients aj in C, can be factored into linear factors:

P (z) = a0(z − z1) . . . (z − zn)

for some z1, . . . , zn in C. The zj are the zeros of P , that is, the solutions of
P (z) = 0. The existence of this factorization is the fundamental theorem of
algebra. Maple or some other computer algebra system can sometimes be used to
find z1, . . . , zn if no simple method presents itself.

Example 1.5.2 To find the zeros of a polynomial, say z3 − 1, enter it as

Solve (x ∧ 3− 1 = 0, x)

and type ‘Enter’. We get

1,−1/2 + I
1
2

√
3,−1/2− I

1
2

√
3.

(Maple uses I for i). If we type in x3 − 1 and right click, select ‘factor’, we get

(x− 1)(x2 + x + 1).

This leaves to you the simple step of solving a real quadratic equation.
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Little expertise in manipulating complex numbers is required in this book. To
perform a division, for example,

a + bi

c + di
=

(a + bi)(c− di)
(c + di)(c− di)

=
ac + bd

c2 + d2
+ i

(
bc− ad

c2 + d2

)
.

Here of course z = z1/z2 means that

z2z = z1.

(We suppose z2 6= 0.) The absolute value |z| of z = a + bi is
√

a2 + b2 (its length,
if we identify C with R2). The complex conjugate of z = a + ib is z̄ = a − ib.
You can easily verify the properties

z1 + z2 = z1 + z2, z1z2 = z1 z2, zz = |z|2,

and writing
R(z) = R(a + ib) = a, I(z) = I(a + ib) = b,

1
2
(z + z̄) = R(z),

1
2i

(z − z) = I(z),

R(z) is the ‘real part of z’ I(z) is the ‘imaginary part of z’.
A simple consequence of the above is |z1z2| = |z1||z2|. (The square of each side

is z1z1z2z2.)
Now Cn is defined to be the set of

z = (z1, . . . , zn) (zj ∈ C).

You can easily guess the definition of addition and scalar multiplication for Cn:

w = (w1, . . . , wn),
z + w = (z1 + w1, . . . , zn + wn),

cz = (cz1, . . . , czn) (c ∈ C).

The definition of the inner product in Cn is less obvious, namely

〈z,w〉 = z1w1 + · · ·+ znwn.

The reason for this definition is that it carries over the property that 〈z, z〉 > 0. We
have

〈z, z〉 > 0 if z 6= 0,

because
〈z, z〉 = |z1|2 + · · ·+ |zn|2.

We shall see in Chapter 6 that Cn is an example of a complex inner product
space.
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1.6 Fields

To avoid pointless repetition, we step up the level of abstraction again. Both R and
C are examples of fields. Linear algebra can be done perfectly well in a setting
where the scalars are the elements of some given field, say F .

Definition 1.6.1 A field is a set F containing at least two distinct members, which
we write as 0 and 1. Moreover, there is a rule for forming the sum a + b and the
product ab whenever a, b are in F . We require further that, for any a, b, c in F ,

1. a + b and ab are in F .

2. a + b = b + a and ab = ba.

3. a + (b + c) = (a + b) + c and a(bc) = (ab)c.

4. a(b + c) = ab + ac

5. a + 0 = a.

6. a1 = a.

7. For each a in F , there is a member −a of F such that

a + (−a) = 0.

8. For each a in F, a 6= 0, there is a member a−1 of F such that aa−1 = 1.

It is well known that F = R has all these properties, and it is not difficult to
check that F = C has them too.

The following proposition follows easily from the above axioms.

Proposition 1.6.2 The additive identity 0 is unique. That is if 0′ + a = a for all
a, then 0′ = 0. The multiplicative identity 1 is unique. That is if a1′ = a for all a,
then 1′ = 1. Also if a + b = 0 then b = −a, so the additive inverse is unique. Also
if a 6= 0 and ab = 1, then b = a−1, so the multiplicative inverse is unique. Also
0a = 0 and −a = (−1) a.

Proof: (We will not cite the uses of 1 - 8.)First suppose 0′ acts like 0. Then

0′ = 0′ + 0 = 0.

Next suppose 1′ acts like 1. Then

1′ = 1′1 = 1.

If a + b = 0 then add −a to both sides. Then

b = (−a + a) + b = −a + (a + b) = −a.

If ab = 1, then
a−1 = a−1 (ab) =

(
a−1a

)
b = 1b = b.
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Next, it follows from the axioms that

0a = (0 + 0) a = 0a + 0a.

Adding − (0a) to both sides, it follows that 0 = 0a. Finally,

a + (−1) a = 1a + (−1) a = (1 +−1) a = 0a = 0,

and so from the uniqueness of the additive inverse, −a = (−1) a. This proves the
proposition. 2

We give one further example, which is useful in number theory and cryptography.

Example 1.6.3 Congruence classes.

Let m be a fixed positive integer. We introduce congruence classes 0̄, 1̄,
2̄, . . . , m− 1 in the following way; k̄ consists of all integers that leave remainder k
on division by m. That is, l ∈ k̄ means

l = mj + k

for some integer j. The congruence classes are also called residue classes. If h is
an integer with h ∈ k̄, we write h̄ = k̄, e.g. 26 = 2̄ if m = 8.

Thus if m = 8,

5̄ = {. . . ,−11,−3, 5, 13, 21, . . .}.
To add or multiply congruence classes, let

ā + b̄ = a + b, āb̄ = ab.

For instance, if m = 11, then 9̄ + 7̄ = 5̄, 9̄7̄ = 8̄. It is not hard to see that
the set Zm = {0̄, 1̄, . . . , m− 1} obeys the rules 1 - 7 above. To get the rule 8, we
must assume that m is prime. This is seen to be necessary, e.g. if m = 10, we will
never have 5̄k̄ = 1̄ since 5̄k̄ ∈ {0̄, 5̄}. For a prime p, we write Fp instead of Zp. See
Herstein (1964) for a detailed proof that Fp is a field. See also the Exercises 25 - 27
on Page 21. We display in Figure 1.7 a multiplication table for F7. It is clear from
the table that each nonzero member of F7 has an inverse.

1̄ 2̄ 3̄ 4̄ 5̄ 6̄
1̄ 1 2 3 4 5 6
2̄ 2 4 6 1 3 5
3̄ 3 6 2 5 1 4
4̄ 4 1 5 2 6 3
5̄ 5 3 1 6 4 2
6̄ 6 5 4 3 2 1

Figure 1.7: Multiplication table for F7.

It is convenient to define the dot product as in Definition 1.3.2 for any two vectors
in Fn for F an arbitrary field. That is, for x = (x1, · · · , xn) ,y = (y1, · · · , yn) , the
dot product x · y is given by

x · y = x1y1 + · · ·+ xnyn
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1.7 Ordered fields

The real numbers R are an example of an ordered field. More generally, here is a
definition.

Definition 1.7.1 Let F be a field. It is an ordered field if there exists an order, <
which satisfies

1. For any x 6= y, either x < y or y < x.

2. If x < y and either z < w or z = w, then, x + z < y + w.

3. If 0 < x, 0 < y, then xy > 0.

With this definition, the familiar properties of order can be proved. The follow-
ing proposition lists many of these familiar properties. The relation ‘a > b’ has the
same meaning as ‘b < a’.

Proposition 1.7.2 The following are obtained.

1. If x < y and y < z, then x < z.

2. If x > 0 and y > 0, then x + y > 0.

3. If x > 0, then −x < 0.

4. If x 6= 0, either x or −x is > 0.

5. If x < y, then −x > −y.

6. If x 6= 0, then x2 > 0.

7. If 0 < x < y then x−1 > y−1.

Proof. First consider 1, called the transitive law. Suppose that x < y and
y < z. Then from the axioms, x + y < y + z and so, adding −y to both sides, it
follows that x < z.

Next consider 2. Suppose x > 0 and y > 0. Then from 2,

0 = 0 + 0 < x + y.

Next consider 3. It is assumed x > 0, so

0 = −x + x > 0 + (−x) = −x.

Now consider 4. If x < 0, then

0 = x + (−x) < 0 + (−x) = −x.

Consider 5. Since x < y, it follows from 2 that

0 = x + (−x) < y + (−x) ,
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and so by 4 and Proposition 1.6.2,

(−1) (y + (−x)) < 0.

Also from Proposition 1.6.2 (−1) (−x) = − (−x) = x, and so

−y + x < 0.

Hence
−y < −x.

Consider 6. If x > 0, there is nothing to show. It follows from the definition.
If x < 0, then by 4, −x > 0 and so by Proposition 1.6.2 and the definition of the
order,

(−x)2 = (−1) (−1)x2 > 0.

By this proposition again, (−1) (−1) = − (−1) = 1, and so x2 > 0 as claimed. Note
that 1 > 0 because 1 = 12.

Finally, consider 7. First, if x > 0 then if x−1 < 0, it would follow that
(−1) x−1 > 0, and so x (−1) x−1 = (−1) 1 = −1 > 0. However, this would re-
quire

0 > 1 = 12 > 0

from what was just shown. Therefore, x−1 > 0. Now the assumption implies
y + (−1)x > 0, and so multiplying by x−1,

yx−1 + (−1)xx−1 = yx−1 + (−1) > 0.

Now multiply by y−1, which by the above satisfies y−1 > 0, to obtain

x−1 + (−1) y−1 > 0,

and so
x−1 > y−1.

This proves the proposition. 2

In an ordered field the symbols ≤ and ≥ have the usual meanings. Thus a ≤ b
means a < b or else a = b, etc.

1.8 Division

The following theorem is called the Euclidean algorithm.

Theorem 1.8.1 Suppose 0 < a and let b ≥ 0. Then there exists a unique integer p
and real number r such that 0 ≤ r < a and b = pa + r.

Proof: Let S ≡ {n ∈ N : an > b} . By the Archimedian property this set is
nonempty. Let p + 1 be the smallest element of S. Then pa ≤ b because p + 1 is the
smallest in S. Therefore,

r ≡ b− pa ≥ 0.

If r ≥ a then b − pa ≥ a, and so b ≥ (p + 1) a contradicting p + 1 ∈ S. Therefore,
r < a as desired.
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To verify uniqueness of p and r, suppose pi and ri, i = 1, 2, both work and
r2 > r1. Then a little algebra shows

p1 − p2 =
r2 − r1

a
∈ (0, 1) .

Thus p1 − p2 is an integer between 0 and 1 and there are none of these. The case
that r1 > r2 cannot occur either by similar reasoning. Thus r1 = r2 and it follows
that p1 = p2. This theorem is called the Euclidean algorithm when a and b are
integers.

That which you can do for integers often can be modified and done to polyno-
mials because polynomials behave a lot like integers. You add and multiply poly-
nomials using the distributive law and with the understanding that the variable
represents a number, and so it is treated as one. Thus

(
2x2 + 5x− 7

)
+

(
3x3 + x2 + 6

)
= 3x2 + 5x− 1 + 3x3,

and
(
2x2 + 5x− 7

) (
3x3 + x2 + 6

)
= 6x5 + 17x4 + 5x2 − 16x3 + 30x− 42.

The second assertion is established as follows. From the distributive law,
(
2x2 + 5x− 7

) (
3x3 + x2 + 6

)

=
(
2x2 + 5x− 7

)
3x3 +

(
2x2 + 5x− 7

)
x2 +

(
2x2 + 5x− 7

)
6

= 2x2
(
3x3

)
+ 5x

(
3x3

)− 7
(
3x3

)
+ 2x2

(
x2

)

+5x
(
x2

)− 7
(
x2

)
+ 12x2 + 30x− 42

which simplifies to the claimed result. Note that x2x3 = x5 because the left side
simply says to multiply x by itself 5 times. Other axioms satisfied by the integers
are also satisfied by polynomials and like integers, polynomials typically don’t have
multiplicative inverses which are polynomials. In this section the polynomials have
coefficients which come from a field. This field is usually R in calculus but it doesn’t
have to be.

First is the Euclidean algorithm for polynomials. This is a lot like the Euclidean
algorithm for numbers, Theorem 1.8.1. Here is the definition of the degree of a
polynomial.

Definition 1.8.2 Let anxn + · · · + a1x + a0 be a polynomial. The degree of this
polynomial is n if an 6= 0. The degree of a polynomial is the largest exponent on
x provided the polynomial does not have all the ai = 0. If each ai = 0, we don’t
speak of the degree because it is not defined. In writing this, it is only assumed
that the coefficients ai are in some field such as the real numbers or the rational
numbers. Two polynomials are defined to be equal when their degrees are the same
and corresponding coefficients are the same.

Theorem 1.8.3 Let f (x) and g (x) be polynomials with coefficients in a some field.
Then there exists a polynomial, q (x) such that

f (x) = q (x) g (x) + r (x)
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where the degree of r (x) is less than the degree of g (x) or r (x) = 0. All these
polynomials have coefficients in the same field. The two polynomials q (x) and r (x)
are unique.

Proof: Consider the polynomials of the form f (x) − g (x) l (x) and out of all
these polynomials, pick one which has the smallest degree. This can be done because
of the well ordering of the natural numbers. Let this take place when l (x) = q1 (x)
and let

r (x) = f (x)− g (x) q1 (x) .

It is required to show that the degree of r (x) < degree of g (x) or else r (x) = 0.
Suppose f (x) − g (x) l (x) is never equal to zero for any l (x). Then r (x) 6= 0.

It is required to show the degree of r (x) is smaller than the degree of g (x) . If this
doesn’t happen, then the degree of r ≥ the degree of g. Let

r (x) = bmxm + · · ·+ b1x + b0

g (x) = anxn + · · ·+ a1x + a0

where m ≥ n and bm and an are nonzero. Then let r1 (x) be given by

r1 (x) = r (x)− xm−nbm

an
g (x)

= (bmxm + · · ·+ b1x + b0)− xm−nbm

an
(anxn + · · ·+ a1x + a0)

which has smaller degree than m, the degree of r (x). But

r1 (x) =

r(x)︷ ︸︸ ︷
f (x)− g (x) q1 (x)− xm−nbm

an
g (x)

= f (x)− g (x)
(

q1 (x) +
xm−nbm

an

)
,

and this is not zero by the assumption that f (x)− g (x) l (x) is never equal to zero
for any l (x), yet has smaller degree than r (x), which is a contradiction to the choice
of r (x).

It only remains to verify that the two polynomials q (x) and r (x) are unique.
Suppose q′ (x) and r′ (x) satisfy the same conditions as q (x) and r (x). Then

(q (x)− q′ (x)) g (x) = r′ (x)− r (x)

If q (x) 6= q′ (x) , then the degree of the left is greater than the degree of the right.
Hence the equation cannot hold. It follows that q′ (x) = q (x) and r′ (x) = r (x) .
This proves the Theorem. 2

1.9 Exercises

1. Find the following. Write each in the form a + ib.

(a) (2 + i) (4− 2i)−1
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(b) (1 + i) (2 + 3i)−1 + 4 + 6i

(c) (2 + i)2

2. Let z = 5 + i9. Find z−1.

3. Let z = 2 + i7 and let w = 3− i8. Find zw, z + w, z2, and w/z.

4. Give the complete solution to x4 + 16 = 0.

5. Show that for z, w complex numbers,

zw = z w, z + w = z + w.

Explain why this generalizes to any finite product or any finite sum.

6. Suppose p (x) is a polynomial with real coefficients. That is

p (x) = anxn + an−1x
n−1 + · · ·+ a1x + a0, each ak real.

As mentioned above, such polynomials may have complex roots. Show that if
p (z) = 0 for z ∈ C, then p (z) = 0 also. That is, the roots of a real polynomial
come in conjugate pairs.

7. Let z = a+ib be a complex number. Show that there exists a complex number
w = c + id such that |w| = 1 and wz = |z|. Hint: Try something like z̄/ |z|
if z 6= 0.

8. Show that there can be no order which makes C into an ordered field. What
about F3? Hint: Consider i. If there is an order for C then either i > 0 or
i < 0.

9. The lexicographic order on C is defined as follows. a+ ib < x+ iy means that
a < x or if a = x, then b < y. Why does this not give an order for C? What
exactly goes wrong? If S consists of all real numbers in the open interval (0, 1)
show that each of 1− in is an upper bound for S in this lexicographic order.
Therefore, there is no least upper bound although there is an upper bound.

10. Show that if a + ib is a complex number, then there exists a unique r and
θ ∈ [0, 2π) such that

a + ib = r (cos (θ) + i sin (θ)) .

Hint: Try r =
√

a2 + b2 and observe that (a/r, b/r) is a point on the unit
circle.

11. Show that if z ∈ C, z = r (cos (θ) + i sin (θ)) , then

z = r (cos (−θ) + i sin (−θ)) .

12. Show that if z = r1 (cos (θ) + i sin (θ)) and w = r2 (cos (α) + i sin (α)) are two
complex numbers, then

zw = r1r2 (cos (θ + α) + i sin (θ + α)) .
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13. Prove DeMoivre’s theorem which says that for any integer n,

(cos (θ) + i sin θ)n = cos (nθ) + i sin (nθ) .

14. Suppose you have any polynomial in cos θ and sin θ. By this we mean an
expression of the form

m∑
α=0

n∑

β=0

aαβ cosα θ sinβ θ

where aαβ ∈ C. Can this always be written in the form

m+n∑

γ=−(n+m)

bγ cos γθ +
n+m∑

τ=−(n+m)

cτ sin τθ?

Explain.

15. Using DeMoivre’s theorem, show that every nonzero complex number has
exactly k kth roots. Hint: The given complex number is

r (cos (θ) + i sin (θ)) .

where r > 0. Then if ρ (cos (α) + i sin (α)) is a kth root, then by DeMoivre’s
theorem,

ρk = r, cos (kα) + i sin (kα) = cos (θ) + i sin (θ) .

What is the necessary relationship between kα and θ?

16. Factor x3 + 8 as a product of linear factors.

17. Write x3 + 27 in the form (x + 3)
(
x2 + ax + b

)
where x2 + ax + b cannot be

factored any more using only real numbers.

18. Completely factor x4 + 16 as a product of linear factors.

19. Factor x4 + 16 as the product of two quadratic polynomials each of which
cannot be factored further without using complex numbers.

20. It is common to see i referred to as
√−1. Let’s use this definition. Then

−1 = i2 =
√−1

√−1 =
√

1 = 1,

so adding 1 to both ends, it follows that 0 = 2. This is a remarkable assertion,
but is there something wrong here?

21. Give the complete solution to x4 + 16 = 0.

22. Graph the complex cube roots of 8 in the complex plane. Do the same for the
four fourth roots of 16.
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23. This problem is for people who have had a calculus course which mentions the
completeness axiom, every nonempty set which is bounded above has a least
upper bound and every nonempty set which is bounded below has a greatest
lower bound. Using this, show that for every b ∈ R and a > 0 there exists
m ∈ N, the natural numbers {1, 2, · · · } such that ma > b. This says R is
Archimedean. Hint: If this is not so, then b would be an upper bound for
the set S = {ma : m ∈ N} . Consider the least upper bound g and argue from
the definition of least upper bound there exists ma ∈ (

g − a
2 , g

)
. Now what

about (m + 1) a?

24. Verify Lagrange’s identity which says that
(

n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
−

∣∣∣∣∣
∑

i

aibi

∣∣∣∣∣

2

=
∑

i<j

(aibj − ajbi)
2

Now use this to prove the Cauchy Schwarz inequality in Rn.

25. Show that the operations of + and multiplication on congruence classes are
well defined. The definition says

ab = ab.

If a = a1 and b = b1, is it the case that

a1b1 = ab?

A similar question must be considered for addition of congruence classes. Also
verify the field axioms 1 - 7.

26. An integer a is said to divide b, written a|b, if for some integer m,

b = ma.

The greatest common divisor of two integers a, b is the integer p which divides
them both and has the property that every integer which does divide both
also divides p. The greatest common divisor of a and b is sometimes denoted
as (a, b). Show that if a, b are any two positive integers, there exist integers
m,n such that

(a, b) = ma + nb.

Hint: Consider S = {m,n ∈ Z : ma + nb > 0}. Then S is nonempty. Why?
Let q be the smallest element of S with associated integers m, n. If q does not
divide a then, by Theorem 1.8.1, a = qp + r where 0 < r < q. Solve for r and
show that r ∈ S, contradicting the property of q which says it is the smallest
integer in S. Since q = ma + nb, argue that if some l divides both a, b then it
must divide q. Thus q = (a, b).

27. A prime number is an integer with the property that the only integers which
divide it are 1 and itself. Explain why the property 8 holds for Fp with p a
prime. Hint: Recall that Fp =

{
0̄, 1̄, · · · , p− 1

}
. If m ∈ Fp, m 6= 0, then

(m, p) = 1. Why? Therefore, there exist integers s, t such that

1 = sm + tp.
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Explain why this implies
1̄ = s̄m̄.

28. ↑Prove Wilson’s theorem. This theorem states that if p is a prime, then
(p− 1)! + 1 is divisible by p. Wilson’s theorem was first proved by Lagrange
in the 1770’s. Hint: Show that p− 1 = −1 and that if a ∈ {2, · · · , p− 1} ,
then a−1 6= a. Thus a residue class a and its multiplicative inverse for a ∈
{2, · · · , p− 1} occur in pairs. Show that this implies that the residue class of
(p− 1)! must be −1. From this, draw the conclusion.

29. If p (x) and q (x) are two polynomials having coefficients in F a field of scalars,
the greatest common divisor of p (x) and q (x) is a monic polynomial l (x) (Of
the form xn + an−1x

n−1 + · · · + a1x + a0) which has the property that it
divides both p (x) and q (x) , and that if r (x) is any polynomial which divides
both p (x) and q (x) , then r (x) divides l (x). Show that the greatest common
divisor is unique and that if l (x) is the greatest common divisor, then there
exist polynomials n (x) and m (x) such that l (x) = m (x) p (x) + n (x) q (x).

30. Give an example of a nonzero polynomial having coefficients in the field F2

which sends every residue class of F2 to 0. Now find all polynomials having
coefficients in F3 which send every residue class of F3 to 0.

31. Show that in the arithmetic of Fp, (x + y)p = (x)p+(y)p, a well known formula
among students.

32. Using Problem 27 above, consider (a) ∈ Fp for p a prime, and suppose (a) 6=
1, 0. Fermat’s little theorem says that (a)p−1 = 1. In other words (a)p−1 −
1 is divisible by p. Prove this. Hint: Show that there must exist r ≥
1, r ≤ p − 1 such that (a)r = 1. To do so, consider 1, (a) , (a)2 , · · · . Then
these all have values in

{
1, 2, · · · , p− 1

}
, and so there must be a repeat in{

1, (a) , · · · , (a)p−1
}

, say p − 1 ≥ l > k and (a)l = (a)k
. Then tell why

(a)l−k − 1 = 0. Let r be the first positive integer such that (a)r = 1. Let G ={
1, (a) , · · · , (a)r−1

}
. Show that every residue class in G has its multiplicative

inverse in G. In fact, (a)k (a)r−k = 1. Also verify that the entries in G must
be distinct. Now consider the sets bG ≡

{
b (a)k : k = 0, · · · , r − 1

}
where

b ∈ {
1, 2, · · · , p− 1

}
. Show that two of these sets are either the same or

disjoint and that they all consist of r elements. Explain why it follows that
p − 1 = lr for some positive integer l equal to the number of these distinct
sets. Then explain why (a)p−1 = (a)lr = 1.



Matrices

2.1 Systems of equations

Sometimes it is necessary to solve systems of equations. For example the problem
could be to find x and y such that

(2.1) x + y = 7 and 2x− y = 8.

The set of ordered pairs, (x, y) which solve both equations is called the solution set.
For example, you can see that (5, 2) = (x, y) is a solution to the above system. To
solve this, note that the solution set does not change if any equation is replaced by
a non zero multiple of itself. It also does not change if one equation is replaced by
itself added to a multiple of the other equation. For example, x and y solve the
above system if and only if x and y solve the system

(2.2) x + y = 7,

−3y=−6︷ ︸︸ ︷
2x− y + (−2) (x + y) = 8 + (−2) (7).

The second equation was replaced by −2 times the first equation added to the
second. Thus the solution is y = 2, from −3y = −6 and now, knowing y = 2, it
follows from the other equation that x + 2 = 7, and so x = 5.

Why exactly does the replacement of one equation with a multiple of another
added to it not change the solution set? The two equations of 2.1 are of the form

(2.3) E1 = f1, E2 = f2

where E1 and E2 are expressions involving the variables. The claim is that if a is a
number, then 2.3 has the same solution set as

(2.4) E1 = f1, E2 + aE1 = f2 + af1.

Why is this?
If (x, y) solves 2.3, then it solves the first equation in 2.4. Also, it satisfies

aE1 = af1 and so, since it also solves E2 = f2, it must solve the second equation
in 2.4. If (x, y) solves 2.4, then it solves the first equation of 2.3. Also aE1 = af1

and it is given that the second equation of 2.4 is satisfied. Therefore, E2 = f2, and
it follows that (x, y) is a solution of the second equation in 2.3. This shows that
the solutions to 2.3 and 2.4 are exactly the same, which means they have the same

23
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solution set. Of course the same reasoning applies with no change if there are many
more variables than two and many more equations than two. It is still the case that
when one equation is replaced with a multiple of another one added to itself, the
solution set of the whole system does not change.

Two other operations which do not change the solution set are multiplying an
equation by a nonzero number or listing the equations in a different order. None
of these observations change with equations which have coefficients in any field.
Therefore, it will always be assumed the equations have coefficients which are in F ,
a field, although the majority of the examples will involve coefficients in R.

Here is another example.

Example 2.1.1 Find the solutions to the system

(2.5)
x + 3y + 6z = 25

2x + 7y + 14z = 58
2y + 5z = 19

To solve this system, replace the second equation by (−2) times the first equation
added to the second. This yields. the system

(2.6)
x + 3y + 6z = 25

y + 2z = 8
2y + 5z = 19

Now take (−2) times the second and add to the third. More precisely, replace
the third equation with (−2) times the second added to the third. This yields the
system

(2.7)
x + 3y + 6z = 25

y + 2z = 8
z = 3

At this point, you can tell what the solution is. This system has the same solution as
the original system and in the above, z = 3. Then using this in the second equation,
it follows that y + 6 = 8, and so y = 2. Now using this in the top equation yields
x + 6 + 18 = 25, and so x = 1.

It is foolish to write the variables every time you do these operations. It is easier
to write the system 2.5 as the following “augmented matrix”




1 3 6 25
2 7 14 58
0 2 5 19


 .

It has exactly the same information as the original system, but here it is understood

there is an x column,




1
2
0


 , a y column,




3
7
2


 , and a z column,




6
14
5


 . The

rows correspond to the equations in the system. Thus the top row in the augmented
matrix corresponds to the equation,

x + 3y + 6z = 25.
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Now when you replace an equation with a multiple of another equation added to
itself, you are just taking a row of this augmented matrix and replacing it with a
multiple of another row added to it. Thus the first step in solving 2.5 would be
to take (−2) times the first row of the augmented matrix above and add it to the
second row, 


1 3 6 25
0 1 2 8
0 2 5 19


 .

Note how this corresponds to 2.6. Next take (−2) times the second row and add to
the third, 


1 3 6 25
0 1 2 8
0 0 1 3




which is the same as 2.7. You get the idea, we hope. Write the system as an
augmented matrix and follow the procedure of either switching rows, multiplying a
row by a non zero number, or replacing a row by a multiple of another row added
to it. Each of these operations leaves the solution set unchanged. These operations
are called row operations.

Definition 2.1.2 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by the same row added to a multiple of another row.

Example 2.1.3 Give the complete solution to the system of equations, 5x+10y−
7z = −2, 2x + 4y − 3z = −1, and 3x + 6y + 5z = 9.

The augmented matrix for this system is



2 4 −3 −1
5 10 −7 −2
3 6 5 9


 .

Now here is a sequence of row operations leading to a simpler system for which the
solution is easily seen. Multiply the second row by 2, the first row by 5, and then
take (−1) times the first row and add to the second. Then multiply the first row
by 1/5. This yields 


2 4 −3 −1
0 0 1 1
3 6 5 9


 .

Now, combining some row operations, take (−3) times the first row and add this to
2 times the last row and replace the last row with this. This yields.




2 4 −3 −1
0 0 1 1
0 0 1 21


 .
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Putting in the variables, the last two rows say that z = 1 and z = 21. This is
impossible, so the last system of equations determined by the above augmented
matrix has no solution. However, it has the same solution set as the first system of
equations. This shows that there is no solution to the three given equations. When
this happens, the system is called inconsistent.

It should not be surprising that something like this can take place. It can even
happen for one equation in one variable. Consider for example, x = x + 1. There is
clearly no solution to this.

Example 2.1.4 Give the complete solution to the system of equations, 3x−y−5z =
9, y − 10z = 0, and −2x + y = −6.

Then the following sequence of row operations yields the solution.



3 −1 −5 9
0 1 −10 0
−2 1 0 −6


 2×top +3×bottom→




3 −1 −5 9
0 1 −10 0
0 1 −10 0




→



3 −1 −5 9
0 1 −10 0
0 0 0 0


 →




1 0 −5 3
0 1 −10 0
0 0 0 0


 .

This says y = 10z and x = 3 + 5z. Apparently z can equal any number. Therefore,
the solution set of this system is x = 3+5t, y = 10t, and z = t where t is completely
arbitrary. The system has an infinite set of solutions and this is a good description
of the solutions. This is what it is all about, finding the solutions to the system.

Definition 2.1.5 Suppose that a system has a solution with a particular variable
(say z) arbitrary, that is z = t where t is arbitrary. Then the variable z is called a
free variable.

The phenomenon of an infinite solution set occurs in equations having only one
variable also. For example, consider the equation x = x. It doesn’t matter what x
equals. Recall that

n∑

j=1

aj = a1 + a2 + · · ·+ an.

Definition 2.1.6 A system of linear equations is a list of equations,

n∑

j=1

aijxj = fi, i = 1, 2, 3, · · · ,m

where aij, fi are in F , and it is desired to find (x1, · · · , xn) solving each of the
equations listed. The entry aij is in the ith row and jth column.

As illustrated above, such a system of linear equations may have a unique solu-
tion, no solution, or infinitely many solutions. It turns out these are the only three
cases which can occur for linear systems. Furthermore, you do exactly the same
things to solve any linear system. You write the augmented matrix and do row
operations until you get a simpler system in which the solution is easy to find. All
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is based on the observation that the row operations do not change the solution set.
You can have more equations than variables or fewer equations than variables. It
doesn’t matter. You always set up the augmented matrix and so on.

2.2 Matrix Operations And Algebra

2.2.1 Addition And Scalar Multiplication Of Matrices

You have now solved systems of equations by writing them in terms of an augmented
matrix and then doing row operations on this augmented matrix. It turns out that
such rectangular arrays of numbers are important from many other different points
of view. As before, the entries of a matrix will be elements of a field F and are
called scalars.

A matrix is a rectangular array of scalars. If we have several, we use the term
matrices. For example, here is a matrix.




1 2 3 4
5 2 8 7
6 −9 1 2


 .

The size or dimension of a matrix is defined as m× n where m is the number of
rows and n is the number of columns. The above matrix is a 3× 4 matrix because
there are three rows and four columns. The first row is (1 2 3 4) , the second row

is (5 2 8 7) and so forth. The first column is




1
5
6


 . When specifying the size of a

matrix, you always list the number of rows before the number of columns. Also, you
can remember the columns are like columns in a Greek temple. They stand upright
while the rows just lay there like rows made by a tractor in a plowed field. Elements
of the matrix are identified according to position in the matrix. For example, 8 is
in position 2, 3 because it is in the second row and the third column. You might
remember that you always list the rows before the columns by using the phrase
Rowman Catholic. The symbol (aij) refers to a matrix. The entry in the ith row
and the jth column of this matrix is denoted by aij . Using this notation on the
above matrix, a23 = 8, a32 = −9, a12 = 2, etc.

We shall often need to discuss the tuples which occur as rows and columns of a
given matrix A. When you see

(a1 · · ·ap) ,

this equation tells you that A has p columns and that column j is written as aj .
Similarly, if you see

A =




r1

...
rq


 ,

this equation reveals that A has q rows and that row i is written ri.
For example, if

A =




1 2
3 2
1 −2


 ,
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we could write

A = (a1a2) , a1 =




1
3
1


 , a2 =




2
2
−2




and

A =




r1

r2

r3




where r1 =
(

1 2
)
, r2 =

(
3 2

)
, and r3 =

(
1 −2

)
.

There are various operations which are done on matrices. Matrices can be
added, multiplied by a scalar, and multiplied by other matrices. To illustrate scalar
multiplication, consider the following example in which a matrix is being multiplied
by the scalar, 3.

3




1 2 3 4
5 2 8 7
6 −9 1 2


 =




3 6 9 12
15 6 24 21
18 −27 3 6


 .

The new matrix is obtained by multiplying every entry of the original matrix by
the given scalar. If A is an m× n matrix, −A is defined to equal (−1)A.

Two matrices must be the same size to be added. The sum of two matrices is a
matrix which is obtained by adding the corresponding entries. Thus




1 2
3 4
5 2


 +



−1 4
2 8
6 −4


 =




0 6
5 12
11 −2


 .

Two matrices are equal exactly when they are the same size and the corresponding
entries are identical. Thus




0 0
0 0
0 0


 6=

(
0 0
0 0

)

because they are different sizes. As noted above, you write (cij) for the matrix C
whose ijth entry is cij . In doing arithmetic with matrices you must define what
happens in terms of the cij , sometimes called the entries of the matrix or the
components of the matrix.

The above discussion, stated for general matrices, is given in the following defi-
nition.

Definition 2.2.1 (Scalar Multiplication) If A = (aij) and k is a scalar, then kA =
(kaij) .

Definition 2.2.2 (Addition) Let A = (aij) and B = (bij) be two m × n matrices.
Then A + B = C, where

C = (cij)

for cij = aij + bij .
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To save on notation, we will often abuse notation and use Aij to refer to the
ijth entry of the matrix A instead of using lower case aij .

Definition 2.2.3 (The zero matrix) The m × n zero matrix is the m × n matrix
having every entry equal to zero. It is denoted by 0.

Example 2.2.4 The 2× 3 zero matrix is
(

0 0 0
0 0 0

)
.

Note that there are 2× 3 zero matrices, 3× 4 zero matrices and so on.

Definition 2.2.5 (Equality of matrices) Let A and B be two matrices. Then A = B
means that the two matrices are of the same size and for A = (aij) and B = (bij) ,
aij = bij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

The following properties of matrices can be easily verified. You should do so.
They are called the vector space axioms.

• Commutative law for addition,

(2.8) A + B = B + A,

• Associative law for addition,

(2.9) (A + B) + C = A + (B + C) ,

• Existence of an additive identity,

(2.10) A + 0 = A,

• Existence of an additive inverse,

(2.11) A + (−A) = 0,

Also for scalars α, β, the following additional properties hold.

• Distributive law over matrix addition,

(2.12) α (A + B) = αA + αB,

• Distributive law over scalar addition,

(2.13) (α + β)A = αA + βA,

• Associative law for scalar multiplication,

(2.14) α (βA) = αβ (A) ,

• Rule for multiplication by 1,

(2.15) 1A = A.
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2.2.2 Multiplication Of Matrices

Definition 2.2.6 Matrices which are n × 1 or 1 × n are called vectors and are
often denoted by a bold letter. Thus the n× 1 matrix

x =




x1

...
xn




is also called a column vector. The 1× n matrix

(x1 · · · xn)

is called a row vector.

Although the following description of matrix multiplication may seem strange,
it is in fact the most important and useful of the matrix operations. To begin with,
consider the case where a matrix is multiplied by a column vector. We will illustrate
the general definition by first considering a special case.

(
1 2 3
4 5 6

) 


7
8
9


 = 7

(
1
4

)
+ 8

(
2
5

)
+ 9

(
3
6

)
.

In general, here is the definition of how to multiply an (m× n) matrix times a
(n× 1) matrix.

Definition 2.2.7 Let A be an m× n matrix of the form

A = (a1 · · ·an)

where each ak is a vector in Fm. Let

v =




v1

...
vn


 .

Then Av is defined as the following linear combination.

(2.16) Av = v1a1 + v2a2 + · · ·+ vnan

Note that the jth column of A is

aj =




A1j

A2j

...
Amj


 ,

so 2.16 reduces to

v1




A11

A21

...
Am1


 + v2




A12

A22

...
Am2


 + · · ·+ vn




A1n

A2n

...
Amn


 =




∑n
j=1 A1jvj∑n
j=1 A2jvj

...∑n
j=1 Amjvj


 .
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Note also that multiplication by an m × n matrix takes as input an n × 1 matrix,
and produces an m× 1 matrix.

Here is another example.

Example 2.2.8 Compute




1 2 1 3
0 2 1 −2
2 1 4 1







1
2
0
1


 .

First of all this is of the form (3× 4) (4× 1), and so the result should be a
(3× 1) . Note that the inside numbers cancel. The product of these two matrices
equals

1




1
0
2


 + 2




2
2
1


 + 0




1
1
4


 + 1




3
−2
1


 =




8
2
5


 .

The next task is to multiply an m × n matrix times an n × p matrix. Before
doing so, the following may be helpful.

For A and B matrices, in order to form the product AB, the number of columns
of A must equal the number of rows of B.

These numbers must match!

(m× n̂) (n× p) = m× p.

Note that the two outside numbers give the size of the product. Remember that
to multiply,

The middle numbers must be the same.

Definition 2.2.9 When the number of columns of A equals the number of rows of
B the two matrices are said to be conformable and the product AB is obtained as
follows. Let A be an m× n matrix and let B be an n× p matrix. Then B is of the
form

B = (b1 · · ·bp)

where bk is an n×1 matrix or column vector. Then the m×p matrix AB is defined
as follows:

(2.17) AB ≡ (Ab1 · · ·Abp)

where Abk is an m× 1 matrix or column vector which gives the kth column of AB.

Example 2.2.10 Multiply the following.

(
1 2 1
0 2 1

) 


1 2 0
0 3 1
−2 1 1


 .
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The first thing you need to check before doing anything else is whether it is
possible to do the multiplication. The first matrix is a 2× 3 and the second matrix
is a 3 × 3. Therefore, is it possible to multiply these matrices. According to the
above discussion it should be a 2× 3 matrix of the form




First column︷ ︸︸ ︷
(

1 2 1
0 2 1

) 


1
0
−2


,

Second column︷ ︸︸ ︷
(

1 2 1
0 2 1

) 


2
3
1


,

Third column︷ ︸︸ ︷
(

1 2 1
0 2 1

) 


0
1
1







.

You know how to multiply a matrix times a vector, and so you do so to obtain each
of the three columns. Thus

(
1 2 1
0 2 1

) 


1 2 0
0 3 1
−2 1 1


 =

( −1 9 3
−2 7 3

)
.

Example 2.2.11 Multiply the following.



1 2 0
0 3 1
−2 1 1




(
1 2 1
0 2 1

)
.

First check if it is possible. This is of the form (3× 3) (2× 3) . The inside
numbers do not match, and so you can’t do this multiplication. This means that
anything you write will be absolute nonsense because it is impossible to multiply
these matrices in this order. Aren’t they the same two matrices considered in the
previous example? Yes they are. It is just that here they are in a different order.
This shows something you must always remember about matrix multiplication.

Order Matters!

Matrix Multiplication Is Not Commutative!

This is very different than multiplication of numbers!

2.2.3 The ijth Entry Of A Product

It is important to describe matrix multiplication in terms of entries of the matrices.
What is the ijth entry of AB? It would be the ith entry of the jth column of AB.
Thus it would be the ith entry of Abj . Now

bj =




B1j

...
Bnj




and from the above definition, the ith entry is

(2.18)
n∑

k=1

AikBkj .



2.2. MATRIX OPERATIONS AND ALGEBRA 33

In terms of pictures of the matrix, you are doing



A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
Am1 Am2 · · · Amn







B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

...
Bn1 Bn2 · · · Bnp


 .

Then as explained above, the jth column is of the form



A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
Am1 Am2 · · · Amn







B1j

B2j

...
Bnj




which is a m× 1 matrix or column vector which equals



A11

A21

...
Am1


 B1j +




A12

A22

...
Am2


B2j + · · ·+




A1n

A2n

...
Amn


 Bnj .

The second entry of this m× 1 matrix is

A21B1j + A22B2j + · · ·+ A2nBnj =
n∑

k=1

A2kBkj .

Similarly, the ith entry of this m× 1 matrix is

Ai1B1j + Ai2B2j + · · ·+ AinBnj =
n∑

k=1

AikBkj .

This shows the following definition for matrix multiplication in terms of the ijth

entries of the product coincides with Definition 2.2.9.

Definition 2.2.12 Let A = (Aij) be an m×n matrix and let B = (Bij) be an n×p
matrix. Then AB is an m× p matrix and

(2.19) (AB)ij =
n∑

k=1

AikBkj .

Another way to think of this is as follows. To get the ijth entry of the product AB,
you take the dot product of the ith row of A with the jth column of B.

Although matrix multiplication is not commutative, there are some properties
of matrix multiplication which will appear familiar.

Proposition 2.2.13 If all multiplications and additions make sense, the following
hold for matrices A,B, C and a, b scalars.

(2.20) A (aB + bC) = a (AB) + b (AC) .
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(2.21) (B + C) A = BA + CA.

(2.22) A (BC) = (AB) C.

Proof: Using Definition 2.2.12,

(A (aB + bC))ij =
∑

k

Aik (aB + bC)kj

=
∑

k

Aik (aBkj + bCkj)

= a
∑

k

AikBkj + b
∑

k

AikCkj

= a (AB)ij + b (AC)ij

= (a (AB) + b (AC))ij .

Thus A (B + C) = AB + AC as claimed. Formula 2.21 is entirely similar.
Formula 2.22 is the associative law of multiplication. Using Definition 2.2.12,

(A (BC))ij =
∑

k

Aik (BC)kj

=
∑

k

Aik

∑

l

BklClj

=
∑

l

(AB)il Clj

= ((AB)C)ij .

This proves 2.22.2

Example 2.2.14 Multiply if possible




1 2
3 1
2 6




(
2 3 1
7 6 2

)
.

First check to see if this is possible. It is of the form (3× 2) (2× 3) and since
the inside numbers match, the two matrices are conformable and it is possible to
do the multiplication. The result should be a 3 × 3 matrix. The answer is of the
form 





1 2
3 1
2 6




(
2
7

)
,




1 2
3 1
2 6




(
3
6

)
,




1 2
3 1
2 6




(
1
2

)


where the commas separate the columns in the resulting product. Thus the above
product equals 


16 15 5
13 15 5
46 42 14


 ,

a 3× 3 matrix as desired. In terms of the ijth entries and the above definition, the
entry in the third row and second column of the product should equal

∑

j

a3kbk2 = a31b12 + a32b22

= 2× 3 + 6× 6 = 42.
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You should try a few more such examples to verify that the above definition in
terms of the ijth entries works for other entries.

Example 2.2.15 Find if possible




1 2
3 1
2 6







2 3 1
7 6 2
0 0 0


 .

This is not possible because it is of the form (3× 2) (3× 3) and the middle
numbers don’t match. In other words the two matrices are not conformable in the
indicated order.

Example 2.2.16 Multiply if possible




2 3 1
7 6 2
0 0 0







1 2
3 1
2 6


 .

This is possible because in this case it is of the form (3× 3) (3× 2) and the mid-
dle numbers do match, so the matrices are conformable. When the multiplication
is done it equals 


13 13
29 32
0 0


 .

Check this and be sure you come up with the same answer.

Example 2.2.17 Multiply if possible




1
2
1


 (

1 2 1 0
)
.

In this case you are trying to do (3× 1) (1× 4) . The inside numbers match, so
you can do it. Verify that




1
2
1


(

1 2 1 0
)

=




1 2 1 0
2 4 2 0
1 2 1 0


 .

Definition 2.2.18 Let I be the matrix

I =




1 0 · · · 0

0
. . .

...
...

. . . 0
0 0 · · · 1




.

That is Iij = 1 if i = j and Iij = 0 if i 6= j. We call I the n × n identity matrix.
The symbol δij is often used for the ijth entry of the identity matrix. It is called
the Kronecker delta symbol. Thus δij equals 1 if i = j and 0 if i 6= j.
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Example 2.2.19 Let I =




1 0 0
0 1 0
0 0 1


 , the 3×3 identity matrix. Then you should

verify the following equations.



5 1 2
3 4 3
2 −5 4







1 0 0
0 1 0
0 0 1


 =




5 1 2
3 4 3
2 −5 4


 .




1 0 0
0 1 0
0 0 1







5 1 2
3 4 3
2 −5 4


 =




5 1 2
3 4 3
2 −5 4


 .

More generally, if A is an m×n matrix and I is the m×m identity matrix, then

(IA)ij =
m∑

k=1

IikAkj = Aij

because Iik in the sum is equal to zero unless k = i when it is equal to 1. Similarly,
if I is the n× n identity matrix,

(AI)ij =
∑

k

AikIkj = Aij .

Thus the identity matrix acts like 1 in the sense that when it is multiplied on either
side of a matrix A then the result of the multiplication yields A.

2.2.4 The Transpose

Another important operation on matrices is that of taking the transpose. The
following example shows what is meant by this operation, denoted by placing a t
as an exponent on the matrix.




1 4
3 1
2 6




t

=
(

1 3 2
4 1 6

)
.

What happened? The first column became the first row and the second column
became the second row. Thus the 3×2 matrix became a 2×3 matrix. The number
3 was in the second row and the first column and it ended up in the first row and
second column. Here is the definition.

Definition 2.2.20 Let A be an m× n matrix. Then At denotes the n×m matrix
which is defined as follows. (

At
)
ij

= Aji.

Example 2.2.21
(

1 2 −6
3 5 4

)t

=




1 3
2 5
−6 4


 .
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The transpose of a matrix has the following important properties.

Lemma 2.2.22 Let A be an m× n matrix and let B be a n× p matrix. Then

(2.23) (AB)t = BtAt

and if α and β are scalars,

(2.24) (αA + βB)t = αAt + βBt.

Proof: From the definition,
(
(AB)t

)
ij

= (AB)ji

=
∑

k

AjkBki

=
∑

k

(
Bt

)
ik

(
At

)
kj

=
(
BtAt

)
ij

.

The proof of Formula 2.24 is left as an exercise and this proves the lemma.

Definition 2.2.23 An n × n matrix A is said to be symmetric if A = At. It is
said to be skew symmetric if A = −At.

Example 2.2.24 Let

A =




2 1 3
1 5 −3
3 −3 7


 .

Then A is symmetric.

Example 2.2.25 Let

A =




0 1 3
−1 0 2
−3 −2 0


 .

Then A is skew symmetric.

2.3 Exercises

1. Find the general solution of the system whose augmented matrix is



1 2 0 2
1 3 4 2
1 0 2 1


 .

2. Find the general solution of the system whose augmented matrix is



1 2 0 2
2 0 1 1
3 2 1 3


 .
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3. Find the general solution of the system whose augmented matrix is
(

1 1 0 1
1 0 4 2

)
.

4. Solve the system
x + 2y + z − w = 2
x− y + z + w = 1

2x + y − z = 1
4x + 2y + z = 5

5. Solve the system
x + 2y + z − w = 2
x− y + z + w = 0

2x + y − z = 1
4x + 2y + z = 3

6. Find the general solution of the system whose augmented matrix is



1 0 2 1 1 2
0 1 0 1 2 1
1 2 0 0 1 3
1 0 1 0 2 2


 .

7. Find the general solution of the system whose augmented matrix is



1 0 2 1 1 2
0 1 0 1 2 1
0 2 0 0 1 3
1 −1 2 2 2 0


 .

8. Give the complete solution to the system of equations, 7x + 14y + 15z = 22,
2x + 4y + 3z = 5, and 3x + 6y + 10z = 13.

9. Give the complete solution to the system of equations, 3x − y + 4z = 6,
y + 8z = 0, and −2x + y = −4.

10. Give the complete solution to the system of equations, 9x − 2y + 4z = −17,
13x− 3y + 6z = −25, and −2x− z = 3.

11. Give the complete solution to the system of equations, 8x+2y+3z = −3, 8x+
3y + 3z = −1, and 4x + y + 3z = −9.

12. Give the complete solution to the system of equations, −8x + 2y + 5z =
18,−8x + 3y + 5z = 13, and −4x + y + 5z = 19.

13. Give the complete solution to the system of equations, 3x − y − 2z = 3,
y − 4z = 0, and −2x + y = −2.

14. Give the complete solution to the system of equations, −9x+15y = 66,−11x+
18y = 79 ,−x + y = 4, and z = 3.
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15. Consider the system −5x + 2y− z = 0 and −5x− 2y− z = 0. Both equations
equal zero and so −5x + 2y − z = −5x− 2y − z which is equivalent to y = 0.
Thus x and z can equal anything. But when x = 1, z = −4, and y = 0 are
plugged in to the equations, it does not work. Why?

16. Here are some matrices:

A =
(

1 2 3
2 1 7

)
, B =

(
3 −1 2
−3 2 1

)
,

C =
(

1 2
3 1

)
, D =

( −1 2
2 −3

)
, E =

(
2
3

)
.

Find if possible −3A, 3B − A,AC,CB, AE, EA. If it is not possible, explain
why.

17. Here are some matrices:

A =




1 2
3 2
1 −1


 , B =

(
2 −5 2
−3 2 1

)
,

C =
(

1 2
5 0

)
, D =

( −1 1
4 −3

)
, E =

(
1
3

)
.

Find if possible −3A, 3B−A,AC, CA, AE,EA,BE, DE. If it is not possible,
explain why.

18. Here are some matrices:

A =




1 2
3 2
1 −1


 , B =

(
2 −5 2
−3 2 1

)
,

C =
(

1 2
5 0

)
, D =

( −1 1
4 −3

)
, E =

(
1
3

)
.

Find if possible −3At, 3B−At, AC, CA, AE,EtB, BE,DE,EEt, EtE. If it is
not possible, explain why.

19. Here are some matrices:

A =




1 2
3 2
1 −1


 , B =

(
2 −5 2
−3 2 1

)
,

C =
(

1 2
5 0

)
, D =

( −1
4

)
, E =

(
1
3

)
.

Find the following if possible, and explain why it is not possible if this is the
case. AD,DA, DtB, DtBE,EtD,DEt.

20. Let A =




1 1
−2 −1
1 2


, B =

(
1 −1 −2
2 1 −2

)
, and C =




1 1 −3
−1 2 0
−3 −1 0


 .

Find if possible:
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(a) AB

(b) BA

(c) AC

(d) CA

(e) CB

(f) BC

21. Suppose A and B are square matrices of the same size. Which of the following
are correct?

(a) (A−B)2 = A2 − 2AB + B2

(b) (AB)2 = A2B2

(c) (A + B)2 = A2 + 2AB + B2

(d) (A + B)2 = A2 + AB + BA + B2

(e) A2B2 = A (AB) B

(f) (A + B)3 = A3 + 3A2B + 3AB2 + B3

(g) (A + B) (A−B) = A2 −B2

22. Let A =
( −1 −1

3 3

)
. Find all 2× 2 matrices B such that AB = 0.

23. Let x =(−1,−1, 1) and y =(0, 1, 2) . Find xty and xyt if possible.

24. Let A =
(

1 2
3 4

)
, B =

(
1 2
3 k

)
. Is it possible to choose k such that AB =

BA? If so, what should k equal?

25. Let A =
(

1 2
3 4

)
, B =

(
1 2
1 k

)
. Is it possible to choose k such that AB =

BA? If so, what should k equal?

26. In 2.8 - 2.15 describe −A and 0.

27. Let A be an n×n matrix. Show that A equals the sum of a symmetric and a
skew symmetric matrix. (M is skew symmetric if M = −M t. M is symmetric
if M t = M .) Hint: Show that 1

2 (At + A) is symmetric and then consider
using this as one of the matrices.

28. Show that every skew symmetric matrix has all zeros down the main diagonal.
The main diagonal consists of every entry of the matrix which is of the form
aii. It runs from the upper left down to the lower right.

29. Suppose M is a 3×3 skew symmetric matrix. Show that there exists a vector
Ω such that for all u ∈ R3

Mu = Ω× u
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Hint: Explain why, since M is skew symmetric, it is of the form

M =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




where the ωi are numbers. Then consider ω1i + ω2j + ω3k.

30. Using only the properties 2.8 - 2.15, show that −A is unique.

31. Using only the properties 2.8 - 2.15, show that 0 is unique.

32. Using only the properties 2.8 - 2.15, show that 0A = 0. Here the 0 on the left
is the scalar 0 and the 0 on the right is the zero for m× n matrices.

33. Using only the properties 2.8 - 2.15 and previous problems, show that (−1)A =
−A.

34. Prove 2.24.

35. Prove that ImA = A where A is an m× n matrix.

36. Give an example of matrices A, B,C such that B 6= C, A 6= 0, and yet
AB = AC.

37. Give an example of matrices A,B such that neither A nor B equals zero and
yet AB = 0.

38. Give another example of two square matrices A and B such that AB 6= BA.

39. Write




x1 − x2 + 2x3

2x3 + x1

3x3

3x4 + 3x2 + x1


 in the form A




x1

x2

x3

x4


 where A is an appropriate

matrix.

40. Write




x1 + 3x2 + 2x3

2x3 + x1

6x3

x4 + 3x2 + x1


 in the form A




x1

x2

x3

x4


 where A is an appropriate

matrix.

41. Write




x1 + x2 + x3

2x3 + x1 + x2

x3 − x1

3x4 + x1


 in the form A




x1

x2

x3

x4


 where A is an appropriate

matrix.

42. Let A and be a real m × n matrix and let x ∈ Rn and y ∈ Rm. Show that
〈Ax,y〉Rm = 〈x,Aty〉Rn where 〈·, ·〉Rk denotes the dot product in Rk. In the
notation above, Ax · y = x·Aty. Use the definition of matrix multiplication
to do this.

43. Use the result of Problem 42 to verify directly that (AB)t = BtAt without
making any reference to subscripts.
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Row reduced echelon form

3.1 Elementary Matrices

The elementary matrices result from doing a row operation to the identity matrix.

Definition 3.1.1 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by the same row added to a multiple of another row.

We refer to these as the row operations of type 1,2, and 3 respectively.

The elementary matrices are given in the following definition.

Definition 3.1.2 The elementary matrices consist of those matrices which result
by applying a row operation to an identity matrix. Those which involve switching
rows of the identity are called permutation matrices1.

As an example of why these elementary matrices are interesting, consider the
following. 


0 1 0
1 0 0
0 0 1







a b c d
x y z w
f g h i


 =




x y z w
a b c d
f g h i


 .

A 3 × 4 matrix was multiplied on the left by an elementary matrix which was
obtained from row operation 1 applied to the identity matrix. This resulted in
applying the operation 1 to the given matrix. This is what happens in general.

1More generally, a permutation matrix is a matrix which comes by permuting the rows of the
identity matrix, not just switching two rows.

43
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Now consider what these elementary matrices look like. First Pij , which involves
switching row i and row j of the identity where i < j. We write

I =




r1

...
ri

...
rj

...
rn




where
rj = (0 · · · 1 · · · 0)

with the 1 in the jth position from the left.
This matrix P ij is of the form




r1

...
rj

...
ri

...
rn




.

Now consider what this does to a column vector.



r1

...
rj

...
ri

...
rn







v1

...
vi

...
vj

...
vn




=




v1

...
vj

...
vi

...
vn




.

Now we try multiplication of a matrix on the left by this elementary matrix P ij .
Consider

P ij




a11 a12 · · · · · · · · · · · · a1p

...
...

...
ai1 ai2 · · · · · · · · · · · · aip

...
...

...
aj1 aj2 · · · · · · · · · · · · ajp

...
...

...
an1 an2 · · · · · · · · · · · · anp




.
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From the way you multiply matrices this is a matrix which has the indicated
columns. 



P ij




a11

...
ai1

...
aj1

...
an1




, P ij




a12

...
ai2

...
aj2

...
an2




, · · · , P ij




a1p

...
aip

...
ajp

...
anp







=







a11

...
aj1

...
ai1

...
an1




,




a12

...
aj2

...
ai2

...
an2




, · · · ,




a1p

...
ajp

...
aip

...
anp







=




a11 a12 · · · · · · · · · · · · a1p

...
...

...
aj1 aj2 · · · · · · · · · · · · ajp

...
...

...
ai1 ai2 · · · · · · · · · · · · aip

...
...

...
an1 an2 · · · · · · · · · · · · anp




.

This has established the following lemma.

Lemma 3.1.3 Let P ij denote the elementary matrix which involves switching the
ith and the jth rows of I. Then if P ij , A are conformable, we have

P ijA = B

where B is obtained from A by switching the ith and the jth rows.

Next consider the row operation which involves multiplying the ith row by a
nonzero constant, c. We write

I =




r1

r2

...
rn




where
rj = (0 · · · 1 · · · 0)
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with the 1 in the jth position from the left. The elementary matrix which results
from applying this operation to the ith row of the identity matrix is of the form

E (c, i) =




r1

...
cri

...
rn




.

Now consider what this does to a column vector.



r1

...
cri

...
rn







v1

...
vi

...
vn




=




v1

...
cvi

...
vn




.

Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity
by the nonzero constant, c. Then from what was just discussed and the way matrices
are multiplied,

E (c, i)




a11 a12 · · · a1p

...
...

...
ai1 ai2 · · · aip

...
...

...
an1 an2 · · · anp




equals a matrix having the columns indicated below.

=




a11 a12 · · · a1p

...
...

...
cai1 cai2 · · · caip

...
...

...
an1 an2 · · · anp




.

This proves the following lemma.

Lemma 3.1.4 Let E (c, i) denote the elementary matrix corresponding to the row
operation in which the ith row is multiplied by the nonzero constant c. Thus E (c, i)
involves multiplying the ith row of the identity matrix by c. Then

E (c, i)A = B

where B is obtained from A by multiplying the ith row of A by c.

Finally consider the third of these row operations. Letting rj be the jth row of
the identity matrix, denote by E (c× i + j) the elementary matrix obtained from
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the identity matrix by replacing rj with rj + cri. In case i < j this will be of the
form




r1

...
ri

...
cri + rj

...
rn




.

Now consider what this does to a column vector.




r1

...
ri

...
cri + rj

...
rn







v1

...
vi

...
vj

...
vn




=




v1

...
vi

...
cvi + vj

...
vn




.

Now from this and the way matrices are multiplied,

E (c× i + j)




a11 a12 · · · · · · · · · · · · a1p

...
...

...
ai1 ai2 · · · · · · · · · · · · aip

...
...

...
aj2 aj2 · · · · · · · · · · · · ajp

...
...

...
an1 an2 · · · · · · · · · · · · anp




equals a matrix of the following form having the indicated columns.




E (c× i + j)




a11

...
ai1

...
aj2

...
an1




, E (c× i + j)




a12

...
ai2

...
aj2

...
an2




, · · ·E (c× i + j)




a1p

...
aip

...
ajp

...
anp






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=




a11 a12 · · · a1p

...
...

...
ai1 ai2 · · · aip

...
...

...
aj2 + cai1 aj2 + cai2 · · · ajp + caip

...
...

...
an1 an2 · · · anp




.

The case where i > j is similar. This proves the following lemma in which, as above,
the ith row of the identity is ri.

Lemma 3.1.5 Let E (c× i + j) denote the elementary matrix obtained from I by
replacing the jth row of the identity rj with cri + rj. Letting the kth row of A be
ak,

E (c× i + j) A = B

where B has the same rows as A except the jth row of B is cai + aj.

The above lemmas are summarized in the following theorem.

Theorem 3.1.6 To perform any of the three row operations on a matrix A it suf-
fices to do the row operation on the identity matrix, obtaining an elementary matrix
E, and then take the product, EA. In addition to this, the following identities hold
for the elementary matrices described above.

(3.1) E (c× i + j)E (−c× i + j) = E (−c× i + j)E (c× i + j) = I.

(3.2) E (c, i)E
(
c−1, i

)
= E

(
c−1, i

)
E (c, i) = I.

(3.3) P ijP ij = I.

Proof: Consider 3.1. Starting with I and taking −c times the ith row added
to the jth yields E (−c× i + j) which differs from I only in the jth row. Now
multiplying on the left by E (c× i + j) takes c times the ith row and adds to the jth

thus restoring the jth row to its original state. Thus E (c× i + j) E (−c× i + j) =
I. Similarly E (−c× i + j)E (c× i + j) = I. The reasoning is similar for 3.2 and
3.3.

Definition 3.1.7 For an n×n matrix A, an n×n matrix B which has the property
that AB = BA = I is denoted by A−1. Such a matrix is called an inverse. When
A has an inverse, it is called invertible.

The following lemma says that if a matrix acts like an inverse, then it is the
inverse. Also, the product of invertible matrices is invertible.

Lemma 3.1.8 If B,C are both inverses of A, then B = C. That is, there exists at
most one inverse of a matrix. If A1, · · · , Am are each invertible m ×m matrices,
then the product A1A2 · · ·Am is also invertible and

(A1A2 · · ·Am)−1 = A−1
m A−1

m−1 · · ·A−1
1 .
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Proof. From the definition and associative law of matrix multiplication,

B = BI = B (AC) = (BA) C = IC = C.

This proves the uniqueness of the inverse.
Next suppose A,B are invertible. Then

AB
(
B−1A−1

)
= A

(
BB−1

)
A−1 = AIA−1 = AA−1 = I

and also (
B−1A−1

)
AB = B−1

(
A−1A

)
B = B−1IB = B−1B = I.

It follows from Definition 3.1.7 that AB has an inverse and it is B−1A−1. Thus the
case of m = 1, 2 in the claim of the lemma is true. Suppose this claim is true for k.
Then

A1A2 · · ·AkAk+1 = (A1A2 · · ·Ak) Ak+1.

By induction, the two matrices (A1A2 · · ·Ak) , Ak+1 are both invertible and

(A1A2 · · ·Ak)−1 = A−1
k · · ·A−1

2 A−1
1 .

By the case of the product of two invertible matrices shown above,

((A1A2 · · ·Ak)Ak+1)
−1 = A−1

k+1 (A1A2 · · ·Ak)−1

= A−1
k+1A

−1
k · · ·A−1

2 A−1
1 .

This proves the lemma. 2

We will discuss methods for finding the inverse later. For now, observe that
Theorem 3.1.6 says that elementary matrices are invertible and that the inverse of
such a matrix is also an elementary matrix. The major conclusion of the above
Lemma and Theorem is the following lemma about linear relationships.

Definition 3.1.9 Let v1, · · · ,vk,u be vectors. Then u is said to be a linear com-
bination of the vectors {v1, · · · ,vk} if there exist scalars c1, · · · , ck such that

u =
k∑

i=1

civi.

We also say that when the above holds for some scalars c1, · · · , ck, there exists a
linear relationship between the vector u and the vectors {v1, · · · ,vk}.

We will discuss this more later, but the following picture illustrates the geometric
significance of the vectors which have a linear relationship with two vectors u,v
pointing in different directions.

y

z

x

1u

v²
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The following lemma states that linear relationships between columns in a ma-
trix are preserved by row operations. This simple lemma is the main result in
understanding all the major questions related to the row reduced echelon form as
well as many other topics.

Lemma 3.1.10 Let A and B be two m× n matrices and suppose B results from a
row operation applied to A. Then the kth column of B is a linear combination of the
i1, · · · , ir columns of B if and only if the kth column of A is a linear combination of
the i1, · · · , ir columns of A. Furthermore, the scalars in the linear combinations are
the same. (The linear relationship between the kth column of A and the i1, · · · , ir
columns of A is the same as the linear relationship between the kth column of B
and the i1, · · · , ir columns of B.)

Proof. Let A be the following matrix in which the ak are the columns
(

a1 a2 · · · an

)

and let B be the following matrix in which the columns are given by the bk

(
b1 b2 · · · bn

)
.

Then by Theorem 3.1.6 on Page 48, bk = Eak where E is an elementary matrix.
Suppose then that one of the columns of A is a linear combination of some other
columns of A. Say

ak = c1ai1 + · · ·+ crair .

Then multiplying by E,

bk = Eak = c1Eai1 + · · ·+ crEair = c1bi1 + · · ·+ crbir .

This proves the lemma.2

Example 3.1.11 Find linear relationships between the columns of the matrix

A =




1 3 11 10 36
1 2 8 9 23
1 1 5 8 10


 .

It is not clear what the relationships are, so we do row operations to this matrix.
Lemma 3.1.10 says that all the linear relationships between columns are preserved,
so the idea is to do row operations until a matrix results which has the property
that the linear relationships are obvious. First take −1 times the top row and add
to the two bottom rows. This yields




1 3 11 10 36
0 −1 −3 −1 −13
0 −2 −6 −2 −26




Next take −2 times the middle row and add to the bottom row followed by multi-
plying the middle row by −1 :




1 3 11 10 36
0 1 3 1 13
0 0 0 0 0


 .
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Next take −3 times the middle row added to the top:

(3.4)




1 0 2 7 −3
0 1 3 1 13
0 0 0 0 0


 .

At this point it is clear that the last column is −3 times the first column added
to 13 times the second. By Lemma 3.1.10, the same is true of the corresponding
columns in the original matrix A. As a check,

−3




1
1
1


 + 13




3
2
1


 =




36
23
10


 .

You should notice that other linear relationships are also easily seen from 3.4.
For example the fourth column is 7 times the first added to the second. This is
obvious from 3.4 and Lemma 3.1.10 says the same relationship holds for A.

This is really just an extension of the technique for finding solutions to a linear
system of equations. In solving a system of equations earlier, row operations were
used to exhibit the last column of an augmented matrix as a linear combination of
the preceding columns. The row reduced echelon form makes obvious all linear
relationships between all columns, not just the last column and those preceding it.
The matrix in 3.4 is an example of a matrix which is in row reduced echelon form.

3.2 The row reduced echelon form of a matrix

When you do row operations on a matrix, there is an ultimate conclusion. It is
called the row reduced echelon form. We show here that every matrix has such
a row reduced echelon form and that this row reduced echelon form is unique. The
significance is that it becomes possible to use the definite article in referring to the
row reduced echelon form. Hence important conclusions about the original matrix
may be logically deduced from an examination of its unique row reduced echelon
form. First we need the following definition.

Definition 3.2.1 Define special column vectors ei as follows.

ei =




0
...
1
...
0




.

Thus ei is the column vector which has all zero entries except for a 1 in the ith

position down from the top.

Now here is the description of the row reduced echelon form.

Definition 3.2.2 An m×n matrix is said to be in row reduced echelon form if,
in viewing successive columns from left to right, the first nonzero column encountered
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is e1 and if, in viewing the columns of the matrix from left to right, you have
encountered e1, e2, · · · , ek, the next column is either ek+1 or this next column is a
linear combination of the vectors, e1, e2, · · · , ek.

Example 3.2.3 The following matrices are in row reduced echelon form.




1 0 4 0
0 1 3 0
0 0 0 1


 ,




0 1 0 0 7
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0


 ,




0 1 0 3
0 0 1 −5
0 0 0 0


 .

The above definition emphasizes the linear relationships between columns. How-
ever, it is sometimes easier to use a different description of the row reduced echelon
form, although it is equivalent to the above. This description also employs some
standard terminology.

Definition 3.2.4 The first nonzero entry (element) of a nonzero row (reading from
left to right) is the leading entry of the row. A matrix is row reduced, (or, in row
reduced echelon form) if

(i) zero rows are below nonzero rows,

(ii) all leading entries are 1,

(iii) the leading entry of row j is to the right of the leading entry of row j − 1, for
all possible j,

(iv) if a column contains a leading entry, its other entries are 0.

The n× n matrix

I =




1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1


 (the identity matrix)

is row reduced. So too are, for example,

A =
(

0 1
0 0

)
, B =




1 0 0
0 1 3
0 0 0


 , C =




1 2 0 0
0 0 1 0
0 0 0 1


 .

A column of a row reduced matrix is called a pivot column if it contains
a leading entry. The pivot columns of C (above) are the first, third and fourth

columns. Clearly the pivot columns in the identity matrix are




1
0
...
0


 ,




0
1
...
0


 , etc.

Definition 3.2.5 Given a matrix A, row reduction produces one and only one row
reduced matrix B with A ∼ B. See Corollary 3.2.12. We call B the row reduced
echelon form of A.
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Theorem 3.2.6 Let A be an m × n matrix. Then A has a row reduced echelon
form determined by a simple process.

Proof. Viewing the columns of A from left to right, take the first nonzero
column. Pick a nonzero entry in this column and switch the row containing this
entry with the top row of A. Now divide this new top row by the value of this
nonzero entry to get a 1 in this position and then use row operations to make all
entries below this equal to zero. Thus the first nonzero column is now e1. Denote
the resulting matrix by A1. Consider the sub-matrix of A1 to the right of this
column and below the first row. Do exactly the same thing for this sub-matrix that
was done for A. This time the e1 will refer to Fm−1. Use the first 1 obtained by the
above process which is in the top row of this sub-matrix and row operations, to zero
out every entry above it in the rows of A1. Call the resulting matrix A2. Thus A2

satisfies the conditions of the above definition up to the column just encountered.
Continue this way till every column has been dealt with and the result must be in
row reduced echelon form. ¤

Example 3.2.7 Row reduce the following matrix to row reduced echelon form.



2 1 7 7
0 2 6 5
1 1 5 5




First switch the top row and the bottom row:



1 1 5 5
0 2 6 5
2 1 7 7




Next take −2 times the top row and add to the bottom and then multiply the
middle row by 1/2 : 


1 1 5 5
0 1 3 5/2
0 −1 −3 −3




Next add the middle row to the bottom row and then take −1 times the middle
row and add to the top: 


1 0 2 5/2
0 1 3 3
0 0 0 −1/2




Next take 6 times the bottom row and add to the middle row and then take 5 times
the bottom row and add to the top row. Finally, divide the bottom row by −1/2 :




1 0 2 0
0 1 3 0
0 0 0 1




This matrix is in row reduced echelon form.
Now here is some terminology which is often used.
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Definition 3.2.8 The first pivot column of A is the first nonzero column of A
which becomes e1 in the row reduced echelon form. The next pivot column is the
first column after this which becomes e2 in the row reduced echelon form. The third
is the next column which becomes e3 in the row reduced echelon form and so forth.

The algorithm just described for obtaining a row reduced echelon form shows
that these columns are well defined, but we will deal with this issue more carefully
in Corollary 3.2.12 where we show that every matrix corresponds to exactly one
row reduced echelon form.

Example 3.2.9 Determine the pivot columns for the matrix

(3.5) A =




2 1 3 6 2
1 7 8 4 0
1 3 4 −2 2




As described above, the kth pivot column of A is the column in which ek appears
in the row reduced echelon form for the first time in reading from left to right. A
row reduced echelon form for A is




1 0 1 0 64
35

0 1 1 0 − 4
35

0 0 0 1 − 9
35




It follows that columns 1,2, and 4 in A are pivot columns.
Note that from Lemma 3.1.10 the last column of A has a linear relationship to

the first four columns. Namely



2
0
2


 =

64
35




2
1
1


 +

(
− 4

35

) 


1
7
3


 +

(
− 9

35

) 


6
4
−2




This linear relationship is revealed by the row reduced echelon form but it was not
apparent from the original matrix.

Definition 3.2.10 Two matrices A,B are said to be row equivalent if B can be
obtained from A by a sequence of row operations. When A is row equivalent to B,
we write A ∼ B.

Proposition 3.2.11 In the notation of Definition 3.2.10. A ∼ A. If A ∼ B, then
B ∼ A. If A ∼ B and B ∼ C, then A ∼ C.

Proof: That A ∼ A is obvious. Consider the second claim. By Theorem 3.1.6,
there exist elementary matrices E1, E2, · · · , Em such that

B = E1E2 · · ·EmA.

It follows from Lemma 3.1.8 that (E1E2 · · ·Em)−1 exists and equals the product of
the inverses of these matrices in the reverse order. Thus

E−1
m E−1

m−1 · · ·E−1
1 B = (E1E2 · · ·Em)−1

B
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= (E1E2 · · ·Em)−1 (E1E2 · · ·Em)A = A.

By Theorem 3.1.6, each E−1
k is an elementary matrix. By Theorem 3.1.6 again,

the above shows that A results from a sequence of row operations applied to B.
The last claim is left for an exercise. See Exercise 7 on Page 71. This proves the
proposition.2

There are three choices for row operations at each step in Theorem 3.2.6. A
natural question is whether the same row reduced echelon matrix always results in
the end from following any sequence of row operations.

We have already made use of the following observation in finding a linear re-
lationship between the columns of the matrix A in 3.5, but here it is stated more
formally. Now




x1

...
xn


 = x1e1 + · · ·+ xnen,

so to say two column vectors are equal, is to say the column vectors are the same
linear combination of the special vectors ej .

Corollary 3.2.12 The row reduced echelon form is unique. That is if B,C are two
matrices in row reduced echelon form and both are obtained from A by a sequence
of row operations, then B = C.

Proof: Suppose B and C are both row reduced echelon forms for the matrix
A. It follows that B and C have zero columns in the same position because row
operations do not affect zero columns. By Proposition 3.2.11, B and C are row
equivalent. Suppose e1, · · · , er occur in B for the first time, reading from left to
right, in positions i1, · · · , ir respectively. Then from the description of the row
reduced echelon form, each of these columns of B, in positions i1, · · · , ir, is not a
linear combination of the preceding columns. Since C is row equivalent to B, it
follows from Lemma 3.1.10, that each column of C in positions i1, · · · , ir is not a
linear combination of the preceding columns of C. By the description of the row
reduced echelon form, e1, · · · , er occur for the first time in C in positions i1, · · · , ir
respectively. Therefore, both B and C have the sequence e1, e2, · · · , er occurring for
the first time in the positions, i1, i2, · · · , ir. Since these matrices are row equivalent,
it follows from Lemma 3.1.10, that the columns between the ik and ik+1 position in
the two matrices are linear combinations involving the same scalars, of the columns
in the i1, · · · , ik position. Similarly, the columns after the ir position are linear
combinations of the columns in the i1, · · · , ir positions involving the same scalars
in both matrices. This is equivalent to the assertion that each of these columns is
identical in B and C. ¤

Now with the above corollary, here is a very fundamental observation. The
number of nonzero rows in the row reduced echelon form is the same as the number
of pivot columns. Namely, this number is r in both cases where e1, · · · , er are the
pivot columns in the row reduced echelon form. Now consider a matrix which looks
like this: (More columns than rows.)
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Corollary 3.2.13 Suppose A is an m × n matrix and that m < n. That is, the
number of rows is less than the number of columns. Then one of the columns of A
is a linear combination of the preceding columns of A. Also, there exists x ∈ Fn

such that x 6= 0 and Ax = 0.

Proof: Since m < n, not all the columns of A can be pivot columns. In reading
from left to right, pick the first one which is not a pivot column. Then from the
description of the row reduced echelon form, this column is a linear combination of
the preceding columns. Say

aj = x1a1 + · · ·+ xj−1aj−1.

Therefore, from the way we multiply a matrix times a vector,

A




x1

...
xj−1

−1
0
...
0




= (a1 · · · aj−1aj · · ·an)




x1

...
xj−1

−1
0
...
0




= 0. ¤

Example 3.2.14 Find the row reduced echelon form of the matrix



0 0 2 3
0 2 0 1
0 1 1 5


 .

The first nonzero column is the second in the matrix. We switch the third and
first rows to obtain


0 1 1 5
0 2 0 1
0 0 2 3


 -2×top+second→




0 1 1 5
0 0 −2 −9
0 0 2 3




second+bottom→



0 1 1 5
0 0 −2 −9
0 0 0 −6


 →




0 1 1 5
0 0 −2 −9
0 0 0 1




Next use the bottom row to obtain zeros in the last column above the 1 and divide
the second row by −2




0 1 1 0
0 0 1 0
0 0 0 1


 -1×second+top→




0 1 0 0
0 0 1 0
0 0 0 1




This is in row reduced echelon form.
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Example 3.2.15 Find the row reduced echelon form for the matrix



1 2 0 2
−1 3 4 3
0 5 4 5




You should verify that the row reduced echelon form is



1 0 − 8
5 0

0 1 4
5 1

0 0 0 0


 .

3.3 Finding the inverse of a matrix

We have already discussed the idea of an inverse of a matrix in Definition 3.1.7.
Recall that the inverse of an n× n matrix A is a matrix B such that

AB = BA = I

where I is the identity matrix discussed in Theorem 3.1.6, it was shown that an
elementary matrix is invertible and that its inverse is also an elementary matrix.
We also showed in Lemma 3.1.8 that the product of invertible matrices is invertible
and that the inverse of this product is the product of the inverses in the reverse
order. In this section, we consider the problem of finding an inverse for a given
n× n matrix.

Unlike ordinary multiplication of numbers, it can happen that A 6= 0 but A may
fail to have an inverse. This is illustrated in the following example.

Example 3.3.1 Let A =
(

1 1
1 1

)
. Does A have an inverse?

One might think A would have an inverse because it does not equal zero. How-
ever, (

1 1
1 1

)( −1
1

)
=

(
0
0

)

and if A−1 existed, this could not happen because you could write
(

0
0

)
= A−1

(
0
0

)
= A−1

(
A

( −1
1

))
=

=
(
A−1A

) ( −1
1

)
= I

( −1
1

)
=

( −1
1

)
,

a contradiction. Here we have used the associative law of matrix multiplication
found in Proposition 2.2.13. Thus the answer is that A does not have an inverse.

Example 3.3.2 Let A =
(

1 1
1 2

)
. Show that

(
2 −1
−1 1

)
is the inverse of A.
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To check this, multiply
(

1 1
1 2

)(
2 −1
−1 1

)
=

(
1 0
0 1

)
,

and (
2 −1
−1 1

)(
1 1
1 2

)
=

(
1 0
0 1

)
,

showing that this matrix is indeed the inverse of A.
In the last example, how would you find A−1? You wish to find a matrix(

x z
y w

)
such that

(
1 1
1 2

) (
x z
y w

)
=

(
1 0
0 1

)
.

This requires the solution of the systems of equations,

x + y = 1, x + 2y = 0

and
z + w = 0, z + 2w = 1.

Writing the augmented matrix for these two systems gives

(3.6)
(

1 1 | 1
1 2 | 0

)

for the first system and

(3.7)
(

1 1 | 0
1 2 | 1

)

for the second. Let’s solve the first system. Take (−1) times the first row and add
to the second to get (

1 1 | 1
0 1 | −1

)

Now take (−1) times the second row and add to the first to get
(

1 0 | 2
0 1 | −1

)
.

Putting in the variables, this says x = 2 and y = −1.
Now solve the second system, 3.7 to find z and w. Take (−1) times the first row

and add to the second to get (
1 1 | 0
0 1 | 1

)
.

Now take (−1) times the second row and add to the first to get
(

1 0 | −1
0 1 | 1

)
.
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Putting in the variables, this says z = −1 and w = 1. Therefore, the inverse is
(

2 −1
−1 1

)
.

Didn’t the above seem rather repetitive? Exactly the same row operations were
used in both systems. In each case, the end result was something of the form (I|v)

where I is the identity and v gave a column of the inverse. In the above
(

x
y

)
, the

first column of the inverse was obtained first and then the second column
(

z
w

)
.

To simplify this procedure, you could have written
(

1 1 | 1 0
1 2 | 0 1

)

and row reduced till you obtained
(

1 0 | 2 −1
0 1 | −1 1

)
.

Then you could have read off the inverse as the 2× 2 matrix on the right side. You
should be able to see that it is valid by adapting the argument used in the simple
case above.

This is the reason for the following simple procedure for finding the inverse of a
matrix. This procedure is called the Gauss-Jordan procedure.

Procedure 3.3.2 Suppose A is an n× n matrix. To find A−1 if it exists, form
the augmented n× 2n matrix

(A|I)

and then if possible, do row operations until you obtain an n × 2n matrix of the
form

(3.8) (I|B) .

When this has been done, B = A−1. If it is impossible to row reduce to a matrix of
the form (I|B) , then A has no inverse.

The procedure just described actually yields a right inverse. This is a matrix
B such that AB = I. We will show in Theorem 3.3.6 that this right inverse is
really the inverse. This is a stronger result than that of Lemma 3.1.8 about the
uniqueness of the inverse. For now, here are some examples.

Example 3.3.3 Let A =




1 2 2
1 0 2
3 1 −1


. Find A−1 if it exists.

Set up the augmented matrix (A|I) :



1 2 2 | 1 0 0
1 0 2 | 0 1 0
3 1 −1 | 0 0 1



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Next take (−1) times the first row and add to the second followed by (−3) times
the first row added to the last. This yields




1 2 2 | 1 0 0
0 −2 0 | −1 1 0
0 −5 −7 | −3 0 1


 .

Then take 5 times the second row and add to -2 times the last row.



1 2 2 | 1 0 0
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2




Next take the last row and add to (−7) times the top row. This yields


−7 −14 0 | −6 5 −2
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2


 .

Now take (−7/5) times the second row and add to the top.


−7 0 0 | 1 −2 −2
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2


 .

Finally divide the top row by -7, the second row by -10 and the bottom row by 14,
which yields 



1 0 0 | − 1
7

2
7

2
7

0 1 0 | 1
2 − 1

2 0

0 0 1 | 1
14

5
14 − 1

7




.

Therefore, the inverse is 


− 1
7

2
7

2
7

1
2 − 1

2 0

1
14

5
14 − 1

7




.

Example 3.3.4 Let A =




1 2 2
1 0 2
2 2 4


. Find A−1 if it exists.

Write the augmented matrix (A|I) :



1 2 2 | 1 0 0
1 0 2 | 0 1 0
2 2 4 | 0 0 1



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and proceed to do row operations attempting to obtain
(
I|A−1

)
. Take (−1) times

the top row and add to the second. Then take (−2) times the top row and add to
the bottom: 


1 2 2 | 1 0 0
0 −2 0 | −1 1 0
0 −2 0 | −2 0 1




Next add (−1) times the second row to the bottom row:



1 2 2 | 1 0 0
0 −2 0 | −1 1 0
0 0 0 | −1 −1 1




At this point, you can see that there will be no inverse. To see this, consider the
matrix 


1 2 2 | 0
0 −2 0 | 0
0 0 0 | 1




which is an augmented matrix for a system of equations which has no solution. In
other words, the last column is not a linear combination of the first three. The
inverses of the row operations used to obtain




1 2 2
0 −2 0
0 0 0




from A can be performed in reverse order to obtain an augmented matrix (A|b) and
by Lemma 3.1.10, b is not a linear combination of the columns of A. Thus there is
no solution x to the system

Ax = b

This is impossible if A has an inverse because you could simply multiply on both
sides by A−1 resulting in

x = A−1 (Ax) =
(
A−1A

)
x = Ix = A−1b

Similar considerations are valid in general. A row of zeros in the row reduced
echelon form for A indicates that A−1 does not exist.

Example 3.3.5 Let A =




1 0 1
1 −1 1
1 1 −1


. Find A−1 if it exists.

Form the augmented matrix



1 0 1 | 1 0 0
1 −1 1 | 0 1 0
1 1 −1 | 0 0 1


 .

Now do row operations until the n × n matrix on the left becomes the identity
matrix. This yields after some computations,




1 0 0 | 0 1
2

1
2

0 1 0 | 1 −1 0
0 0 1 | 1 − 1

2 − 1
2


 ,
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and so the inverse of A is the matrix on the right,



0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


 .

Checking the answer is easy. Just multiply the matrices and see if your answer
works.




1 0 1
1 −1 1
1 1 −1







0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


 =




1 0 0
0 1 0
0 0 1


 .

Always check your answer because if you are like some of us, you will usually have
made a mistake.

As mentioned earlier, what you have really found in the above algorithm is a
right inverse. Is this right inverse matrix, which we have called the inverse, really
the inverse, the matrix which when multiplied on both sides gives the identity?

Theorem 3.3.6 Suppose A, B are n×n matrices and AB = I. Then it follows that
BA = I also, and so B = A−1. For n × n matrices, the left inverse, right inverse
and inverse are all the same thing.

Proof. If AB = I for A,B n× n matrices, is BA = I? If AB = I, there exists
a unique solution x to the equation

Bx = y

for any choice of y. In fact,
x = A (Bx) = Ay.

This means the row reduced echelon form of B must be I. Thus every column is a
pivot column. Otherwise, there exists a free variable and the solution, if it exists,
would not be unique, contrary to what was just shown must happen if AB = I. It
follows that a right inverse B−1 for B exists. The above procedure yields

(
B I

) → (
I B−1

)
.

Now multiply both sides of the equation AB = I on the right by B−1. Then

A = A
(
BB−1

)
= (AB)B−1 = B−1.

Thus A is the right inverse of B, and so BA = I. This shows that if AB = I, then
BA = I also. Exchanging roles of A and B, we see that if BA = I, then AB = I.
This proves the theorem.2

This has shown that in the context of n×n matrices, right inverses, left inverses
and inverses are all the same and this matrix is called A−1.

The following corollary is also of interest.

Corollary 3.3.7 An n× n matrix A has an inverse if and only if the row reduced
echelon form of A is I.
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Proof. First suppose the row reduced echelon form of A is I. Then Procedure
3.3 yields a right inverse for A. By Theorem 3.3.6 this is the inverse. Next suppose
A has an inverse. Then there exists a unique solution x to the equation

Ax = y

given by x = A−1y. It follows that in the augmented matrix (A|0) there are no
free variables, and so every column to the left of | is a pivot column. Therefore, the
row reduced echelon form of A is I. This proves the corollary.

Example 3.3.8 In this example, it is shown how to use the inverse of a matrix
to find the solution to a system of equations. Consider the following system of
equations. Use the inverse of a suitable matrix to give the solutions to this system.

x + z = 1
x− y + z = 3
x + y − z = 2

The system of equations can be written in terms of matrices as

(3.9)




1 0 1
1 −1 1
1 1 −1







x
y
z


 =




1
3
2


 .

More simply, this is of the form Ax = b. Suppose you find the inverse of the matrix
A−1. Then you could multiply both sides of this equation by A−1 to obtain

x =
(
A−1A

)
x = A−1 (Ax) = A−1b.

This gives the solution as x = A−1b. Note that once you have found the inverse,
you can easily get the solution for different right hand sides without any effort. The
solution is always A−1b. In the given example, the inverse of the matrix is




0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2




This was shown in Example 3.3.5. Therefore, from what was just explained, the
solution to the given system is




x
y
z


 =




0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2







1
3
2


 =




5
2
−2
− 3

2


 .

What if the right side of 3.9 had been



0
1
3


?

What would be the solution to



1 0 1
1 −1 1
1 1 −1







x
y
z


 =




0
1
3


?
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By the above discussion, this solution is



x
y
z


 =




0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2







0
1
3


 =




2
−1
−2


 .

This illustrates why, once you have found the inverse of a given matrix, you can use
this inverse to solve many different systems easily.

3.4 The rank of a matrix

With the existence and uniqueness of the row reduced echelon form, it is a natural
step to define the rank of a matrix.

Definition 3.4.1 Let A be an m × n matrix. Then the rank of A is defined to
be the number of pivot columns. From the description of the row reduced echelon
form, this is also equal to the number of nonzero rows in the row reduced echelon
form. The nullity of A is the number of non pivot columns. This is the same as
the number of free variables in the augmented matrix (A|0).

The rank is important because of the following proposition.

Proposition 3.4.2 Let A be an m× n matrix which has rank r. Then there exists
a set of r columns of A such that every other column is a linear combination of
these columns. Furthermore, none of these columns is a linear combination of the
other r− 1 columns in the set. The rank of A is no larger than the minimum of m
and n. Also the rank added to the nullity equals n.

Proof. Since the rank of A is r it follows that A has exactly r pivot columns.
Thus, in the row reduced echelon form, every column is a linear combination of these
pivot columns and none of the pivot columns is a linear combination of the others
pivot columns. By Lemma 3.1.10 the same is true of the columns in the original
matrix A. There are at most min (m,n) pivot columns (nonzero rows). Therefore,
the rank of A is no larger than min (m,n) as claimed. Since every column is either
a pivot column or isn’t a pivot column, this shows that the rank added to nullity
equals n. This proves the proposition.

This will be discussed more later when we define the concept of a vector space
and a basis. We will see that the pivot columns form a basis for a vector space
called Col (A) , the column space of A.

3.5 The LU and PLU factorization

For A an m× n matrix, the LU factorization is of the form A = LU where L is an
m×m lower triangular matrix which has all ones down the main diagonal and U is
an “upper triangular” m×n matrix, one with the property that Uij = 0 if i > j. It
turns out that not all matrices have an LU factorization, but there are many very
important examples of matrices which do. However, the existence of matrices which
do not have an LU factorization shows that the method lacks generality. Consider
the following example.



3.5. THE LU AND PLU FACTORIZATION 65

Example 3.5.1 Can you write
(

0 1
1 0

)
in the form LU as just described?

To do so you would need
(

1 0
x 1

)(
a b
0 c

)
=

(
a b
xa xb + c

)
=

(
0 1
1 0

)
.

Therefore, b = 1 and a = 0. Also, from the bottom rows, xa = 1 which can’t happen
and have a = 0. Therefore, you can’t write this matrix in the form LU. It has no LU
factorization. This is what we mean above by saying the method lacks generality.

The problem with this example is that in order to row reduce the matrix to row
reduced echelon form, you must switch some rows. It turns out that a matrix has
an LU factorization if and only if it is possible to row reduce the given matrix to
upper triangular form using only row operations of type 3. Recall that this row
operation involves replacing a given row by a multiple of another row added to the
given row.

Lemma 3.5.2 Let L be a lower (upper) triangular matrix m ×m which has ones
down the main diagonal. Then L−1 also is a lower (upper) triangular matrix which
has ones down the main diagonal. Also L−1 is obtained from L by simply multiplying
each entry below the main diagonal in L with −1.

Proof: Consider the usual setup for finding the inverse
(

L I
)
. Then each

row operation done to L to reduce to row reduced echelon form results in changing
only the entries in I below the main diagonal and also the resulting entry on the
right of the above m × 2m matrix below the main diagonal is just −1 times the
corresponding entry in L. ¤

Now let A be an m× n matrix, say

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn




and assume A can be row reduced to an upper triangular form using only row
operation 3. Thus, in particular, a11 6= 0. Multiply on the left by E1 =




1 0 · · · 0
−a21

a11
1 · · · 0

...
...

. . .
...

−am1
a11

0 · · · 1




This is the product of elementary matrices which make modifications in the first
column only. It is equivalent to taking −a21/a11 times the first row and adding to
the second. Then taking −a21/a11 times the first row and adding to the second and
so forth. Thus the result is of the form

E1A =




a11 a12 · · · a′1n

0 a′22 · · · a′2n
...

...
...

0 a′m2 · · · a′mn



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By assumption, a′22 6= 0 and so it is possible to use this entry to zero out all the
entries below it in the matrix on the right by multiplication by a matrix of the form

E2 =
(

1 0
0 E

)
where E is an (m− 1)× (m− 1) matrix of the form




1 0 · · · 0
−a′32

a′22
1 · · · 0

...
...

. . .
...

−a′m2
a′22

0 · · · 1




Continuing this way, zeroing out the entries below the diagonal entries, finally leads
to

Em−1En−2 · · ·E1A = U

where U is upper triangular. Each Ej has all ones down the main diagonal and is
lower triangular. Now multiply both sides by the inverses of the Ej . This yields

A = E−1
1 E−1

2 · · ·E−1
m−1U

By Lemma 3.5.2, this implies that the product of those E−1
j is a lower triangular

matrix having all ones down the main diagonal.
The above discussion and lemma also gives a convenient way to compute an LU

factorization. The expressions −a21/a11,−a31/a11, · · · − am1/a11 denoted respec-
tively by m21, · · · ,mm1 to save notation which were obtained in building E1 are
called multipliers. . Then according to the lemma, to find E−1

1 you simply write




1 0 · · · 0
−m21 1 · · · 0

...
...

. . .
...

−mm1 0 · · · 1




Similar considerations apply to the other E−1
j . Thus L is of the form




1 0 · · · 0 0
−m21 1 · · · 0 0

...
...

. . .
...

...
−m(m−1)1 0 · · · 1 0
−mm1 0 · · · 0 1







1 0 · · · 0 0
0 1 · · · 0 0
... −m32

. . .
...

...

0
... · · · 1 0

0 −mm2 · · · 0 1



· · ·




1 0 · · · 0 0
0 1 · · · 0 0
... 0

. . .
...

...

0
... · · · 1 0

0 0 · · · −mmm−1 1



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It follows from Theorem 3.1.6 about the effect of multiplying on the left by an
elementary matrix that the above product is of the form




1 0 · · · 0 0
−m21 1 · · · 0 0

... −m32
. . .

...
...

−m(m−1)1

... · · · 1 0
−mm1 −mm2 · · · −mmm−1 1




In words, you simply insert, into the corresponding position in the identity
matrix, −1 times the multiplier which was used to zero out an entry in that position
below the main diagonal in A, while retaining the main diagonal which consists
entirely of ones. This is L. The following example shows that begining with the
expression A = IA, one can obtain LU by updating the identity matrix while doing
the row operations on the original matrix.

Example 3.5.3 Find an LU factorization for A =




1 2 1 2 1
2 0 2 1 1
2 3 1 3 2
1 0 1 1 2


 .

Write A = 


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







1 2 1 2 1
2 0 2 1 1
2 3 1 3 2
1 0 1 1 2




First multiply the first row by (−1) and then add to the last row in the second
matrix above. Next take (−2) times the first and add to the second and then (−2)
times the first and add to the third.




1 0 0 0
2 1 0 0
2 0 1 0
1 0 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 −1 −1 −1 0
0 −2 0 −1 1


 .

This finishes the first column of L and the first column of U. Now take − (1/4) times
the second row in the matrix on the right and add to the third followed by − (1/2)
times the second added to the last.




1 0 0 0
2 1 0 0
2 1/4 1 0
1 1/2 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 0 −1 −1/4 1/4
0 0 0 1/2 3/2




This finishes the second column of L as well as the second column of U . Since the
matrix on the right is upper triangular, stop. The LU factorization has now been
obtained. It is also worth noting that, from the above discussion, the product of the
two matrices in the iteration will always equal the original matrix. This technique
is called Dolittle’s method.
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So what happens in general? In general, it may be necessary to switch rows in
order to row reduce A to an upper triangular form. If this happens, then in the
above process you would encounter a permutation matrix. Therefore, you could
first multiply A on the left by this permutation matrix so that the problem will no
longer occur when you follow the above procedure. Thus, it is always possible to
obtain a permutation matrix P such that

L−1PA = U

where U is upper triangular and L−1 is lower triangular having all ones down the
diagonal. It follows that A can always be written in the form

A = PLU.

Computer algebra systems are set up to compute a PLU factorization for a given
matrix. For example, in maple 12, you enter the matrix, then right click on it and
select “solvers and forms”. Then choose “LU” followed by “Gaussian elimination”
and finally “Gaussian elimination (P, L,U).

One other thing which is interesting to observe is that LU factorizations are
not necessarily unique. See Problem 39 in the following exercises. Thus they don’t
always exist and they are not even unique when they do exist. How could something
so mathematically inferior be of any interest?

One reason this is of interest is that it takes about half the number of operations
to produce an LU factorization as it does to find the row reduced echelon form, and
once an LU factorization has been obtained, it becomes easy for a computer to find
the solution to a system of equations. This is illustrated in the following example.
However, it must be admitted that if you are doing it by hand, you will have an
easier time if you do not use an LU factorization. Thus this technique is of use
because it makes computers happy.

The existence of an LU factorization is also a hypothesis in certain theorems
involving the QR algorithm for finding eigenvalues. This algorithm is of tremendous
significance and is discussed briefly in a later exercise. In addition, the LU factor-
ization leads to a nice factorization called the Cholesky factorization for positive
definite symmetric matrices.

Example 3.5.4 Suppose you want to find the solutions to




1 2 3 2
4 3 1 1
1 2 3 0







x
y
z
w


 =




1
2
3


 .

Of course one way is to write the augmented matrix and grind away. However,
this involves more row operations than the computation of the LU factorization
and it turns out that the LU factorization can give the solution quickly. Here is
how. The following is an LU factorization for the matrix.




1 2 3 2
4 3 1 1
1 2 3 0


 =




1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2


 .
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Let Ux = y and consider Ly = b where in this case, b =(1, 2, 3)T . Thus



1 0 0
4 1 0
1 0 1







y1

y2

y3


 =




1
2
3




which yields very quickly that y =




1
−2
2


 . Now you can find x by solving Ux = y.

Thus in this case,




1 2 3 2
0 −5 −11 −7
0 0 0 −2







x
y
z
w


 =




1
−2
2




which yields

x =




− 3
5 + 7

5 t

9
5 − 11

5 t

t
−1




, t ∈ R.

3.6 Exercises

1. Let {u1, · · · ,un} be vectors in Rn. The parallelepiped determined by these
vectors P (u1, · · · ,un) is defined as

P (u1, · · · ,un) ≡
{

n∑

k=1

tkuk : tk ∈ (0, 1) for all k

}
.

Now let A be an n× n matrix. Show that

{Ax : x ∈ P (u1, · · · ,un)}
is also a parallelepiped.

2. In the context of Problem 1, draw P (e1, e2) where e1, e2 are the standard
basis vectors for R2. Thus e1 = (1, 0)t

, e2 = (0, 1)t
. Now suppose

E =
(

1 1
0 1

)

where E is the elementary matrix which takes the second row of I and adds
it to the first. Draw

{Ex : x ∈ P (e1, e2)} .

In other words, draw the result left multiplying the vectors in P (e1, e2) by
E. We must regard the vectors in P (e1, e2) as column vectors, so the multi-
plication on the left by the matrix E makes sense. Next draw the results of
applying the other elementary matrices to P (e1, e2) in the same sense.
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3. In the context of Problem 1, either draw or describe the result of applying
elementary matrices to P (e1, e2, e3).

4. Determine which matrices are in row reduced echelon form.

(a)
(

1 2 0
0 1 7

)

(b)




1 0 0 0
0 0 1 2
0 0 0 0




(c)




1 1 0 0 0 5
0 0 1 2 0 4
0 0 0 0 1 3




5. Row reduce the following matrices to obtain the row reduced echelon form.
List the pivot columns in the original matrix.

(a)




1 2 0 3
2 1 2 2
1 1 0 3




(b)




1 2 3
2 1 −2
3 0 0
3 2 1




(c)




1 2 1 3
−3 2 1 0
3 2 1 1




6. Find the rank of the following matrices.

(a)




1 2 0
3 2 1
2 1 0
0 2 1




(b)




1 0 0
4 1 1
2 1 0
0 2 0




(c)




0 1 0 2 1 2 2
0 3 2 12 1 6 8
0 1 1 5 0 2 3
0 2 1 7 0 3 4




(d)




0 1 0 2 0 1 0
0 3 2 6 0 5 4
0 1 1 2 0 2 2
0 2 1 4 0 3 2



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(e)




0 1 0 2 1 1 2
0 3 2 6 1 5 1
0 1 1 2 0 2 1
0 2 1 4 0 3 1




7. Recall that two matrices are row equivalent if one can be obtained from the
other by a sequence of row operations. When this happens for two matrices
A,B, we can write A ∼ B. Show that A ∼ A. Next show that if A ∼ B, then
B ∼ A. Finally show that if A ∼ B and B ∼ C, then A ∼ C. A relation which
has these three properties is called an equivalence relation.

8. Determine whether the two matrices



1 3 5 3
1 4 6 4
1 1 3 1


 ,




1 4 5 2
1 5 6 3
1 2 3 0




are row equivalent.

9. Determine whether the two matrices



1 3 5 3
1 4 6 4
1 1 3 1


 ,




1 3 5 3
1 4 6 4
2 5 9 5




are row equivalent.

10. Suppose AB = AC and A is an invertible n × n matrix. Does it follow that
B = C? Explain why or why not. What if A were a non invertible n × n
matrix?

11. Find your own examples:

(a) 2× 2 matrices A and B such that A 6= 0, B 6= 0 with AB 6= BA.

(b) 2× 2 matrices A and B such that A 6= 0, B 6= 0, but AB = 0.

(c) 2× 2 matrices A, D, and C such that A 6= 0, C 6= D, but AC = AD.

12. Give an example of a matrix A such that A2 = I and yet A 6= I and A 6= −I.

13. Let

A =
(

2 1
−1 3

)
.

Find A−1 if possible. If A−1 does not exist, determine why.

14. Let

A =
(

0 1
5 3

)
.

Find A−1 if possible. If A−1 does not exist, determine why.

15. Let

A =
(

2 1
3 0

)
.

Find A−1 if possible. If A−1 does not exist, determine why.
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16. Let

A =
(

2 1
4 2

)
.

Find A−1 if possible. If A−1 does not exist, determine why.

17. Let A be a 2 × 2 matrix which has an inverse. Say A =
(

a b
c d

)
. Find a

formula for A−1 in terms of a, b, c, d.

18. Let

A =




1 2 3
2 1 4
1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

19. Let

A =




1 0 3
2 3 4
1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

20. Let

A =




1 2 3
2 1 4
4 5 10


 .

Find A−1 if possible. If A−1 does not exist, determine why.

21. Let

A =




1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

22. Using the inverse of the matrix, find the solution to the systems



1 0 3
2 3 4
1 0 2







x
y
z


 =




1
2
3


 ,




1 0 3
2 3 4
1 0 2







x
y
z


 =




2
1
0


 ,




1 0 3
2 3 4
1 0 2







x
y
z


 =




1
0
1


 ,




1 0 3
2 3 4
1 0 2







x
y
z


 =




3
−1
−2


 .

Now give the solution in terms of a, b, and c to



1 0 3
2 3 4
1 0 2







x
y
z


 =




a
b
c


 .
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23. Using the inverse of the matrix, find the solution to the systems



1 0 3
2 3 4
1 0 2







x
y
z


 =




1
2
3


 ,




1 0 3
2 3 4
1 0 2







x
y
z


 =




2
1
0


 ,




1 0 3
2 3 4
1 0 2







x
y
z


 =




1
0
1


 ,




1 0 3
2 3 4
1 0 2







x
y
z


 =




3
−1
−2


 .

Now give the solution in terms of a, b, and c to



1 0 3
2 3 4
1 0 2







x
y
z


 =




a
b
c


 .

24. Using the inverse of the matrix, find the solution to the system



−1 1
2

1
2

1
2

3 1
2 − 1

2 − 5
2

−1 0 0 1
−2 − 3

4
1
4

9
4







x
y
z
w


 =




a
b
c
d


 .

25. Show that if A is an n×n invertible matrix, and x is a n×1 matrix such that
Ax = b for b an n× 1 matrix, then x = A−1b.

26. Prove that if A−1 exists, and Ax = 0 then x = 0.

27. Show that if A−1 exists for an n × n matrix, then A−1 is unique. That is, if
BA = I and AB = I, then B = A−1. If you are stuck, see the proof of this in
the chapter.

28. Show that if A is an invertible n × n matrix, then so is At and (At)−1 =(
A−1

)t
.

29. Show that (AB)−1 = B−1A−1 by verifying that

AB
(
B−1A−1

)
= I

and B−1A−1 (AB) = I. Hint: Use Problem 27.

30. Show that (ABC)−1 = C−1B−1A−1 by verifying that

(ABC)
(
C−1B−1A−1

)
= I

and (
C−1B−1A−1

)
(ABC) = I.

Generalize to give a theorem which involves an arbitrary finite product of
invertible matrices. Hint: Use Problem 27.
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31. Using Problem 30, show that an n × n matrix A is invertible if and only if
A is the product of elementary matrices. Hint: Recall that from Corollary
3.3.7, a matrix is invertible if and only if its row reduced echelon form is I.
Then recall that every row operation is accomplished by multiplying on the
left by an elementary matrix and that the inverse of an elementary matrix is
an elementary matrix.

32. What is the geometric significance of Problem 31 which is implied by Problem
3?

33. If A is invertible, show that
(
A2

)−1 =
(
A−1

)2
. Hint: Use Problem 27.

34. If A is invertible, show that
(
A−1

)−1 = A. Hint: Use Problem 27.

35. Let the field of scalars be F3. Do the following operations.

(a)




1 2 1
2 1 2
0 1 1




t

+ 2




1 2 0
0 2 1
2 1 0




(b)




1 2 0
0 2 1
2 1 0







1 1 2 1
0 1 2 2
2 0 1 2




36. Let the field of scalars be F3 and consider the matrix



1 2 1
2 1 2
0 1 1




Find the row reduced echelon form of this matrix. What is the rank of this
matrix? Remember the rank is the number of pivot columns. Deleting the
bar on the top of the numbers and letting the field of scalars be R, what is
the row reduced echelon form and rank? What if F3 is changed to F5?

37. Let the field of scalars be F3, and consider the matrix



1 2 0
0 2 1
2 1 0


 .

Find the row reduced echelon form and rank. Omitting the bar on the numbers
and letting the field of scalars be R, find the row reduced echelon form and
rank. Remember the rank is the number of pivot columns. Do the same
problem, changing F3 to F5.

38. Let the field of scalars be F3. Find the inverse of



1 1 2
0 1 2
2 0 1




if this inverse exists.
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39. Is there only one LU factorization for a given matrix? Hint: Consider the
equation (

0 1
0 1

)
=

(
1 0
1 1

) (
0 1
0 0

)
.

40. Find an LU factorization for the matrix




1 2 3 4
2 0 3 2
1 4 5 3


 .

41. Find a PLU factorization of




1 2 1
1 2 2
2 1 1


 .

42. Find a PLU factorization of




1 2 1 2 1
2 4 2 4 1
1 2 1 3 2


 .
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Vector Spaces

We now write down the definition of an algebraic structure called a vector space.
It includes Rn and Cn as particular cases. There is a little initial effort in working
with a general vector space, but the payoff, due to the wide variety of applications,
is incalculably great.

Let F be a given field.

Definition 4.0.1 A vector space over F is a set V containing at least one element
which we write as 0. Moreover, there are rules for forming the sum v+w, whenever
v, w are in V , and the product cv (c ∈ F, v ∈ V ). We have, for u, v, w in V and a, b
in F ,

1. v + w ∈ V and av ∈ V (closure),

2. v + w = w + v,

3. u + (v + w) = (u + v) + w,

4. v + 0 = v,

5. For each v in V , there is a member −v of V such that

v + (−v) = 0,

6. 1v = v,

7. (ab)v = a(bv),

8. a(u + v) = au + av,

9. (a + b)u = au + bu.

This set of axioms has been found to be enough to do calculations in V that
resemble those in Rn or Cn. We refer to the members of V as vectors and the
members of F as scalars.

It is worth noting right away that 0 and −v are unique.

Lemma 4.0.2 There is only one 0 in V and for each v, there is only one −v.

77
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Proof. Suppose 0′ also works. Then since both 0 and 0′ act as additive identities,

0′ = 0′ + 0 = 0

If w + v = 0, so that w acts like the additive inverse for v, then adding −v to both
sides,

w = w + (v + (−v)) = (w + v) +−v = −v.

This proves the lemma. 2

It is easy to verify that Rn is a vector space over R. For instance,

a(u + v) = (au1 + av1, . . . , aun + avn)
= au + av.

The arguments give a more general example.

Definition 4.0.3 Let F be a field. Then Fn is the set of ordered n−tuples (x1, . . . , xn)
with each xi ∈ F , with the following definitions:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, · · · , xn + yn) ,

c(x1, . . . , xn) = (cx1, . . . , cxn) (c ∈ F ).

It is easy to check that Fn is a vector space. Note that if F is finite, then Fn is
a finite vector space.

The following result shows how we use the axioms to reach some conclusions
that are used constantly in this book.

Lemma 4.0.4 Let V be a vector space over F . Let v, w be in V and a ∈ F.

(i) If v + w = v, then w = 0.

(ii) a0 = 0.

(iii) 0v = 0.

(iv) (−a)v = −(av).

(v) If v 6= 0 and av = 0, then a = 0.

Be careful with the interpretation of the zeros here. For example, in (iii) the 0
on the left-hand side is in F and the 0 on the right-hand side is in V .

Proof. (We will not cite the uses of 1–9 explicitly.)

(i) Add −v to both sides of
v + w = v.

Then
−v + (v + w) = −v + v = 0.

Regroup the left-hand side:

(−v + v) + w = 0

which reads
0 + w = 0.

Since 0 + w = w, this completes the proof.
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(ii) Since a0 = a(0 + 0) = a0 + a0, we have a0 = 0, by (i).

(iii) Since 0v = (0 + 0)v = 0v + 0v, we have 0v = 0.

(iv) As 0 = (a + (−a))v by (iii), we get

0 = av + (−a)v.

So (−a)v is the ‘additive inverse’ of av.

(v) If av = 0 and a 6= 0, we use (ii) to get 0 = a−10 = a−1(av) = (a−1a)v = 1v =
v. 2

Notation 4.0.5 The symbol 2, invented by Paul Halmos, shows the end of a proof.

4.1 Some fundamental examples

Our examples in this section are function spaces and sequence spaces. We also
define and illustrate the key notation of a subspace of a vector space.

Let X,Y be non-empty sets. We recall that a function from X into Y is a rule
that assigns a value f(x) ∈ Y whenever x ∈ X is given. We write

f : X → Y.

We call X the domain of f and Y the codomain of f . The element f(x) of Y
is called the image of x under f .

As an example, the function g on R3 defined by

g(x) = |x|

has domain R3 and codomain R. Functions are also called mappings.

Example 4.1.1 Let X be a nonempty set and F a field. The set V (X,F ) of all
functions

f : X → F

is a vector space over F .

We have to specify the rules of addition and scalar multiplication. These rules
are exactly what you would expect: by definition,

(f + g)(x) = f(x) + g(x), (cf)(x) = cf(x)

for f, g in V (X, F ) and c ∈ F .
It is straightforward to check all laws (1-9) from §4. The zero vector is the

constant function f = 0. The additive inverse of f is −f , that is, (−1)f .

Definition 4.1.2 Let V be a vector space over F and let W ⊂ V . We say that W is
a subspace of V if W is a vector space (using the addition and scalar multiplication
defined in V ).
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Example 4.1.3 The plane W with equation

a1x1 + a2x2 + a3x3 = 0

is a subspace of R3.

The ‘reason’ for this is that if v and u are in W , then u + v ∈ W , and cu ∈ W
whenever c is a scalar. (You can easily verify this.) Because of this, the closure
law 1 is obeyed in W , The other laws give little trouble (We get 2,3, etc. ‘free of
charge’). It is worth summarizing the idea in a lemma.

Lemma 4.1.4 Let W be a subset of the vector space V over F, 0 ∈ W . Suppose
that for any v, w in W and c ∈ F ,

(i) v + w ∈ W ,

(ii) cv ∈ W .

Then W is a subspace of V .

Proof. Law 1. has been assumed. Laws 2,3,4, etc. hold because the members
of W are in V . Also −w = (−1)w is in W whenever w ∈ W . This gives the
remaining law 5. 2

We can put Lemma 4.1.4 to work in constructing function spaces. Let

[a, b] = {x : a ≤ x ≤ b}
be an interval in R. The following notations will be used.

C[a, b] = {f : [a, b] → R : f is continuous},(4.1)

S[a, b] = {f : [a, b] → R : f has a derivative f (n) for n ≥ 1}.(4.2)

(The letter S symbolizes smoothness of the functions.) In the notation used above,

S[a, b] ⊂ C[a, b] ⊂ V ([a, b],R),

the vector space of real valued functions which are defined on [a, b]. Moreover,
S[a, b] and C[a, b] are subspaces of V ([a, b],R), as we now explain.

If f, g are continuous on [a, b], so is f + g and so too is cf (c ∈ R). In view
of Lemma 4.1.4, this implies that C[a, b] is a subspace of V ([a, b],R). Very similar
reasoning shows that S[a, b] is a subspace of V ([a, b],R). Also S[a, b] is a subspace
of C[a, b].

For many applications it is convenient to work with complex functions. We
define CC[a, b], SC[a, b]just as in 4.1, 4.2 with R replaced by C. Just as above,
CC[a, b] and SC[a, b] are subspaces of V ([a, b],C).

Example 4.1.5 Let n ∈ N. Then Fn is the set of all ordered lists of elements of
F ,

(4.3) x = (xn) = (x1, · · · , xn)

with each xj ∈ F .
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Writing x (n) for xn we see that one way to think of these tuples is as functions

x : {1, · · · , n} → F.

Thus Fn is just V ({1, · · · , n} , F ), and so Fn is a vector space over F as described
in Example 4.1.1.

Example 4.1.6 Let F∞ be the set of all infinite sequences.

(4.4) x = (xn) = (x1, x2, x3, . . .)

with each xj ∈ F .

Writing x (n) for xn we see that a sequence is a function x : N → F , where
N = {1, 2, . . .} is the set of natural numbers. Thus F∞ is just V (N, F ) and so F∞

is a vector space over F as described in Example 4.1.1.
You may think of sequences as signals measured at times t, 2t, 3t, . . .. Then

(xn) + (yn) is the superposition of two signals and c(xn) is an amplified signal.

Example 4.1.7 . Let F∞(q) be the set of x ∈ F∞ with period q, where q is a
given natural number. Thus x in F∞(q) has the property

xn+q = xn for n = 1, 2, . . .

One of the exercises for this section is to show that F∞(q) is a subspace of F∞.

Notation 4.1.8 Let X, Y be sets. The expression X ∩ Y means the set of x that
are members of both X and Y .

Example 4.1.9 Let V and W be subspaces of a vector space U over F . Then
V ∩W is a subspace of U .

To see this, we note first that 0 ∈ V ∩W . Now we apply Lemma 4.1.4. Let v, w
be in V ∩W . Then v + w and cv are in V (for given c ∈ F ), because v, w are in V .
Similarly v + w and cw are in W . So v + w and cv are in V ∩W . This shows that
V ∩W is a subspace of U .

As a concrete example, let V,W be distinct planes through 0 in U = R3. Then
V ∩W is a line through 0.

4.2 Exercises

1. Recall that F∞(q) consists of periodic sequences in F∞, xn+q = xn. Show
that F∞(q) is a subspace of F∞.
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2. Let V be a vector space over F a field of scalars. Show that a nonempty
subset W ⊆ V is a subspace if and only if, whenever a, b ∈ F and u, v ∈ W, it
follows that au + bv ∈ W .

3. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 = u1 = 0

}
. Is M a subspace? Ex-

plain.

4. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 ≥ u1

}
. Is M a subspace? Explain.

5. Let w ∈ R4 and let M =
{
u = (u1, u2, u3, u4) ∈ R4 : 〈w,u〉 = 0

}
. Is M a

subspace? Explain.

6. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : ui ≥ 0 for each i = 1, 2, 3, 4

}
. Is M a

subspace? Explain.

7. Let w,w1 be given vectors in R4 and define

M =
{
u = (u1, u2, u3, u4) ∈ R4 : 〈w,u〉 = 0 and 〈w1,u〉 = 0

}
.

Is M a subspace? Explain.

8. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace? Explain.

9. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1

}
. Is M a subspace? Ex-

plain.

10. Let M = {(x, y) : xy = 0} . Is M a subspace of R2?

11. Let w ∈ R3 be a given vector. Let M =
{
u ∈ R3 : w × u = 0

}
. Is M a

subspace of R3?

12. Let u,v be given vectors in R3 and let M =
{
x ∈ R3 : 〈u× v,x〉 = 0

}
. Show

that M is a subspace of R3 and describe M geometrically.

13. Let M denote all vectors of the form (x + y, x− y) where x, y ∈ R. Show that
M is a subspace of R2. Next show that M actually equals R2.

14. Let M ⊆ R3 consist of all vectors of the form

(x + y − z, x + y + 2z, 2x + 2y + z)

where x, y, z ∈ R. Show that M is a subspace of R3. Is M equal to R3? Hint:
Is (0, 0, 1) in M?

15. Suppose {x1, · · · , xk} is a set of vectors from a vector space V with field of
scalars F. The span of these vectors, denoted as span {x1, · · · , xk} , consists
of all expressions of the form c1x1 + · · ·+ cnxn where the ck ∈ F . Show that
span {x1, · · · , xk} is a subspace of V .

16. Let V be a vector space over the field of scalars F and suppose W,U are two
subspaces. Define

W + U = {w + u : u ∈ U,w ∈ W} .

Is W + U a subspace?
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17. Show that R is a vector space over Q, where Q is the field of scalars consisting
of the rational numbers.

18. Show that the set of numbers of the form a + b
√

2, where a, b ∈ Q is a vector
space over Q. Show that these numbers form a subspace of R where R is a
vector space over the field of scalars Q. Show that the set of numbers of this
form is also a field.

19. Consider the set of all polynomials of degree no larger than 4 having real
coefficients. With the usual additions and scalar multiplications, show that
this set is a vector space over R.

20. Let F be a field and consider F [x] , the set of all polynomials having coef-
ficients in F . Thus a typical thing in F [x] would be an expression of the
form

anxn + an−1x
n−1 + · · ·+ a1x + a0

where each ak ∈ F . Define addition and multiplication by scalars in the usual
way and show that F [x] is a vector space.

21. Let V, W be vector spaces over the field F and let T : V → W be a function
which satisfies

T (au + bv) = aTu + bTv

whenever a, b ∈ F and u, v ∈ V. Such a function is called a linear transfor-
mation or linear mapping. Let

U = {u ∈ V : Tu = 0} .

Show that U is a subspace of V . This subspace is called ker (T ) . It is referred
to as the kernel of T and often as the null space of T . Also define

TV = {Tv : v ∈ V } .

Show that TV is a subspace of W. This subspace is called the image of T
and will be denoted as Im (T ).

22. ↑In the context of the above problem, show that a linear mapping is one to
one if and only if whenever T (v) = 0 it follows that v = 0.

23. Let D denote the derivative. Thus this is defined on S [a, b] by Df = df
dt .

Show that this is a linear transformation and find ker (D).

24. Let V, W be two vector spaces having a field of scalars F . Denote by L (V,W )
the set of linear transformations which map V to W . For S, T two of these,
define T + S as follows.

(T + S) (u) = T (u) + S (u)

and for c ∈ F, T ∈ L (V, W ) define cT by

(cT ) (u) = c (Tu) .

The idea is that if you tell what a function does, you have told what the
function is. With this definition, show that L (V,W ) is a vector space over
the field of scalars F .
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4.3 Linear span and independence

Throughout this chapter, if we mention V without qualification, then V is a vector
space over a given field F .

A key idea in describing the ‘structure’ of V is the linear span of a set of vectors.
Recall that a linear combination of vectors, v1, . . . , vm in V is an expression

a1v1 + · · ·+ amvm (each aj ∈ F ).

Definition 4.3.1 Let v1, . . . , vm be in V . The set

span{v1, . . . , vm} = {a1v1 + · · ·+ amvm : each aj ∈ F}

is called the linear span of v1, . . . , vm.

Notation 4.3.2 Recall from Chapter 1 that we write {x1, . . . , xk} for the set whose
members are x1. . . . , xk.

The definition is most easily digested via simple examples.

Example 4.3.3 span{0} = {0}.
For the span consists of all a0 (a ∈ F ). This reduces to just one vector, namely

0.

Example 4.3.4 Let v ∈ R3,v 6= 0. Then span{v} is the straight line (infinite in
both directions) through 0 and v.

Here we are repeating an observation from Chapter 1, since

span{v} = {tv : t ∈ R}.

Example 4.3.5 Let v ∈ R3,w ∈ R3,v 6= 0, w 6∈ span{v}. Let P be the plane
through the points 0,v,w. Then

(4.5) span{v,w} = P.

Observation 4.3.6 It is obvious that span{v,w} ⊂ P . To get the ‘reverse inclu-
sion’ P ⊂ span{v,w} required to complete the proof of 4.5, we take any p in P and
‘draw’ the line {p + tv : t ∈ R}. At some point, say uw, this line crosses span{w}.
Now p = −tv + uw.

µ

-

v

w

p

uw0
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Example 4.3.7 Let v = (1, 1, 2) and w = (0, 2, 1) in F 3
5 . Both v and w lie in the

‘plane’
P = {v ∈ F 3

5 : x1 + 2x2 + x3 = 0},
which has 25 elements. There is no repetition among the list a1v + a2w, a1, a2 in
F5 (otherwise w would be a scalar multiple of v). So span{v,w} ⊂ P, and both
sets in this ‘inclusion’ have 25 elements. We get

span{v,w} = P.

Example 4.3.8 The differential equation

(4.6) f ′′ + f = 0

in S[0, 2π] has two obvious solutions,

f1(x) = sin x, f2 = cos x.

Clearly f2 6∈ span{f1} (consider the graphs at 0). As we shall see in Chapter 5,
every solution of 4.6 is of the form

f(x) = a1 sin x + a2 cosx.

So the set of solutions of 4.6 in S[0, 2π] is span{f1, f2}.
The following simple lemma is often useful.

Lemma 4.3.9 Let v1, . . . , vm be vectors in V . Then

W = span{v1, . . . , vm}

is a subspace of V .

Proof. We recall that it is only necessary to show that 0 ∈ W (which is obvious)
and

(i) v + w ∈ W

(ii) cv ∈ W

for any v, w in W and c ∈ F . Let v = a1v1 + · · ·+amvm and w = b1w1 + · · ·+ bmvm

with aj , bj in F . Then

v + w = (a1 + b1)v1 + · · ·+ (am + bm)vm ∈ span {v1, . . . , vm} .

cv = (ca1)v1 + · · ·+ (cam)vm ∈ span {v1, . . . , vm} .

By definition of W , both (i) and (ii) hold. 2

When we have the above situation, namely,

W = span {v1, · · · , vm} ,

we call {v1, · · · , vm} a spanning set for W. Warning: Some of the vectors in
the spanning set may be ‘redundant” as we shall see below. It may be that W =
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span {v1, · · · , vm−1} , for instance. We also say that the vectors v1, · · · , vm span
W .

We refer to an equation

x1v1 + · · ·+ xmvm = b

(where v1, . . . , vm, b are given in V and x1, . . . , xm are ‘unknown’ scalars) as a
vector equation. Obviously if V = Fn, the vector equation is equivalent to a
system of linear equations. For instance, the vector equation

x1

(
1
2

)
+ x2

(
3
4

)
=

(
5
6

)

is equivalent to the linear system

x1 + 3x2 = 5
2x1 + 4x2 = 6.

We will describe in Chapter 5 how to solve any linear system.

Definition 4.3.10 Let v1, . . . , vm be in V . We say that v1, . . . , vm is a linearly
independent set if the only solution of the equation

(4.7) x1v1 + · · ·+ xmvm = 0,

with x1, . . . , xm in F , is x1 = 0, . . . , xm = 0.

We sometimes express this as ‘4.7 has only the trivial solution’. A set of
vectors that is not linearly independent is said to be linearly dependent.

The following lemma gives a useful equivalent statement.

Lemma 4.3.11 The set of vectors {v1, . . . , vm} is linearly independent if and only
if v1 6= 0 and for j ≥ 2, no vj is a linear combination of v1, · · · , vj−1.

Proof. Suppose first that {v1, . . . , vm} is linearly independent. Then v1 6= 0
since otherwise

1v1 + 0v2 + · · ·+ 0vm = 0.

This violates the linear independence of {v1, . . . , vm}. If some vj is a linear combi-
nation of v1, · · · , vj−1, say vj = c1v1 + · · ·+ cj−1vj−1, then

0 = c1v1 + · · ·+ cj−1vj−1 + (−1) vj

violating linear independence.
Conversely, suppose v1 6= 0 and no vj is a linear combination of v1, · · · , vj−1.

Suppose
0 = c1v1 + · · ·+ cmvm.

Then if not all the scalars ci are zero, let ck be the last in the list c1, c2, · · · , cm

which is nonzero. Since v1 6= 0, it follows that k ≥ 2. Then

vk = −c−1
k (c1v1 + · · ·+ ck−1vk−1)

which violates the second condition that no vj is a linear combination of the pre-
ceding vectors. Hence c1 = c2 = · · · = cm = 0. This proves the lemma.2
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Example 4.3.12 Let v1, . . . , vk be in V . The set

0, v1, . . . , vk

is linearly dependent.

We need only note that the nontrivial solution

1 · 0 + 0 · v1 + · · ·+ 0 · vk = 0

implies the set is dependent.
Note that the order in which a sequence of vectors is listed does not affect the

linear independence or linear dependence.

Example 4.3.13 Let v ∈ V, v 6= 0. The set with one member, v, is a linearly
independent set.

For the only solution of the equation

x1v = 0

is x1 = 0.

Example 4.3.14 Let v ∈ V, v 6= 0 and let w ∈ V, w 6∈ span{v}. Then {v, w} is a
linearly independent set.

Consider the equation

(4.8) x1v + x2w = 0.

If x2 6= 0, then w = (−x1x
−1
2 )v. This is impossible, since w /∈ span{v}. If x2 = 0,

then x1v = 0 and x1 = 0. So the only solution of 4.8 is the trivial solution.
To visualize this example, the set {v,w} in R3 is linearly independent when

v 6= 0 and w is outside the line span{v}.

Example 4.3.15 Let v1,v2,v3 be vectors in R3,v1 6= 0, v3 not in the plane
span{v1,v2}. Then v1,v2,v3 is a linearly independent set, since (ii) does not hold
in Lemma 3.1.10.

How do we test the linear independence of a set in Fn, e.g. 4 given vectors
in F 5? There is an algorithm for this, row reduction, which we have already
practiced in Chapter 3. It can be done by hand in simple cases, or using Maple.
Here is an example.

Example 4.3.16 Consider the vectors



1
2
0
5


 ,




0
2
3
5


 ,




1
1
2
6




Determine whether these vectors are independent. If they are not independent, find
a linear relation which exhibits one of them as a linear combination of the others.
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This is easy using Lemma 3.1.10. Make these three vectors the columns of a 4×3
matrix and row reduce to row reduced echelon form. You can do this by hand or you
can use Maple or some other computer algebra system. These computer algebra
systems do routine row reductions very well. Lemma 3.1.10 says that all linear
relations are preserved in the row reduced echelon form and this form is such that
all linear relations are easily seen. After row operations, the row reduced echelon
form is 



1 0 0
0 1 0
0 0 1
0 0 0


 ,

and so the vectors given at the outset are linearly independent, because this is the
case with the columns of the row reduced echelon form.

Example 4.3.17 Here are some vectors.



2
2
1
1


 ,




1
3
1
1


 ,




−12
−8
−5
−5


 ,




9
19
7
7




Determine whether they are independent and if they are not, find a linear relation
which gives one of the vectors as a linear combination of the others.

Make the vectors the columns of a matrix and row reduce to row reduced echelon
form. Then use Lemma 3.1.10. Using Maple, the row reduced echelon form of this
matrix is 



1 0 −7 2
0 1 2 5
0 0 0 0
0 0 0 0


 ,

and so the third column is −7 times the first plus 2 times the second. This is
apparent from the above row reduced echelon form. Thus by Lemma 3.1.10, the
same is true of the columns of the original matrix.

−7




2
2
1
1


 + 2




1
3
1
1


 =




−12
−8
−5
−5




You should note that there is also a linear relation for the fourth column as a linear
combination of the first two.

Example 4.3.18 Maple gives the row reduced form of



1 2 3 2
3 −1 1 1
5 2 6 2
1 0 4 2
2 1 4 0



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as 


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




.

So (1, 3, 5, 1, 2), (2,−1, 2, 0, 1), (3, 1, 6, 4, 4), (2, 1, 2, 2, 0) is a linearly independent set.

Proposition 4.3.19 A set of n vectors in Fm, with n > m, is linearly dependent.

Proof. Let the vectors be columns of an m × n matrix. Then as pointed out
earlier, the number of nonzero rows in its row reduced echelon form equals the
number of pivot columns. However, there are at most m nonzero rows, and so, not
all these columns can be pivot columns. In reading from left to right, pick the first
one which is not a pivot column. By the description of the row reduced echelon form,
this column is a linear combination of the preceding columns. By Lemma 4.3.11,
the set of columns is not linearly independent. This proves the proposition.2

Example 4.3.20 Consider 


1 1 1 8
1 2 1 15
1 1 2 6


 .

By Proposition 4.3.19, the columns cannot be linearly independent. By Lemma
4.3.11, some column is a linear combination of the preceding columns. Find such a
column and exhibit it as a linear combination of the preceding columns.

The row reduced echelon form is



1 0 0 3
0 1 0 7
0 0 1 −2


 .

Therefore,

−3 (first column) + (−7) (second column)

+2 ( third column) + (fourth column) = 0.

This is obvious in the row reduced echelon form. By Lemma 3.1.10 this is also true
of the columns in the original matrix. Thus

−3




1
1
1


 + (−7)




1
2
1


 + 2




1
1
2


 +




8
15
6


 =




0
0
0


 .

You might not have seen this non trivial linear relationship right away, but the
row reduced echelon form makes it immediately clear.
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4.4 Exercises

1. Here are three vectors. Determine whether they are linearly independent or
linearly dependent. 


1
2
0


 ,




2
0
1


 ,




3
0
0




2. Here are three vectors. Determine whether they are linearly independent or
linearly dependent. 


4
2
0


 ,




2
2
1


 ,




3
0
1




3. Here are three vectors. Determine whether they are linearly independent or
linearly dependent. 


1
2
3


 ,




4
5
1


 ,




3
1
0




4. Here are four vectors. Determine whether they span R3. Are these vectors
linearly independent?




1
2
3


 ,




4
3
3


 ,




3
1
0


 ,




2
4
6




5. Here are four vectors. Determine whether they span R3. (That is, find
whether the span of the vectors is R3.) Are these vectors linearly independent?




1
2
3


 ,




4
3
3


 ,




3
2
0


 ,




2
4
6




6. Here are three vectors in R3 and a fourth vector.



1
1
2







0
1
1







7
5
12


 ,




2
1
0




Determine whether the fourth vector is in the linear span of the first three.

7. Here are three vectors in R3 and a fourth vector.



1
1
2







0
1
1







7
5
11


 ,




2
1
2




Determine whether the fourth vector is in the linear span of the first three.
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8. Here are three vectors in R3 and a fourth vector.



1
0
2







1
1
1







1
−1
3


 ,




5
6
4




Determine whether the fourth vector is in the span of the first three.

9. The following are 3× 4 matrices and so you know by Proposition 4.3.19 that
the columns are not independent. Find a subset of these columns which is
independent, which is as large as possible, and write one of the columns as a
linear combination of the others.

(a) 


3 2 −4 4
1 1 −1 1
1 1 −1 2




(b) 


3 6 2 4
2 4 2 3
1 2 1 2




(c) 


3 6 2 11
2 4 2 8
1 2 1 4




10. The following are 3× 5 matrices and so you know by Proposition 4.3.19 that
the columns are not independent. Find a subset of these columns which is
independent, which is also as large as possible. Write one of the columns as a
linear combination of the others.

(a) 


3 2 −4 3 −4
2 −3 −7 −11 −7
1 1 −1 2 −1




(b) 


3 2 −4 3 4
2 −3 −7 −11 3
1 1 −1 2 2




(c) 


3 2 −4 4 −7
2 −3 −7 3 −13
1 1 −1 2 −1




11. Let B be an m× n matrix. Show that

ker (B) = {x ∈ Rn : Bx = 0}
is a subspace of Rn. Now suppose that A is an m×m invertible matrix. Show
that ker (AB) = ker (B).
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12. Consider the functions
{
1, x, x2, x3, x4

}
in the vector space of functions defined

on (0, 1). Show that these vectors are linearly independent. Hint: You need
to consider a + bx2 + cx3 + dx4 = 0 and show that all the constants equal 0.
A fun way to do this is to take derivatives of both sides several times.

13. Consider the functions
{
1 + x2, 1 + x + x2, 1 + 2x2

}
in the vector space of func-

tions defined on (0, 1). Show that these vectors are linearly independent.

14. Suppose {x1, · · · ,xm} are some vectors in Rn such that

〈xk,xj〉 = δkj

where is the Kronecker delta

δkj =
{

1 if k = j
0 if k 6= j

Show that this must be an independent set of vectors. Hint: Suppose

c1x1 + · · ·+ cmxm = 0

and take the inner product of both sides with xk. Explain why the properties
of the inner product imply ck = 0. Then note that k was arbitrary.

15. Let the vector space Q
(√

3
)

consist of all numbers of the form a+ b
√

3 where
a, b are rational numbers, and let the field of scalars be Q with the usual
rules of addition and multiplication. Show that this is a vector space, that
span

{
1,
√

3
}

= Q
(√

3
)
, and that the vectors 1,

√
3 are linearly independent.

16. Let a 6= b with neither a nor b equal to 0. Consider the two vectors in R2,

(
a
a2

)
,

(
b
b2

)
.

Show that these vectors are linearly independent. Generalize this to the case
of three distinct points, each non-zero.

17. Suppose that (
x
y

)
,

(
a
b

)

are two vectors in R2. Show that this set of vectors is linearly independent if
and only if xb− ay 6= 0.

18. For a vector in F∞

x = (x1, x2, · · · ) ,

denote by Pnx the vector in Fn given by

Pnx = (x1, · · · , xn) .

Suppose that x1, · · · ,xn are each vectors in F∞ and {Pnx1, · · · , Pnxn} is an
independent set in Fn. Show that then x1, · · · ,xn are linearly independent
in F∞.
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19. Let V consist of all continuous functions which are periodic of period 2π.
Show that this is a vector space. Next consider the functions

{sinx, sin 2x, sin 3x, · · · } .

Show that this is a linearly independent set of vectors in V in the sense that
any finite subset of these is linearly independent. Hint: You might want to
make use of the identity

∫ π

−π

sin (mx) sin (nx) dx = 0

if n,m are distinct positive integers.

20. Show that a set of vectors is linearly independent if and only if none of the
vectors in the set is a linear combination of the others.

21. Supposef (x) and g (x) are two differentiable functions defined on an interval
(a, b). Thus they are vectors in the vector space of functions defined on (a, b).
Show that they are linearly independent if (f/g)′ (x) 6= 0 for some x ∈ (a, b).

22. Here are three vectors in F 3
3




1
2
0


 ,




2
1
0


 ,




1
0
1




Are these three vectors linearly independent? Recall that F3 refers to the field
of residue classes. What if you considered the three vectors in R3,




1
2
0


 ,




2
1
0


 ,




1
0
1




Are these vectors linearly independent?

23. Here is a matrix whose entries are in F3. Find its row reduced echelon form.



1 0 1
0 1 1
1 1 0




24. In Example 4.3.7 explain why the ‘plane’ P has exactly 25 elements.

4.5 Basis and dimension

A non zero vector space V over F is said to be finite-dimensional if

(4.9) V = span{v1, . . . , vn}
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for some vectors v1, . . . , vn in V . The dimension1 of V is the smallest number n
occurring in 4.9 for any choice of n. With such a choice, v1, . . . , vn is a linearly
independent set. Clearly v1 6= 0 since otherwise

V = span{v2, . . . , vn}.
Moreover, vj 6∈ span{v1, . . . , vj−1}. Otherwise, in an expression

v = a1v1 + · · ·+ ajvj + · · ·+ anvn,

we could replace vj with b1v1 + · · ·+ bj−1vj−1, leading to, say,

v = c1v1 + · · ·+ cj−1vj−1 + aj+1vj+1 + · · ·+ anvn

and to V = span{v1, . . . , vj−1, vj+1, . . . , vn}.

Definition 4.5.1 Suppose that

V = span{v1, . . . , vn}
and that v1, . . . , vn is a linearly independent set. We say that v1, . . . , vn is a basis
of V .

We shall see shortly that any two bases2 of V have the same number of elements,
so that dimension, which is written as dimV , is just the number of elements in any
basis of V .

Example 4.5.2 Clearly in R3 a line L = span{v1},v1 6= 0 has dimension 1 (v1

is a basis of L). A plane P = span{v1,v2} has dimension 2 (here v1 6= 0,v2 6∈
spanv1). It is obvious that no basis would have 1 element, and therefore v1,v2 is
a basis of P .

Example 4.5.3 A basis for Fn is the set

ej = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

Certainly
Fn = span{e1, . . . , en}

since any (x1, . . . , xn) in Fn can be written

x = x1e1 + · · ·+ xnen.

The linear independence of e1, . . . , en is obvious. We call this particular basis the
standard basis of Fn.

If vectors v1, . . . , vm are given and V = span{v1, . . . , vm}, the discard pro-
cess means that we discard v1 if v1 = 0 and for j > 1, we discard vj if vj ∈
span{v1, . . . , vj−1}. Beginning with a spanning set of vectors, this process can be
applied till a basis is obtained. This is because every time a vector is discarded,
those vectors which remain still span V .

1If V consists of only the zero vector, it isn’t very interesting, but it is convenient in this case
to say that the dimension is 0.

2Bases is the plural of basis. It is much easier to say than basiss which involves a lot of hissing.
There are other words which end in an s or an s sound for which the plural is not obtained by
simply adding another s. Hippopotamus is one which comes to mind. So is mouse.
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Lemma 4.5.4 If v1, . . . , vn is a basis of V and w1, . . . , wm is a linearly independent
set in V , then m ≤ n.

Proof. Since wm ∈ span{v1, . . . , vn}, the set wm, v1, . . . , vn is linearly depen-
dent, and its linear span is V . Applying the discard process to the above list
results in wm, vi1 , . . . , vik

, with k ≤ n− 1 a basis of V . Repeat the procedure with
wm−1, wm, vi1 , . . . , vik

. The discard process gives a basis wm−1, wm, vi1 , . . . , vjs
of

V, s ≤ n−2. After further steps we reach a basis w2, . . . , wm−1, wm, va, vb, . . . Since
w1 is not a combination of w2, . . . , wm−1, at least one vj is still left. We have
discarded at least m− 1 of the vj . So m− 1 ≤ n− 1.

This is such an important result that we give another proof of it. Suppose to
the contrary that m > n. Then by assumption, there exist scalars cji such that
wi =

∑n
j=1 cjivj , i = 1, · · · ,m. Thus the matrix whose jith entry is cji has more

columns than rows. It follows from Corollary 3.2.13 that there exists a non-zero
vector x ∈ Fm such that

∑m
i=1 cjixi = 0 for each j. Hence

m∑

i=1

xiwi =
m∑

i=1

xi

n∑

j=1

cjivj =
n∑

j=1

(
m∑

i=1

cjixi

)
vj =

n∑

j=1

0vj = 0

which contradicts the linear independence of the vectors w1, . . . , wm. Therefore,
m ≤ n as claimed. 2

Note that it was only necessary to assume that v1, · · · , vn is a spanning set.
Thus in words, the above says roughly that spanning sets have at least as many
vectors as linearly independent sets.

Corollary 4.5.5 Any two bases of a finite-dimensional vector space V contain the
same number of elements.

Proof. Let v1, . . . , vn and w1, . . . , wm be two bases of V . By Lemma 4.5.4,
m ≤ n. Reversing roles of the vj and the wk, we obtain n ≤ m. Hence n = m. 2

Definition 4.5.6 The dimension of a finite-dimensional vector space V , written
dim V , is the number of vectors in any basis of V . By convention, the space {0}
has dimension 0.

Of course dim Fn = n (we already know a basis with n elements). See Example
4.5.3. The following is a useful lemma when dealing with bases.

Lemma 4.5.7 If {v1, · · · , vm} is a linearly independent set of vectors and if w is
not in span {v1, · · · , vm} , then {v1, · · · , vm, w} is also a linearly independent set of
vectors.

Proof. Suppose
c1v1 + · · ·+ cmvm + dw = 0.

If d = 0, then each cj = 0 because of linear independence of v1, · · · , vm. But
if d 6= 0, a contradiction is obtained immediately because then it is clear that
w ∈ span {v1, · · · , vm}. Hence c1 = · · · = cm = d = 0. 2
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Corollary 4.5.8 Let W be a nonzero subspace of an n dimensional vector space
V . Then W has a basis. Furthermore, every linearly independent set of vectors in
W can be extended to a basis of W .

Proof. Let W be a nonzero subspace of an n dimensional vector space V . Pick
w1 ∈ W such that w1 6= 0. Then {w1} is linearly independent. Suppose you have
obtained {w1, · · · , wk} where k ≥ 1, and the set of vectors is independent. Then if

span {w1, · · · , wk} = W,

stop. This is the basis. If span {w1, · · · , wk} 6= W, there exists wk+1 in W, wk+1 /∈
span {w1, · · · , wk} . By Lemma 4.5.7 {w1, · · · , wk, wk+1} is linearly independent.
Continue this way till for some m ≥ 1, span {w1, · · · , wm} = W. The process must
terminate in finitely many steps because, if it did not do so, you could obtain
an independent set of vectors having more than n vectors, which cannot occur by
Theorem 4.5.5. The last assertion of the corollary follows from the above procedure.
Simply start with the given linearly independent set of vectors and repeat the
argument. This proves the corollary. 2

We often wish to find a basis for a subspace. A typical case is ker (A) where A
is an m× n matrix. See Problem 4 on Page 104.

Definition 4.5.9 For A an m×n matrix, ker (A) consists of all the vectors x such
that Ax = 0. To find ker (A) , solve the resulting system of equations.

Example 4.5.10 Here is a matrix.

A =




2 2 16 6 14
3 3 24 9 21
1 1 8 3 7
2 4 26 8 18




Find a basis for ker (A).

You want to find all the vectors x such that Ax = 0. The augmented matrix for
the system of equations to be solved is then




2 2 16 6 14 0
3 3 24 9 21 0
1 1 8 3 7 0
2 4 26 8 18 0


 .

The row reduced echelon form is



1 0 3 2 5 0
0 1 5 1 2 0
0 0 0 0 0 0
0 0 0 0 0 0




and so you see there are three free variables. The solution to the equation Ax = 0
is then

x1 = −3x3 − 2x4 − 5x5, x2 = −5x3 − x4 − 2x5
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You can write the above equations as



x1

x2

x3

x4

x5




=




−3x3 − 2x4 − 5x5

−5x3 − x4 − 2x5

x3

x4

x5




.

Written as a span, the right side is of the form

x3




−3
−5
1
0
0




+ x4




−2
−1
0
1
0




+ x5




−5
−2
0
0
1




, x3, x4, x5 ∈ R

= span








−3
−5
1
0
0




,




−2
−1
0
1
0




,




−5
−2
0
0
1








.

Note that the above three vectors are linearly independent and so these vectors are
a basis for ker (A).

Corollary 4.5.11 Let dim V = n. Any linearly independent set v1, . . . , vn in V is
a basis of V .

Proof. Suppose not. Then there exists v ∈ V, v 6∈ span{v1, . . . , vn}. Now by
Lemma 4.5.7 we have a linearly independent set v1, . . . , vn, v with n + 1 elements,
which contradicts Lemma 4.5.4. 2

The following is a useful algorithm for extending a linearly independent set to
form a basis.

Algorithm 4.5.12 An algorithm for finding a basis starting with a linearly inde-
pendent set in the case that V = Rn is to form the matrix

(
u1 · · · um e1 · · · en

)

which has the indicated vectors as columns. Then Rn equals the span of these
columns. Obtain the row reduced echelon form of this matrix. The first m columns
become e1, · · · , em respectively, thanks to Lemma 3.1.10, because they are linearly
independent. Thus none of u1, · · · ,um can be a linear combination of the others,
and so they will all be pivot columns. Then the pivot columns of the above matrix,
which include the uk, yield a basis for Rn.

Example 4.5.13 Here is a linearly independent set of vectors in R4.



1
2
1
0


 ,




2
2
1
0


 .

Extend this set to a basis for Rn.
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As indicated above, you can do this by finding the row reduced echelon form for



1 2 1 0 0 0
2 2 0 1 0 0
1 1 0 0 1 0
0 0 0 0 0 1


 .

Doing the necessary row operations or letting a computer algebra system do it for
us, this row reduced echelon form is




1 0 −1 0 2 0
0 1 1 0 −1 0
0 0 0 1 −2 0
0 0 0 0 0 1




which is sufficient to identify the pivot columns. Therefore, a basis for R4 is



1
2
1
0


 ,




2
2
1
0


 ,




0
1
0
0


 ,




0
0
0
1


 .

A basis of V can be used as a frame of reference, in the following sense. Let
β = {v1, . . . , vn} be a basis of V . Then every v ∈ V can be written in one and only
one way as

(4.10) v = a1v1 + · · ·+ anvn (aj ∈ F ).

We already know that such a1, . . . , an exist in F . If

v = b1v1 + · · ·+ bnvn,

then
(a1 − b1)v1 + · · ·+ (an − bn)vn = 0.

By linear independence, a1 = b1, . . . , an = bn. There is no ‘alternative’ to the field
elements aj used in 4.10. So we may write

[v]β =




a1

...
an




and call [v]β the coordinate vector of v in the basis β.

Example 4.5.14 Let P be a plane in R3, P = span{u,w}. If v ∈ P , then
v = x1u + x2w, say, and v has coordinate vector

[v]β =
(

x1

x2

)

in the basis β = {u,w}.
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We shall see later that for a particular application of linear algebra there is a
basis that best fits the application.

The earliest example is perhaps Euler’s choice of a frame of reference in a rotating
body to be a set of axes fixed in the body ; see Johns (2005).

Definition 4.5.15 A vector space that is not finite-dimensional is said to be infinite-
dimensional. In view of Lemma 4.5.4, V is infinite-dimensional if we can con-
struct a linearly independent set w1, . . . , wm in V with arbitrarily large m.

As an example of an infinite-dimensional vector space, consider the following.

Example 4.5.16 S[a, b] is infinite-dimensional whenever a < b.

For the vectors f0(x) = 1, f1(x) = x, . . . , fm(x) = xm form a linearly indepen-
dent set. Whenever

a0f0 + a1f1 + · · ·+ amfm = 0,

the polynomial a0 +a1x+ · · ·+amxm is 0 for every x in (a, b). This contradicts the
fundamental theorem of algebra if any of the coefficients a0, a1, . . . , am is nonzero.

4.6 Linear difference equations

In this section we consider a subspace of the sequence space F∞. Let a1, . . . , am be
given elements of F, am 6= 0. Let V be the set of all sequences (xn) which satisfy
the linear difference equation (for every k ≥ 1)

(4.11) xm+k + a1xm−1+k + · · ·+ am−1xk+1 + amxk = 0.

Example 4.6.1 x1 = x2 = 1 and for m ≥ 1,

xm+2 = xm+1 + xm.

A sequence of this kind with any choice of x1 and x2 is called a Fibonacci sequence.

Lemma 4.6.2 V is an m-dimensional subspace of F∞.

Proof. It is clear that if (xn) and (yn) are in V , then so too are (xn + yn) and
(cxn), whenever c ∈ F .

We now exhibit a basis. Let

vj = (0, . . . , 0, 1, 0, . . . , 0, vj,m+1, vj,m+2, . . .)

where the 1 is in jth place and the entries from vj,m+1 onwards are constructed
successively according to the rule 4.11. Clearly v1, . . . ,vm is a linearly independent
set in V . See Problem 18 on Page 92. Now let

z = (z1, z2, . . .)

be any element of V , and

z′ = z− z1v1 − · · · − zmvm ∈ V.
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Since z′n = 0 for n = 1, . . . ,m, we find from 4.11 that z′m+1 = 0, then z′m+2 = 0,
and so on. So z′ = 0 and z = z1v1 + · · ·+ zmvm. This proves that v1, . . . ,vm is a
basis of V .

A basis that lets us write the members of V in a neater way can be given at
once if the polynomial

P (z) = zm + a1z
m−1 + · · ·+ a2z

2 + · · ·+ am−1z + am

has distinct zeros z1, . . . , zm in F . In this case, we can show that the vectors

(4.12) wj = (1, zj , z
2
j , z3

j , . . .) (j = 1, . . . , m)

form a basis of V . The vector wj is in V because zj satisfies P (z) = 0. Thus

zm
j + a1z

m−1
j + · · ·+ a2z

2
j + · · ·+ am−1zj + am = 0,

so zm
j is the correct term to place in the mth slot. Also

zm+1
j + a1z

m
j + · · ·+ a2z

3
j + · · ·+ am−1z

2
j + amzj

= zj

(
zm
j + a1z

m−1
j + · · ·+ a2z

2
j + · · ·+ am−1zj + am

)
= 0,

so zm+1
j is the correct entry for the m + 1 position. Continuing this way, we see

that wj ∈ V as claimed.
In order to show that w1, . . . ,wm are a basis, it suffices to verify that they are

linearly independent and then apply Corollary 4.5.11. The columns of the m ×m
matrix 



1 · · · 1
z1 · · · zm

z2
1 · · · z2

m
...

...
zm−1
1 · · · zm−1

m




form a linearly independent set. (We shall deduce this from the theory of determi-
nants in Chapter 7. See also Problem 26 below on Page 107.) For m = 2 or 3 it is
also easy to verify directly by finding the row reduced echelon form of the matrix.
Clearly then, w1, . . . ,wm is a linearly independent set in V . (Problem 18 on Page
92).

It follows that if u ∈ V, then u must be a linear combination of the wj . Thus

(4.13) uk = C1z
k−1
1 + C2z

k−1
2 + · · ·+ Cmzk−1

m

Example 4.6.3 Let F = R,

x1 = 1, x2 = 1, xk+2 = xk+1 + xk (k ≥ 1).

Then for k ≥ 1,

(4.14) xk =
1√
5

(
1 +

√
5

2

)k

− 1√
5

(
1−√5

2

)k

.
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The formula for xk does not obviously generate integers!
Here is why the above formula results. In the above notation, the polynomial

P (z) is z2 − z − 1 with zeros

z1 =
1 +

√
5

2
, z2 =

1−√5
2

.

Thus, with w1,w2 as in 4.12,

x = c1w1 + c2w2

for certain reals c1, c2. The given values x1 = 1, x2 = 1 impose on c1, c2 the
requirement to be solutions of

1 = c1 + c2,

1 = c1

(
1 +

√
5

2

)
+ c2

(
1−√5

2

)
.

It follows from solving this system of equations that

c1 =
1
2

+
1
10

√
5 =

1√
5

(
1 +

√
5

2

)
,

c2 =
1
2
− 1

10

√
5 = − 1√

5

(
1−√5

2

)
.

It follows that the solution is

xk =
1√
5

(
1 +

√
5

2

)(
1 +

√
5

2

)k−1

− 1√
5

(
1−√5

2

)(
1−√5

2

)k−1

=
1√
5

(
1 +

√
5

2

)k

− 1√
5

(
1−√5

2

)k

.

We began with a linear difference equation

xm+k + a1xm−1+k + · · ·+ am−1xk+1 + amxk = 0

and if the polynomial

(4.15) P (x) = xm + a1x
m−1 + · · ·+ am−1x + am

corresponding to this has m distinct roots, we were able to obtain solutions to the
difference equation as described above.

It suffices to consider, instead of 4.13, the following expression as a formula for
uk provided none of the zi = 0.

uk = C1z
k
1 + C2z

k
2 + · · ·+ Cmzk

m
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This is because

uk = C1z
k−1
1 + C2z

k−1
2 + · · ·+ Cmzk−1

m =
C1

z1
zk
1 + · · ·+ Cm

zm
zk
m

= C ′1z
k
1 + · · ·+ C ′mzk

m

and finding the Ci is equivalent to finding the C ′i. If you apply this to the above ex-
ample, you may find the desired formula appears more easily and with less algebraic
manipulations.

This illustrates the following procedure for solving linear difference equations in
the case where the roots to P (x) are distinct.

Procedure 4.6.3 Suppose x ∈ F∞ satisfies the linear difference equation

xm+k + a1xm−1+k + · · ·+ am−1xk+1 + amxk = 0,

and also suppose that there exist m distinct solutions z1, · · · , zm to the polynomial
equation

xm + a1x
m−1 + · · ·+ am−1x + am = 0.

Then there exist constants c1, · · · , cm such that

xk = c1z
k−1
1 + · · ·+ cmzk−1

m

If am 6= 0, then there exist constants c1, · · · , cm such that

xk = c1z
k
1 + · · ·+ cmzk

m

These constants ci only need to be chosen in such a way that the given values for
xk for k = 1, 2, · · · ,m are achieved. This may be accomplished by solving a system
of equations.

4.7 Exercises

1. Consider the following sets of vectors in R3. Explain why none of them is
linearly independent before doing any computations. Next exhibit some vector
as a linear combination of the others and give a basis for the span of these
vectors.

(a) 


1
−1
2


 ,



−1
1
−2


 ,




1
0
1


 ,




5
−3
8


 ,




3
−1
4




(b) 


1
−1
2


 ,




1
0
1


 ,




2
−1
3


 ,




5
−3
8


 ,




5
−3
6




(c) 


1
1
2


 ,




1
1
1


 ,




2
2
7


 ,




5
3
6


 ,




8
8
19






4.7. EXERCISES 103

2. Consider the following sets of vectors in R4. Explain why none of them is
linearly independent before doing any computations. Next exhibit some vector
as a linear combination of the others and give a basis for the span of these
vectors.

(a) 


1
1
2
0


 ,




1
0
2
1


 ,




2
3
4
−1


 ,




1
3
2
−2


 ,




1
1
2
1




(b) 


1
0
1
1


 ,




3
1
2
0


 ,




14
4
10
2


 ,




−12
−5
−7
3


 ,




1
0
2
1




(c) 


1
1
1
1


 ,




3
3
2
0


 ,




1
1
3
7


 ,




1
2
2
1


 ,




19
20
13
−2




(d) 


1
2
1
1


 ,




3
6
2
0


 ,




1
2
3
7


 ,




6
12
5
3


 ,




21
42
15
3




3. The following are independent sets of r < k vectors in Rk for some k. Extend
each collection of vectors to obtain a basis for Rk.

(a) 


1
2
1
0


 ,




0
1
0
1




(b) 


1
2
1







0
1
1




(c) 


0
0
1
2


 ,




1
0
1
0


 ,




0
1
0
1



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4. For A an m× n matrix, recall that

ker (A) = {x ∈ Rn : Ax = 0} .

Show that ker (A) is always a subspace. Now for each of the following matrices,
find a basis for ker (A) and give a description of ker (A) . Then find a basis for
the image of A, defined as {Ax : x ∈ Rn}, which is the same as the span of
the columns. (Why?)

(a) 


1 2 1 0 0
2 3 1 1 3
2 1 −3 1 2
1 1 −2 0 1




(b) 


2 2 2 4 22
3 3 3 3 27
1 1 1 3 13
2 2 4 4 26




(c) 


2 2 2 16 14
3 3 3 24 21
1 1 1 8 7
2 2 4 20 18




5. Let V denote all polynomials having real coefficients which have degree no
more than 2. Show that this is a vector space over R. Next show that{
1, x, x2

}
is a basis for V . Now determine whether

{
1, x + x2, 1 + x2

}
is a

basis for this vector space.

6. Let V be all polynomials having real coefficients, which have degree no more
than 3. Show that

{
1, x, x2, x3

}
is a basis. Now determine whether{

1 + x2 + 4x3, 1 + x + x2 + 6x3, x + x2 + 3x3, 1 + 4x3
}

is a basis. Hint: Take
a linear combination, set equal to 0, differentiate, and then let x = 0.

7. Let V consist of all polynomials of degree no larger than n which have coef-
ficients in R. Show that this is a vector space over R and find its dimension
by giving a basis.

8. In the situation of Problem 7 suppose there are n distinct points in R
{a1, a2, · · · , an} and for p, q ∈ V define

〈p, q〉 ≡ p (a1) q (a1) + · · ·+ p (an) q (an) .

Show that this is an inner product on V in the sense that the above product
satisfies the axioms 1.1 - 1.4 on Page 3.
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9. Let U,W be subspaces of a vector space V . Then U + W is defined to be
all sums of the form u + w where u ∈ U and w ∈ W . Show that U + W
is a subspace and also that the dimension of this subspace is no larger than
the sum of the dimensions of U and W . We recall that the dimension of a
subspace U is denoted as dim (U). Thus you wish to show that

dim (U + W ) ≤ dim (U) + dim (W ) .

Hint: At one point you might want to use the theorem that every linearly
independent set can be extended to a basis.

10. We recall that whenever U,W are subspaces, then so is U ∩W . In the context
of Problem 9, show that

dim (U + W ) = dim (U) + dim (W )

if and only if U ∩W = {0}.
11. Consider the set of n× n matrices having complex entries. Show that this is

a vector space over C. Find its dimension by describing a basis.

12. Let A be any n×n matrix with entries in any field F . Show that there exists
a polynomial

p (λ) = λn2
+ aλn2−1 + · · ·+ cλ + d

such that
p (A) = An2

+ aAn2−1 + · · ·+ cA + dI = 0

where the 0 is the zero matrix. (In fact, there exists a polynomial of degree
n such that this happens but this is another topic which will be presented
later.) Hint: Have a look at Problem 11.

13. Given two vectors in R2, (
a
b

)
,

(
x
y

)

show that they are a basis for R2 if and only if one is not a multiple of the
other. Is this still true in F 2 where F is an arbitrary field?

14. Show that in any vector space, a set of two vectors is independent if and only
if neither vector is a multiple of the other.

15. Give an example of three vectors in R3 which is dependent, but none of the
vectors is a multiple of any of the others.

16. Given two vectors in R2, (
a
b

)
,

(
x
y

)
,

show that they are a basis for R2 if and only if ay − bx 6= 0. Is this still true
in F 2 where F is an arbitrary field?

17. The set of complex numbers C is a vector space over R, the real numbers.
What is the dimension of this vector space?
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18. Consider the set of all complex numbers of the form a+ ib where a, b ∈ Q, the
field of rational numbers. Show that this set of complex numbers is a vector
space over the rational numbers and find a basis for this vector space.

19. Let F be a field and let p (λ) be a monic irreducible polynomial. This means
that p (λ) is of the form λn+an−1λ

n−1+· · ·+a1λ+a0, and the only polynomials
having coefficients in F which divide p (λ) are constants and constant multiples
of p(λ). For example you could have x7 − 11 with field of scalars equal to the
rational numbers. Suppose now that a ∈ G, a possibly larger field and that
p (a) = 0. For example you could have, in the given example, a = 7

√
11. Show

that the numbers F1 ≡ {g (a) : g is a polynomial having coefficients in F} is
a vector space over F of dimension n. Next show that F1 is also a field. You
can consider the next two problems for the existence of the larger field G.

20. Suppose p (λ) and q (λ) are two polynomials having coefficients in a field F .
The greatest common divisor of p (λ) , q (λ) sometimes denoted as (p (λ) , q (λ))
is defined to be the monic polynomial g (λ) such that g (λ) divides both p (λ)
and q (λ) and if l (λ) is any other polynomial, which divides both p (λ) and
q (λ) , then l (λ) divides g (λ) . Show that there exist polynomials m (λ) , n (λ)
such that (p, q) (λ) = n (λ) p (λ) + m (λ) q (λ) .

21. Suppose p (λ) is a monic polynomial of degree n for n > 1 having coefficients
in F a field of scalars. Suppose also that p (λ) is irreducible. Consider the
question whether there exists a larger field G such that a root of p (λ) is
found in G. Show that such a field must exist and can be identified with the
polynomials q (λ) of degree less than n having coefficients in F . Next show
that there exists a field G, possibly larger than F, such that p (λ) can be
written in the form

∏n
i=1 (λ− ai) , the ai ∈ G, possibly not all distinct. Next

show that if q (λ) is any polynomial, having coefficients in G, which divides
p (λ) , then q (λ) must be the product of linear factors as well. Hint: Define
multiplication as follows.

q1 (λ) q2 (λ) = r (λ)

where q1 (λ) q2 (λ) = k (λ) p (λ) + r (λ) with the degree of r (λ) less than the
degree of p (λ) or else r (λ) = 0. This larger field is called a field extension.

22. A geometric sequence satisfies an+1 = ran where r is the common ratio. Find
a formula for an given that a1 = 1.

23. Consider the following diagram which illustrates payments equal to P made
at equally spaced intervals of time.

P P P P P P P P P P0

The 0 at the far left indicates this is at time equal to 0. The payments are
made at the ends of equally spaced intervals of time as suggested by the
picture. This situation is known as an ordinary annuity. Suppose the bank,
into which these payments are made, pays an interest rate of r per payment
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period. Thus if there is an amount An at the end of the nth payment period,
then at the end of the next payment period there will be

An+1 = (1 + r)An + P

while at the end of the first payment period, there is A1 = P. Find a formula
for An which gives the amount in the bank at the end of the nth payment
period. Hint: This is a nonhomogeneous linear difference equation. To solve
this difference equation, write

An+2 = (1 + r)An+1 + P

and subtract to obtain the sort of problem discussed above,

An+2 − (2 + r)An+1 + (1 + r)An = 0.

along with the initial conditions A1 = P, A2 = P (2 + r).

24. Let A be an m × n matrix and let b be a m × 1 vector. Explain why there
exists a solution x to the system

Ax = b

if and only if the rank of A equals the rank of (A|b) . Recall that the rank of
a matrix is the number of pivot columns.

25. Let A be an m× n matrix. Col(A) will denote the column space of A which
is defined as the span of the columns. Row(A) will denote the row space of A
and is defined as the span of the rows. Show that a basis for Row(A) consists
of the nonzero rows in the row reduced echelon form of A while a basis of
Col(A) consists of the pivot columns of A. Explain why the dimension of
Row(A) equals the dimension of Col(A). Also give an example to show that
the pivot columns of the row reduced echelon form of A cannot be used as a
basis for Col(A).

26. Suppose you are given ordered pairs (x1, y1) , · · · , (xn, yn) where the xi are
distinct and the yi are arbitrary. The Lagrange interpolating polynomial is a
polynomial of degree n− 1 defined as

p (x) =
n∑

j=1

yj

∏
i 6=j (x− xi)∏
i 6=j (xj − xi)

.

For example, if n = 3, this polynomial is

y1
(x− x2) (x− x3)

(x1 − x2) (x1 − x3)
+ y2

(x− x1) (x− x3)
(x2 − x1) (x2 − x3)

+ y3
(x− x2) (x− x1)

(x3 − x2) (x3 − x1)
.

Show that the polynomial passes through the given points. Now observe that
the existence of a degree n− 1 polynomial

y = an−1x
n−1 + · · ·+ a1x + a0
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passing through the given points is equivalent to the existence of a solution
to the system of equations




xn−1
1 xn−2

1 · · · 1
xn−1

2 xn−2
2 · · · 1

...
...

...
xn−1

n xn−2
n · · · 1







an−1

an−1

...
a0


 =




y1

y2

...
yn




Explain why this requires that the rank of the n×n matrix above must be n.
Hence it has an inverse. Consequently, its transpose also is invertible.



Linear Mappings

5.1 Definition and examples

Most applications of linear algebra ultimately depend on the idea of a linear map-
ping, which we now define.

Definition 5.1.1 Let V and W be vector spaces over the field F . Let T : V → W
be a mapping having the property that

(5.1) T (a1v1 + a2v2) = a1T (v1) + a2T (v2)

whenever v1, v2 are in V and a1, a2 are in F . We say that T is a linear mapping.

The property 5.1 is called linearity of T . In this book we write Tv as an
abbreviation for T (v) (unless v is a compound expression, such as the case v =
a1v1 + a2v2). Note that T0 = 0 from 5.1.

Example 5.1.2 Let T : R2 → R2 be a rotation through angle θ. That is, Tx is
obtained by rotating v by θ anticlockwise. (The word ‘anticlockwise’ is left implicit
from now on.)

Linearity can always be seen as two properties:

T (v1 + v2) = Tv1 + Tv2, T (av) = aTv.

In the case of a rotation, these equations say that a parallelogram remains a
parallelogram under rotation, and that scaling a vector before or after rotation has
the same outcome. See the following picture for a geometric illustration of this fact.

a + b

a

b

T
(a

+
b
)

T
(a

)

T
(b

)

109
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Example 5.1.3 Let n > 1. Let P : Fn → Fn be the projection

P (x1, . . . , xn) = (x1, . . . , xn−1, 0).

(You should be able to visualize P easily for F = R, n = 2, 3.) There is no difficulty
in verifying 5.1.

Example 5.1.4 Let V = S[a, b] or V = SC[a, b]. The differentiation mapping
D : V → V ,

Df = f ′

is linear. The verification uses the simple properties

(f + g)′ = f ′ + g′, (kf)′ = kf ′

of differentiation, where k is a constant.

Example 5.1.5 Let V be as in Example 5.1.4. For a fixed c in [a, b], let

(Uf)(x) =
∫ x

c

f(t)dt.

It is not difficult to verify that Uf is in V and that U : V → V is linear.

5.2 The matrix of a linear mapping from F n to Fm

In a finite-dimensional space, it is convenient to show the action of linear mappings
using matrices. Consider a linear mapping T : Fn → Fm and let

(5.2) A =
(

Te1 · · · Ten

)
.

This m× n matrix is called the matrix of T .

Example 5.2.1 In Example 5.1.2, a simple sketch shows that

Te1 =
(

cos θ
sin θ

)
, Te2 =

( − sin θ
cos θ

)
.

So the matrix of T is

(5.3) A(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.

Here is a discussion of the details.

Let e1 ≡
(

1
0

)
and e2 ≡

(
0
1

)
. These identify the geometric vectors which

point along the positive x axis and positive y axis as shown.
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-

6

e1

e2

µ

θ

I

θ

(cos θ, sin θ)(− sin θ, cos θ)
T (e1)

T (e2)

From the above, you only need to find Te1 and Te2, the first being the first
column of the desired matrix A and the second being the second column. From the
definition of the cos, sin the coordinates of T (e1) are as shown in the picture. The
coordinates of T (e2) also follow from simple trigonometry. Thus

Te1 =
(

cos θ
sin θ

)
, Te2 =

( − sin θ
cos θ

)
.

Therefore,

A =
(

cos θ − sin θ
sin θ cos θ

)
.

For those who prefer a more algebraic approach, the definition of

(cos θ, sin θ)

is as the x and y coordinates of a point on the unit circle resulting from rotating
the point at (1, 0) through an angle of θ. Now the point of the vector from (0, 0) to
(0, 1) e2 is exactly π/2 further along along the unit circle from e1. Therefore, when
e2 is rotated through an angle of θ, the x and y coordinates are given by

(x, y) = (cos (θ + π/2) , sin (θ + π/2)) = (− sin θ, cos θ) .

Example 5.2.2 The matrix of the projection in Example 5.1.3 is

A =




1 · · · 0 0

0
. . . 0

... 1
...

0 · · · 0 0




.

Let A be an m× n matrix over F, A = [aij ]. Let

x =




x1

...
xn


 ∈ Fn.
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We recall that

Ax =




a11x1+ · · · +a1nxn

...
...

am1x1+ · · · +amnxn


 .

or equivalently

(5.4) Ax = x1a1 + · · ·+ xnan.

Lemma 5.2.3 Let T : Fn → Fm and suppose the matrix of T is A. Then Tx is
(the column vector) Ax.

Proof.

Tx = T

(
n∑

i=1

xiei

)

=
n∑

i=1

xiT (ei) by linearity

=
(

Te1 · · · Ten

)



x1

...
xn




= Ax

the third step coming from 5.4.
Thus to find Tx, is suffices to multiply x on the left by A.
Note that we can start with a given m × n matrix A and define T : Fn → Fm

by Tx = Ax. The matrix of T is A, since Tej = Aej = column j of A.
Throughout the book, in any expression Ax (or By, for that matter) the capital

letter denotes an m× n matrix; and the bold lower case letter, a column vector of
length n.

Example 5.2.4 Let T be the rotation in Example 5.1.2. Then

Tx =
(

cos θ − sin θ
sin θ cos θ

)(
x1

x2

)
=

(
(cos θ) x1 − (sin θ) x2

(sin θ)x1 + (cos θ) x2

)
.

Example 5.2.5 Let P be the projection in Example 5.1.3. Then

Px =




1 · · · 0 0

0
. . . 0

... 1
...

0 · · · 0 0







x1

...
xn−1

xn


 .

(as we know already).

We observe then that T : Fn → Fm is a linear transformation if and only if
there exists an m× n matrix A such that for all x ∈ Fn, Tx = Ax.

In other words, linear transformations (mappings) from Fn to Fm may always
be obtained by multiplying on the left by an appropriate m× n matrix.
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5.3 Exercises

1. Find the matrix for the linear transformation which rotates every vector in
R2 through an angle of π/3.

2. Find the matrix for the linear transformation which rotates every vector in
R2 through an angle of π/4.

3. Find the matrix for the linear transformation which rotates every vector in
R2 through an angle of −π/3.

4. Find the matrix for the linear transformation which rotates every vector in
R2 through an angle of 2π/3.

5. Find the matrix for the linear transformation which rotates every vector in
R2 through an angle of π/12. Hint: Note that π/12 = π/3− π/4.

6. Find the matrix for the linear transformation which rotates every vector in
R2 through an angle of 2π/3 and then reflects across the x axis.

7. Find the matrix for the linear transformation which rotates every vector in
R2 through an angle of π/3 and then reflects across the x axis.

8. Find the matrix for the linear transformation which rotates every vector in
R2 through an angle of π/4 and then reflects across the x axis.

9. Find the matrix for the linear transformation which rotates every vector in
R2 through an angle of π/6 and then reflects across the x axis followed by a
reflection across the y axis.

10. Find the matrix for the linear transformation which reflects every vector in
R2 across the x axis and then rotates every vector through an angle of π/4.

11. Find the matrix for the linear transformation which reflects every vector in
R2 across the y axis and then rotates every vector through an angle of π/4.

12. Find the matrix for the linear transformation which reflects every vector in
R2 across the x axis and then rotates every vector through an angle of π/6.

13. Find the matrix for the linear transformation which reflects every vector in
R2 across the y axis and then rotates every vector through an angle of π/6.

14. Find the matrix for the linear transformation which rotates every vector in
R2 through an angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

15. Find the matrix of the linear transformation which rotates every vector in R3

anticlockwise about the z axis when viewed from the positive z axis through
an angle of 30◦ and then reflects through the xy plane.

¼x
-y

6
z
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16. For u,v ∈ Rn,u 6= 0, let

proju (v) =
〈
v,

u
|u|

〉
u
|u| .

Show that the mapping v → proju (v) is a linear transformation. Find the
matrices proju for the following.

(a) u = (1,−2, 3)t
.

(b) u = (1, 5, 3)t
.

(c) u = (1, 0, 3)t
.

17. Show that the function Tu defined by Tu (v) ≡ v − proju (v) is also a linear
transformation.

18. Show that 〈v − proju (v) ,u〉 = 0. For a given nonzero vector u in Rn, conclude
that every vector in Rn can be written as the sum of two vectors, one which
is perpendicular to u and one which is parallel to u.

19. Show that if T is a linear transformation mapping a vector space V to a vector
space W that T is one to one if and only if, whenever Tv = 0, it follows that
v = 0.

20. Let T be a linear mapping from V to W where V and W are vector spaces
over a field F . Then

ker (T ) ≡ {v ∈ V : Tv = 0} .

Show directly from the definition, that ker (T ) is a subspace of V . Also let

Im (T ) ≡ {w ∈ W : w = Tv for some v ∈ V }
= {Tv : v ∈ V } .

Show directly from the definition that Im (T ) is a subspace of W .

21. ↑Show that in the situation of Problem 20, where V and W are finite dimen-
sional vector spaces and T 6= 0, that there exists a basis for Im (T )

{Tv1, · · · , T vm}
and that in this situation,

{v1, · · · , vm}
is linearly independent.

22. ↑In the situation of Problem 21 in which ker (T ) 6= {0}, show that there exists
{z1, · · · , zn} a basis for ker (T ) . Now for an arbitrary Tv ∈ Im (T ) , explain
why

Tv = a1Tv1 + · · ·+ amTvm

and why this implies that

v − (a1v1 + · · ·+ amvm) ∈ ker (T ) .

Then explain why V = span {v1, · · · , vm, z1, · · · , zn} .
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23. ↑In the situation of the above problem, show that

{v1, · · · , vm, z1, · · · , zn}

is a basis for V and therefore, dim (V ) = dim (ker (T ))+dim (Im (T )). In case
that T is one to one or the zero transformation, give the correct definition of
dim ({0}) so that this will still be so.

24. ↑Let A be a linear transformation from V to W and let B be a linear trans-
formation from W to U, where V, W,U are all finite dimensional vector spaces
over a field F . Using the definition of ker in Problem 20, Explain why

A (ker (BA)) ⊆ ker (B) , ker (A) ⊆ ker (BA) .

ker(B)

A(ker(BA))

ker(BA)

ker(A) -A

25. ↑Let {x1, · · · , xn} be a basis of ker (A) and let {Ay1, · · · , Aym} be a basis of
A (ker (BA)). Let z ∈ ker (BA) . Show the following:

(a) Az ∈ span {Ay1, · · · , Aym}
(b) There exist scalars ai such that

A (z − (a1y1 + · · ·+ amym)) = 0.

(c) Next explain why it follows that

z − (a1y1 + · · ·+ amym) ∈ span {x1, · · · , xn} .

(d) Now explain why

ker (BA) ⊆ span {x1, · · · , xn, y1, · · · , ym} .

(e) Explain why

(5.5) dim (ker (BA)) ≤ dim (ker (B)) + dim (ker (A)) .

This important inequality is due to Sylvester.

(f) Show that strict inequality must hold if A (ker (BA)) is a proper subset
of ker (B). Hint: On this last part, there must exist a vector w in ker (B)
which is not in the span of {Ay1, · · · , Aym} . What does this mean about
independence of the set

{Ay1, · · · , Aym, w}?
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26. ↑In the above problem, an inequality of the form

dim (ker (BA)) ≤ dim (ker (B)) + dim (ker (A))

was established. Strict inequality holds if A (ker (BA)) is a proper subset of
ker (B). Show that if

A (ker (BA)) = ker (B) ,

then equality holds in Sylvester’s inequality. Thus with the previous problem,
5.5 holds and equality occurs if and only if A (ker (BA)) = ker (B). Hint: As
above, let {x1, · · · , xn} be a basis for ker (A). Thus dim (ker (A)) = n. Next
let {Ay1, · · · , Aym} be a basis for A (ker (BA)) = ker (B) so dim (ker (B)) =
m. Now repeat the argument of the above problem, letting z ∈ ker (BA) .

27. Generalize the result of the previous problem to any finite product of linear
mappings.

28. Here are some descriptions of functions mapping Rn to Rn.

(a) T multiplies the jth component of x by a nonzero number b.

(b) T replaces the ith component of x with b times the jth component added
to the ith component.

(c) T switches two components.

Show that these functions are linear and describe their matrices.

29. In Problem 28, sketch the effects of the linear transformations on the unit
square [0, 1] × [0, 1] in R2. From Problem 31 on Page 74 give a geometric
description of the action of an arbitrary invertible matrix in terms of products
of these special matrices in Problem 28.

30. Let u =(a, b) be a unit vector in R2. Find the matrix which reflects all vectors
across this vector.

1
± µu

Hint: You might want to notice that (a, b) = (cos θ, sin θ) for some θ. First
rotate through −θ. Next reflect through the x axis which is easy. Finally
rotate through θ.

31. Any matrix Q which satisfies QtQ = QQt = I is called an orthogonal
matrix. Show that the linear transformation determined by an orthogonal
n×n matrix always preserves the length of a vector in Rn. Hint: First either
recall, depending on whether you have done Problem 42 on Page 41, or show
that for any matrix A,

〈Ax,y〉 =
〈
x,Aty

〉

Next ||x||2 = 〈QtQx,x〉 · · · .
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32. ↑Let u be a unit vector. Show that the linear transformation of the matrix
I − 2uut preserves all distances and satisfies

(
I − 2uut

)t (
I − 2uut

)
= I.

This matrix is called a Householder reflection and it is an important example
of an orthogonal matrix.

33. ↑Suppose |x| = |y| for x,y ∈ Rn. The problem is to find an orthogonal
transformation Q, (see Problem 31) which has the property that Qx = y and
Qy = x. Show that

Q ≡ I − 2
x− y

|x− y|2 (x− y)t

does what is desired.

x

y

34. Let a be a fixed nonzero vector. The function Ta defined by Tav = a + v
has the effect of translating all vectors by adding a. Show that this is not a
linear transformation. Explain why it is not possible to realize Ta in R3 by
multiplying by a 3× 3 matrix.

35. ↑In spite of Problem 34 we can represent both translations and rotations by
matrix multiplication at the expense of using higher dimensions. This is done
by the homogeneous coordinates. We will illustrate in R3 where most interest
in this is found. For each vector v = (v1, v2, v3)

t
, consider the vector in R4

(v1, v2, v3, 1)t. What happens when you do



1 0 0 a1

0 1 0 a2

0 0 1 a3

0 0 0 1







v1

v2

v3

1


?

Describe how to consider both rotations and translations all at once by forming
appropriate 4× 4 matrices.

36. Find the matrix which rotates all vectors about the positive z axis through
an angle of θ where the rotation satisfies a right hand rule with respect to
the given vector. That is, if the thumb of the right hand is pointing in the
direction of k = e3, then the fingers of the right hand move in the direction
of rotation as the hand is closed.

37. ↑Let u = (a, b, c) in R3, (a, b) 6= (0, 0) where u is a given unit vector. Find
the matrix which rotates all vectors through an angle of θ where the rotation
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satisfies a right hand rule with respect to the given vector. That is, if the
thumb of the right hand is pointing in the direction of u, then the fingers of
the right hand move in the direction of rotation as the hand is closed. (This
is a hard problem. It will be presented from a different point of view later.
To see it worked, see the supplementary exercises on the web page.) Hint:
First find a rotation which will move u to e3. Then rotate counter clockwise
about e3 as in the above problem. Finally multiply by the inverse of the
transformation which achieved the first rotation. You might want to make
use of the cross product and its properties. You should get a 3 × 3 matrix
whose columns are




cos θ − a2 cos θ + a2

−ba cos θ + ba + c sin θ
− (sin θ) b− (cos θ) ca + ca


 ,




−ba cos θ + ba− c sin θ
−b2 cos θ + b2 + cos θ

(sin θ) a− (cos θ) cb + cb


 ,




(sin θ) b− (cos θ) ca + ca
− (sin θ) a− (cos θ) cb + cb(

1− c2
)
cos θ + c2


 .

5.4 Rank and nullity

We noted above that, if T : Fn → Fm, then

span{Te1, . . . , Ten} = ImT.

So if T has matrix A = [a1 . . .an],

span{a1, . . . ,an} = Im T.

It is customary to refer to span{a1, . . . ,an} as the column space of A, written
Col (A), so that

Col (A) = Im T.

Definition 5.4.1 The rank R(T )of a linear mapping T : Fn → Fm is the dimen-
sion of Im T . The rank R(A)of a matrix A is the dimension of Col (A).

Of course this implies that T and the matrix of T have the same rank.

Proposition 5.4.2 Let A be an n × n matrix. Then A is invertible if and only if
R (A) = n. Also A is invertible if and only if the row reduced echelon form of A is
I. In any case, the pivot columns are a basis for ImA = Col (A).

Proof. By Corollary 3.3.7 A is invertible if and only if every column of A is a
pivot column; which happens if and only if the row reduced echelon form of A is
I. This in turn happens if and only if the columns of A are linearly independent,
which occurs if and only if the columns of A are a basis for Fn. Finally note that
the pivot columns are a basis for Col (A) by Proposition 3.4.2. This proves the
proposition. 2

Note that this implies a singular n × n matrix has rank < n. The proposition
also shows that the rank defined here coincides with the rank defined in Definition
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3.4.1, which was given as the number of pivot columns. Thus there is a routine way
to find the rank and a basis for Col (A). You just get the row reduced echelon form
and count the number of pivot columns (nonzero rows in the row reduced echelon
form). This gives the rank. A basis for Col (A) is this set of pivot columns. Of
course, in finding the row reduced echelon form, it is a good idea to let a computer
algebra system do the busy work.

Example 5.4.3 The following is a matrix followed by its row reduced echelon form
which was computed by Maple.

A =




1 4 5 −3 1
3 5 8 −2 11
6 7 13 −1 9
9 1 10 −8 7
2 6 8 −4 0



∼




1 0 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




.

Hence A has rank 4 and a basis of Col (A) is a1,a2,a4,a5, where

A = (a1,a2,a3,a4,a5)

.

Definition 5.4.4 If we write a matrix A in terms of row vectors,

A =




r1

...
rm


 ,

then span{r1, . . . , rm} is called the row space of A and is written Row(A).

Lemma 5.4.5 The row space of A has dimension R(A). Also, a basis for the row
space is the set of nonzero rows in the row reduced echelon form.

Proof. This is obvious if A is row reduced, since R(A) = number of pivot
columns = number of nonzero rows, and it is clear from the description of the row
reduced echelon form that the first entry of a nonzero row is to the right of the first
entry of any row above it. If for some i1 < i2 < · · · < ir,

c1ri1 + c2ri2 + · · ·+ crrir = 0

and not all the cj equal 0, you could pick the first nonzero cj and solve for that row
as a linear combination of other rows below it. As just noted, this is not possible.

Hence we need only show that row operations do not change the row space. This
is almost obvious: sets such as

r1 + kr2, r2, . . . , rm

or
cr1, r2, . . . , rm (where c 6= 0)

have the same linear span as r1, . . . , rm. 2
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Example 5.4.6 Let A =
(

2 1
2 1

)
. Row reduction gives

A ∼
(

1 1
2

0 0

)
= B.

A and B both have the same row space, the line in R2 with equation

x1 − 2x2 = 0.

However Col (A) is the line with equation x1 = x2 and Col (B) is the line with
equation x2 = 0. They are distinct subspaces with the same dimension.

Remember that in finding Col (A) you must use the columns in the original
matrix and in finding the row space, it is sufficient to consider the rows in the row
reduced echelon form.

An important subspace for any linear mapping T : V → W is the kernel of T ,

kerT = {v ∈ V : Tv = 0}.

(It is easily checked that kerT satisfies the closure requirement, so that ker T is a
subspace of V .)

Definition 5.4.7 We write N(T ) for the dimension of kerT (if kerT is a finite-
dimensional space) and refer to N(T ) as the nullity of T . If T : Fn → Fm has
matrix A, then ker (A) is defined to be ker (T ) and N(A), the nullity of A, is defined
to be N(T ). (Note that ker (A) is sometimes called the null space of A.)

Example 5.4.8 Let D : S[a, b] → S[a, b] be the differentiation mapping. Then
kerD = span{1}, since the functions with derivative 0 are the constants.

Example 5.4.9 The row reduced echelon form for the matrix A shown below is
the matrix B

A =




1 4 5
2 5 7
3 6 9


 ∼




1 0 1
0 1 1
0 0 0


 = B.

We noted earlier that the solutions of Ax = 0 are the same as the solutions of
Bx = 0. The equation Bx = 0 is equivalent to x1 + x3 = 0, x2 + x3 = 0 or
x = (−x3,−x3, x3); that is kerA = span{(−1,−1, 1)} and N(A) = 1.

There is a simple relationship between the rank and nullity of a matrix. This is
a consequence of

Theorem 5.4.10 Let T : V → W be a linear mapping and suppose V is finite-
dimensional. Then

N(T ) + R(T ) = dim V.
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Proof. We can dismiss the easy case T = 0, N(T ) = dim V, R(T ) = 0. Suppose
T 6= 0. Let v1, . . . , vk be a basis of kerT . We make the convention that k = 0 if
kerT = 0. By Corollary 4.5.8, there exist vectors vk+1, . . . , vm, so that v1, . . . , vm

is a basis of V . We claim that

Tvk+1, . . . , T vm

is a basis of Im T . In fact, we recall that

ImT = span{Tv1, . . . , T vm} = span{Tvk+1, . . . , T vm}
on discarding zero vectors. It remains to show that Tvk+1, . . . , T vm is a linearly
independent set. Suppose that

xk+1Tvk+1 + · · ·+ xmTvm = 0.

Then
T (xk+1vk+1 + · · ·+ xmvm) = 0,

and so xk+1vk+1 + · · · + xmvm ∈ kerT . This implies that there exist scalars
y1, · · · , ym such that

xk+1vk+1 + · · ·+ xmvm = y1v1 + · · ·+ ykvk.

Since {v1, . . . , vm} is a basis, all the scalars in the above equation are 0. Now the
theorem is true since k + (m− k) = m.2

It follows at once that for an m× n matrix A,

N(A) + R(A) = n.

Also, it is clear at this point that for A an m × n matrix, N (A) equals the
number of non pivot columns. This is because it has already been observed that
R (A) is the number of pivot columns. Thus it is very easy to compute the rank
and nullity of a matrix.

Example 5.4.11 Here is a matrix.



1 2 0 4 1
1 2 2 10 1
1 2 2 10 2
1 2 1 7 1




Find its rank and nullity.

Using Maple or simply doing it by hand, the row reduced echelon form is



1 2 0 4 0
0 0 1 3 0
0 0 0 0 1
0 0 0 0 0


 .

Therefore, there are three pivot columns and two nonpivot columns, so the rank is
3 and the nullity is 2.
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5.5 Rank and nullity of a product

We note some useful results of Sylvester.

Lemma 5.5.1 Let T : V → W and U : W → Z be linear mappings, with finite
dimensional spaces V,W .

(i) R(UT ) ≤ min{R(U), R(T )}.

(ii) If T is a bijection, then
R(UT ) = R(U).

(iii) If U is a bijection, then
R(UT ) = R(T ).

Proof. (i) Clearly
Im UT ⊆ Im U.

So Im UT has dimension no more than the dimension of Im U and

R(UT ) ≤ R(U).

Let v1, . . . , vm be the vectors constructed in the proof of Theorem 5.4.10. Clearly

Im UT = {UTv : v ∈ V }(5.6)

= span{UTvk+1,...,UTvm},
R(UT ) ≤ m− k = R(T ).

(ii) If T is a bijection then

Im UT = {UTv : v ∈ V } = {Uw : w ∈ W}
= Im U,

and of course R(UT ) = R(U).
(iii) Let v1, . . . , vm be as above. If U is a bijection, then

UTvk+1, · · · , UTvm

is a linearly independent set. For an equation

xk+1UTvk+1 + · · ·+ xmUTvm = 0

leads to an equation
xk+1Tvk+1 + · · ·+ xmTvm = 0

and thence to xk+1 = · · · = xm = 0. Now 5.6 gives

R(UT ) = m− k = R(T ). 2



5.5. RANK AND NULLITY OF A PRODUCT 123

Lemma 5.5.2 Let T : V → W where kerT is finite-dimensional, and let Z be a
finite-dimensional subspace of W . Then

VZ = {v ∈ V : Tv ∈ Z}
is a subspace of V having dimension ≤ dim Z + N(T ).

Proof. It is easy to check that VZ is a subspace of V using the closure property.
We ‘restrict’ T to VZ , that is consider the mapping T ′ : VZ → Z defined by
T ′v = Tv (v ∈ VZ). Clearly

ImT ′ ⊂ Z, R(T ′) ≤ dimZ, kerT ′ ⊂ kerT, N(T ′) ≤ N(T ).

So
dim VZ = R(T ′) + N(T ′) ≤ dim Z + N(T ). 2

Lemma 5.5.3 Let T : V → W , U : W → Z be linear mappings, where kerT and
kerU are finite-dimensional. Then

N(UT ) ≤ N(U) + N(T ).

Proof.

kerUT = {v ∈ V : UTv = 0}
= {v ∈ V : Tv ∈ kerU}.

By Lemma 5.5.2, the dimension of kerUT is at most

dim(kerU) + N(T ) = N(U) + N(T ). 2

Of course this result holds for any finite product of linear transformations by
induction. One way this is quite useful is in the case of a finite product of linear
transformations

∏l
i=1 Li. Then

dim

(
ker

l∏

i=1

Li

)
≤

l∑

i=1

dim (kerLi) .

So, if you can find a linearly independent set of vectors in ker
(∏l

i=1 Li

)
of size

l∑

i=1

dim (kerLi) ,

then this linearly independent set must be a basis for ker
(∏l

i=1 Li

)
.

Example 5.5.4 Let A,B be n × n matrices over F , with A invertible. Then AB
is invertible if, and only if, B is invertible.

To see this, use Lemma 5.5.1 (ii):

AB invertible ⇔ R(AB) = n ⇔ R(B) = n ⇔ B invertible.

(⇔ is an abbreviation for ‘if and only if’.)
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We end the section with a few remarks on powers of linear mappings and the
transpose of a matrix. For any linear mapping T : V → V we can form powers

T 2 = TT, T 3 = TTT

and so on. Thus Th = T . . . T with h factors. Of course we can define Ah for an
n× n matrix in just the same way. It is simple to see that

Th+k = ThT k, Ah+k = AhAk.

Example 5.5.5 . Let A =
(

0 1
0 0

)
. Then A2 = 0. Hence Ah = 0 for h = 3, 4, . . ..

For linear mapping T : V → V we can form polynomials in T . If P (z) =
a0z

n + · · · + an, then P (T ) is defined to be a0T
n + · · · + an−1T + anI. Evidently

P (T )Q(T ) = Q(T )P (T ) for any polynomials P and Q.

5.6 Linear differential equations with constant co-
efficients

Given g1(x), . . . , gn(x) in SC[a, b], the linear mapping T : SC[a, b] → SC[a, b] given
by

(5.7) Tf = f (n) + g1f
(n−1) + · · ·+ gnf

is a linear differential operator. In this section we only treat the case that all
the gk are constant. See Collins (2006) for the very important questions raised by
the general case, and also some introductory material on PDEs. Suppose now that

(5.8) Tf = f (n) + a1f
(n−1) + · · · anf

where a1, . . . , an are in C. We factorize the polynomial P (z) = zn+a1z
n−1+· · ·+an

as

(5.9) P (z) = (z − c1)h(1) · · · (z − ck)h(k)

where c1, . . . , ck are distinct complex numbers. The positive integer h(j) is the
multiplicity of cj as a zero of P .

To begin with, we consider a very easy special case of the above.

Lemma 5.6.1 Let a be a real number. Then the solution to the initial value problem

y′ (t) = ay (t) , y (0) = 1

is y (t) = eat.

Proof. First you can verify that this function works using elementary calculus.
Why is it the only one which does so? Suppose y1 (t) is a solution. Then y (t) −
y1 (t) = z (t) solves the initial value problem

z′ (t) = az (t) , z (0) = 0.
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Thus z′ − az = 0. Multiply by e−at on both sides. By the chain rule,

e−at (z′ − az) =
d

dt

(
e−atz (t)

)
= 0,

and so there is a constant C such that e−atz (t) = C. Since z (0) = 0, this constant
is 0, and so z (t) = 0. This proves the lemma.2

We want to define e(a+ib)t in such a way that

d

dt
e(a+ib)t = (a + ib) e(a+ib)t.

Also, to conform to the real case, we require e(a+ib)0 = 1. Thus it is desired to find
a function y (t) which satisfies the following two properties.

(5.10) y (0) = 1, y′ (t) = (a + ib) y (t) .

Proposition 5.6.2 Let y (t) = eat (cos (bt) + i sin (bt)) . Then y (t) is a solution to
5.10 and furthermore, this is the only function which satisfies the conditions of 5.10.

Proof: It is easy to see that if y (t) is as given above, then y (t) satisfies the
desired conditions. First

y (0) = e0 (cos (0) + i sin (0)) = 1.

Next

y′ (t) = aeat (cos (bt) + i sin (bt)) + eat (−b sin (bt) + ib cos (bt))
= aeat cos bt− eatb sin bt + i

(
aeat sin bt + eatb cos bt

)
.

On the other hand,
(a + ib)

(
eat (cos (bt) + i sin (bt))

)

= aeat cos bt− eatb sin bt + i
(
aeat sin bt + eatb cos bt

)

which is the same thing. Remember i2 = −1.
It remains to verify that this is the only function which satisfies 5.10. Suppose

y1 (t) is another function which works. Then, letting z (t) ≡ y (t)− y1 (t) , it follows
that

z′ (t) = (a + ib) z (t) , z (0) = 0.

Now z (t) has a real part and an imaginary part, z (t) = u (t) + iv (t) . Then z (t) ≡
u (t)− iv (t) and

z′ (t) = (a− ib) z (t) , z (0) = 0.

Then |z (t)|2 = z (t) z (t) and by the product rule,

d

dt
|z (t)|2 = z′ (t) z (t) + z (t) z′ (t)

= (a + ib) z (t) z (t) + (a− ib) z (t) z (t)

= (a + ib) |z (t)|2 + (a− ib) |z (t)|2
= 2a |z (t)|2 , |z (0)|2 = 0.
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It follows from Lemma 5.6.1 that the solution is

|z (t)|2 = 0e2at = 0.

Thus z (t) = 0, and so y (t) = y1 (t), proving the uniqueness assertion of the propo-
sition.

Note that the function e(a+ib)t is never equal to 0. This is because its absolute
value is eat(Why?).

With this, it is possible to describe the solutions to Tf = 0 in terms of linear
algebra.

Lemma 5.6.3 Let T be as in 5.8. Let s ∈ {0, 1, . . . , h(j) − 1}. The function f in
SC[a, b] defined by

f(x) = xsecjx

is a solution of the differential equation

Tf = 0.

Proof. With D the differentiation mapping and I the identity mapping on
SC[a, b], we have

(5.11) (D − qI)xlecx = lxl−1ccx + (c− q)xlecx

for l ∈ {0, 1, 2, . . .} and q ∈ C. In particular,

(D − cI)xlecx = lxl−1ecx.

Repeated application of this gives

(5.12) (D − cI)hxsecx = 0 if h > s.

We can factorize T in the following way:

(5.13) T = (D − c1I)h(1) · · · (D − ckI)h(k),

the order of the factors being of no importance. In particular,

T = M(D − cjI)h(j)

for a linear mapping M : SC[a, b] → SC[a, b]. So Tf = 0 follows from 5.12 since
s < h (j). 2

We summarize the observations 5.11 and 5.12 in the following lemma.

Lemma 5.6.4 For each j ≥ 1

(D − cI)j
xjecx = Kecx

for some nonzero K. Also if n > j

(D − cI)n
xjecx = 0

and if q 6= c,
(D − qI)m

xjecx = p (x) ecx

where p (x) has degree j.
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Lemma 5.6.5 The n functions xsecjx(1 ≤ j ≤ k, 0 ≤ s < h (j)) are linearly
independent in SC[a, b].

Proof. Consider a linear combination of xsecjx for 1 ≤ j ≤ k and s < h (j) .
This is of the form

(5.14)
M∑

r=1

arfr (x) + A0e
clx + · · ·+ Ah(l)−1x

h(l)−1eclx = 0

where the functions fr are each of the form fr (x) = xsecjx, cj 6= cl, s < h (j) and
h (l) is the largest of all the h (j) for j ≤ k. Renumbering if necessary, we can
assume l = k. Apply the operator

(D − c1I)h(1) · · · (D − ck−1I)h(k−1)

to both sides of the above equation. By Lemma 5.6.4, this sends all terms in the
sum on the left to 0 and yields an expression of the form

A0p0 (x) ecx + · · ·+ Ah−1ph−1 (x) ecx = 0, h = h (l)

for polynomials pj (x) , each having degree j. Explicitly, pj (x) = ajx
j +aj−1x

j−1+
· · · , aj 6= 0. We want to conclude that all the Aj = 0. If not, suppose Aj is the
last nonzero one. Then apply (D − cI)j to both sides, which yields CAje

cx = 0 for
some C 6= 0. This is a contradiction. It follows that 5.14 is of the form

M ′∑
r=1

arfr (x) + B0e
cl−1x + · · ·+ Bh(l−1)−1x

h(l−1)−1ecl−1x = 0

where h (l − 1) is the largest of the remaining h (j). Now a repeat of the above
reasoning shows that these Bj = 0 also. Continuing this way, it follows the given
functions are linearly independent as claimed.This proves the lemma.2

This lemma gives most of the proof of the following theorem.

Theorem 5.6.6 Let T : SC (a, b) → SC (a, b) be given in 5.8,

Tf = f (n) + a1f
(n−1) + · · ·+ anf.

Then N (ker (T )) = n and kerT has a basis of functions of the form xsecjx, 1 ≤
s ≤ h (j)− 1, where the polynomial

zn + a1z
n−1 + · · ·+ an

factorizes as
(z − c1)

h(1) · · · (z − ck)h(k)
.

Proof. We have identified n linearly independent solutions of Tf = 0. This
gives a basis of kerT . For, writing

P (z) = (z − z1) · · · (z − zn), Dj = (D − zjI) ,
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where the zj may be repeated, we have T = D1 · · ·Dn. If Djf = 0, then

(f(x)e−cjx)′ = 0;

, f(x) = const. ecjx.
The kernel of Dj has dimension 1. By Lemma 5.5.3, the dimension of ker T is

at most n. Hence we have found a basis of kerT . This proves the theorem.2

Example 5.6.7 Give the general solution of

f (4) − 11f (3) + 44f (2) − 76f ′ + 48f = 0.

Solution (for any interval of R). Using Maple,

z4 − 11z + 44z2 − 76z + 48 = (z − 2)2(z − 3)(z − 4).

According to the above results, the general solution is

a1e
2x + a2xe2x + a3e

3x + a4e
4x.

Here we are working in SC[a, b], so aj ∈ C.

Example 5.6.8 Show that the subspace W of S[a, b] consisting of solutions of

(5.15) f ′′ + f = 0

is span{sin x, cos x}.
As already noted, span{sin x, cosx} ⊂ W . To get the reverse inclusion, we first

work in SC[a, b]. The polynomial P (z) = z2 + 1 has zeros −i, i, and the general
solution of 5.15 in SC[a, b] is

f(x) = aeix + be−ix

= (a1 + ia2)(cos x + i sin x) + (b1 + ib2)(cos x− sinx),

and so f is in span {sinx, cos x}. This gives the required result.

5.7 Exercises

1. For each of the following matrices A, find a basis for Col (A) , the row space
of A, Row(A), and ker (A), and give the rank and nullity of A.

(a)




1 2 3 1 1
1 2 3 2 3
1 2 3 1 2




(b)




1 1 4 3 1
1 2 5 4 3
1 1 4 3 2




(c)




1 1 4 3 3
1 2 5 4 5
1 1 4 3 3



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(d)




1 1 1 6 2
1 2 3 13 5
1 1 2 9 −1




2. For each of the following matrices A, find a basis for Col (A) , the row space
of A, and ker (A) , and give the rank and nullity of A.

(a)




1 1 1 1 3
1 2 2 2 0
1 2 3 4 7
1 1 1 2 1




(b)




1 1 1 6 6
1 2 2 10 9
1 2 3 11 11
1 1 1 6 6




(c)




1 2 1 1 6 8
1 2 2 2 9 15
1 2 2 3 11 20
1 2 1 1 6 8




(d)




1 1 1 6 6
1 3 2 13 10
1 2 3 11 11
1 1 1 6 6




(e)




1 1 1
1 2 2
1 2 3
1 1 1




(f)




1 1 10
1 2 13
1 2 13
1 1 10




3. Explain why if A is an m× n matrix with n > m, then ker (A) 6= {0}.
4. Explain why SC (a, b) is a vector space but does not have finite dimension.

5. Find all solutions to the differential equation y′′ − 3y′ + 2y = 0.

6. Find all solutions to the differential equation y′′′ + 2y′′ − 15y′ − 36y = 0.
Describe the way in which the general solution is the kernel of a linear trans-
formation.

7. Find the solution to the initial value problem consisting of the differential
equation

y′′′ − 8y′′ + 20y′ − 16y = 0

along with the initial conditions y (0) = 2, y′ (0) = −1, y′′ (0) = 2. Hint:
Find the solutions to the differential equation and then choose the constants
correctly to satisfy the initial conditions.
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8. Let L : V → W where L is linear and V, W are vector spaces. Suppose you
want to find all solutions v to the equation Lv = w for a fixed w. Show that if
you have a single solution to this last equation vp, then all solutions are of the
form vp + v for some v ∈ ker (L). Sometimes this is written as vp + ker (L).
The solution vp is called a particular solution.

9. ↑Consider the equation y′′′ − 8y′′ + 20y′ − 16y = t2 + t. It happens that
yp (t) = − 27

128 − 7
32 t − 1

16 t2 is a solution to this equation. Find the general
solution.

10. Consider the equation w′ + a (t)w = f (t) for t ∈ [a, b] . Show the solutions to
this equation are of the form w (t) = e−A(t)

∫ t

a
eA(s)f (s) ds + Ce−A(t) where

A′ (t) = a (t). Hint: Multiply on both sides by eA(t). Then observe that by
the chain rule, the left side is the derivative of the expression

(
eA(t)w (t)

)
.

11. ↑To solve y′′ + ay′ + by = f, show that it suffices to find a single solution yp

and then add to it the general solution of y′′ + ay′ + by = 0, which is easy
to find. One way to find the single solution is to take a solution y to the
second equation and look for a particular solution to the first equation in the
form y (t) v (t) . This is called the method of reduction of order. It always
works. Show that when yv is plugged in to the given equation, you obtain
the following equation for v′.

v′′ +
(

2y′ + ay

y

)
v′ =

f

y

Then you solve this using the methods of the above problem.

12. Find the solution to the initial value problem consisting of the equation y′′ −
5y′ + 4y = et and the initial conditions y (0) = 0, y′ (0) = 1.

13. If W is a subspace of V , a finite dimensional vector space and if dim (W ) =
dim (V ) , show that W = V .

14. Let V be a vector space over a field F and let V1, · · · , Vm be subspaces. We
write

(5.16) V = V1 ⊕ · · · ⊕ Vm

if every v ∈ V can be written in a unique way in the form

v = v1 + · · ·+ vm

where each vi ∈ Vi. This is called a direct sum. If this uniqueness condition
does not hold, we simply write

V1 + · · ·+ Vm,

and this symbol means all vectors of the form

v1 + · · ·+ vm, vj ∈ Vj for each j.
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Show that 5.16 is equivalent to saying that if

0 = v1 + · · ·+ vm, vj ∈ Vj for each j,

then each vj = 0. Next show that in the situation of 5.16, if βi =
{
ui

1, · · · , ui
mi

}
is a basis for Vi, then the union of β1, · · · , βm is a basis for V .

15. ↑Suppose you have finitely many linear mappings L1, L2, · · · , Lm which map
V to V and suppose that they commute. That is, LiLj = LjLi for all i, j.
Also suppose Lk is one to one on ker (Lj) whenever j 6= k. Letting P denote
the product of these linear transformations, P = L1L2 · · ·Lm, first show that

ker (L1) + · · ·+ ker (Lm) ⊆ ker (P )

Next show that

ker (L1) + · · ·+ ker (Lm) = ker (L1)⊕ · · · ⊕ ker (Lm) .

Using Sylvester’s theorem, and the result of Problem 13, show that

ker (P ) = ker (L1)⊕ · · · ⊕ ker (Lm) .

Hint: By Sylvester’s theorem and the above problem,

dim (ker (P )) ≤
∑

i

dim (ker (Li))

= dim (ker (L1)⊕ · · · ⊕ ker (Lm)) ≤ dim (ker (P )) .

Now consider Problem 13.

16. Let M (Fn, Fn) denote the set of all n×n matrices having entries in F . With
the usual operations of matrix addition and scalar multiplications, explain
why this is a vector space. See Chapter 2 if you don’t recall why this is.
Now show that the dimension of this vector space is n2. If A ∈ M (Fn, Fn) ,
explain why there exists a monic polynomial of smallest possible degree of the
form

p (λ) = λk + ak−1λ
k−1 + · · ·+ a1λ + a0

such that
p (A) = Ak + ak−1A

k−1 + · · ·+ a1A + a0I = 0.

This is called the minimial polynomial of A. Hint: Consider the matrices
I, A,A2, · · · , An2

. There are n2 + 1 of these matrices. Can they be linearly
independent? Now consider all polynomials satisfied by A and pick one of
smallest degree. Then divide by the leading coefficient.

17. ↑Suppose A is an n × n matrix. From the preceding problem, suppose the
minimal polynomial factors as

(λ− λ1)
r1 (λ− λ2)

r2 · · · (λ− λk)rk

where rj is the algebraic multiplicity of λj . Thus

(A− λ1I)r1 (A− λ2I)r2 · · · (A− λkI)rk = 0,
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and so, letting

P = (A− λ1I)r1 (A− λ2I)r2 · · · (A− λkI)rk

and Lj = (A− λjI)rj , apply the result of Problem 15 to verify that

Cn = ker (L1)⊕ · · · ⊕ ker (Lk)

and that A : ker (Lj) → ker (Lj). In this context, ker (Lj) is called the
generalized eigenspace for λj . You need to verify that the conditions of the
result of this problem hold.

18. In the context of Problem 17, show that there exists a nonzero vector x such
that (A− λjI)x = 0. This x is called an eigenvector. The λj is called an
eigenvalue. Hint: There must exist a vector z such that

(A− λ1I)r1 (A− λ2I)r2 · · · (A− λjI)rj−1 · · · (A− λkI)rk y = z 6= 0

Why? Now what happens if you apply (A− λjI) to z?

19. Let A be an n×n matrix and let B be invertible. Show that B−1AB has the
same rank and nullity as A.

20. Consider the operators (D − cj)
h(j) : SC (a, b) → SC (a, b) for the ck distinct

complex numbers. Show through direct computations that

ker
(
(D − c1)

h(1) · · · (D − ck)h(k)
)

is the span of functions of the form xreax where a is one of the cj and r < h (a).
Hint: For

(D − a) y (x) = f (x) ,

multiply both sides by e−αx to obtain

d

dx

(
e−axy

)
= f (x) .

Then take an antiderivative of both sides. Iterate this procedure to obtain at
each step another constant of integration and you will see the desired functions
appear, multiplied by constants of integration.

21. Let Tf = f (n) + a1f
(n−1) + · · · anf as in Section 5.6. The Cauchy problem is

the following.

Ty = 0, y (a) = y0, y′ (a) = y1, · · · , y(n−1) (a) = yn−1.

It can be shown that the Cauchy problem always has a unique solution for
any choice of constants y0, y1, · · · , yn−1 and for any a. It was shown in Section
5.6 that there exist n functions {y1, · · · , yn} which are linearly independent
and such that for each j, Tyj = 0 and that every solution y to Ty = 0 must
be a linear combination of these basis functions. Now consider the matrix



y1 (x) y2 (x) · · · yn (x)
y′1 (x) y′2 (x) · · · y′n (x)

...
...

...
y
(n−1)
1 (x) y

(n−1)
2 (x) · · · y

(n−1)
n (x)




Show that this matrix has rank equal to n for any x.
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22. Let V, W be finite dimensional vector spaces with field of scalars F and let
T be a linear transformation which maps V to W. Recall from Problem 22
on Page 83 or Problem 19 on Page 114 that T is one to one if and only if
Tv = 0 implies v = 0. Show that in this situation, T maps a basis for V to
a basis for Im (T ). Also show that if T is one to one and has a right inverse
S : Im (T ) → V, then the right inverse is one to one and linear.

23. ↑ In the situation of the above problem, suppose T is a one to one linear
transformation which maps onto W . Now suppose S : W → V is a right
inverse for T ,

TS = I.

Show that ST = I also. Here I is the identity map on either V or W .

24. Let T be a linear transformation which maps V to W. Recall that

ker (T ) = {v ∈ V : Tv = 0}

For v, u ∈ V, let v be similar to u, written as v ∼ u if v − u ∈ ker (T ). Show
that ∼ is an example of an equivalence relation. This means that

(a) u ∼ u.

(b) If u ∼ v, then v ∼ u.

(c) If u ∼ v and v ∼ y, then u ∼ y.

The equivalence class, denoted by [u] consists of all vectors v which are similar
to u. Show that for any set which has such an equivalence relation, [u] = [v]
or else the two sets [u] and [v] have nothing in common. Thus the set of
equivalence classes partitions the set into mutually disjoint nonempty subsets.

25. ↑ In the situation of the above problem, where the equivalence class is given
there, and V is a finite dimensional vector space having field of scalars F ,
define [u] + [v] as [u + v] and for a a scalar, a [u] = [au] . Show that these op-
erations are well defined and that with these operations the set of equivalence
classes, denoted by V/ ker (T ) , is a vector space with field of scalars F . Now
define

T̃ : V/ ker (T ) → W

by T̃ ([v]) = T (v) . Verify T̃ is a well defined linear one to one mapping onto
Im (T ) . Recall that from Problem 22 on Page 83, a linear transformation T
is one to one if and only if whenever Tv = 0, it follows that v = 0.

26. ↑In the above situation, the rank of T equals the dimension of Im (T ) . Explain
why this must equal the dimension of V/ ker (T ). Letting s be the dimen-
sion of ker (T ) , explain why dim (V ) − s = dim (V/ ker (T )) . Hint: Letting
{Tv1, · · · , T vr} be a basis for Im (T ) , explain why {[v1] , · · · , [vr]} is a basis
for V/ ker (T ). If v ∈ V, then

[v] =
r∑

k=1

ck [vk]
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for some scalars ck. Then explain why

v −
r∑

k=1

ckvk ∈ ker (T )

If {z1, · · · , zs} is a basis for ker (T ) , explain why {z1, · · · , zs, v1, · · · , vr} is a
basis for V .



Inner product spaces

6.1 Definition and examples

As promised in Chapter 1, we now set up an axiomatic version of the inner product
which we originally described in R3, and then extended to Rn and Cn.

Definition 6.1.1 . Let V be a vector space over F , where F is either R or C.
Suppose that for any u, v in V there is defined a number 〈u, v〉 ∈ F , the inner
product of u and v, with the following properties for u, v, w in V and c ∈ F :

(1) 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉
(2) 〈cu, v〉 = c〈u, v〉
(3) 〈u, v〉 = 〈v, u〉
(4) 〈u, u〉 > 0 for u 6= 0.

Then V is an inner product space. We say that V is a real inner product
space if F = R, a complex inner product space if F = C.

Note that complex conjugation can be omitted in (3) if V is a real inner product
space.

Example 6.1.2 V = Rn is a real inner product space with

〈u, v〉 = u1v1 + · · ·+ unvn.

Example 6.1.3 V = Cn is a complex inner product space with

〈u, v〉 = u1v̄1 + · · ·+ unv̄n.

For these basic examples, most of the details for the verification were noted in
Chapter 1.

Example 6.1.4 Let h(x) be a given positive continuous function on [a, b]. For f
and g in CC[a, b], let

(6.1) 〈f, g〉 =
∫ b

a

f(x)g(x)h(x)dx.

135
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With this definition, CC[a, b] becomes a complex inner product space. We call
h the weight function for the space. Verifying (1) - (3) is an easy matter. As for
(4), if f 6= 0,

〈f, f〉 =
∫ b

a

|f(x)|2h(x)dx.

The integrand is ≥ 0, and is positive on some interval since |f |2h 6= 0. Clearly we
have 〈f, f〉 > 0.

We now prove some geometrical facts about V .

Definition 6.1.5 Let V be an inner product space. Let u, v be in V . The length
of u is

‖u‖ = 〈u, u〉1/2.

The distance from u to v is

d(u, v) = ‖u− v‖.

In Example 6.1.4, the distance from f to g is
√∫ b

a

|f(x)− g(x)|2h(x)dx.

This is a ‘mean square distance’. By drawing a sketch, you will see that d(f, g) can
be arbitrarily small even if |f(x)− g(x)| > 1 for some values of x.

Theorem 6.1.6 Let V be an inner product space over F . Let u, v, w be in V, c ∈ F .
Then

(i) ‖cv‖ = |c|‖v‖;
(ii) |〈u, v〉| ≤ ‖u‖‖v‖ (Cauchy-Schwarz inequality);

(iii) ‖u + v‖ ≤ ‖u‖+ ‖v‖ (triangle inequality);

(iv) d(u,w) ≤ d(u, v) + d(v, w).

Often (iv) is called the triangle inequality.

Proof. We begin by observing that

(6.2) 〈0, v〉 = 0.

To see this, we use
〈0, v〉 = 〈0 + 0, v〉 = 〈0, v〉+ 〈0, v〉.

We also have

(6.3) 〈u, cv〉 = c̄〈u, v〉.

To see this,
〈u, cv〉 = 〈cv, u〉 = c〈v, u〉 = c̄〈v, u〉 = c̄〈u, v〉.
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Now we proceed to prove (i)–(iv).

(i) ‖cv‖ = 〈cv, cv〉1/2 = (cc̄〈v, v〉)1/2 = |c| ‖v‖.
(ii) This is obvious from 6.2 if v = 0. If v 6= 0, we use the properties of inner

product to get, for any t ∈ F .

0 ≤ 〈u− tv, u− tv〉(6.4)
= 〈u, u〉 − t〈v, u〉 − t̄〈u, v〉+ tt̄〈v, v〉.

The most favorable choice of t is

t =
〈u, v〉
〈v, v〉 .

(We will see why later on). With this choice, 6.4 gives

0 ≤ 〈u, u〉 − 〈u, v〉〈v, u〉
〈v, v〉 − 〈u, v〉〈u, v〉

〈v, v〉 +
〈u, v〉〈u, v〉
〈v, v〉

= 〈u, u〉 − |〈u, v〉|2
〈v, v〉 .

Rearranging, we obtain (ii).
(iii) Since 〈u, v〉+ 〈v, u〉 = 〈u, v〉+ 〈u, v〉 = 2Re〈u, v〉, we have

‖u + v‖2 = 〈u, u〉+ 2Re〈u, v〉+ 〈v, v〉
≤ 〈u, u〉+ 2 |〈u, v〉|+ 〈v, v〉
≤ 〈u, u〉+ 2〈u, u〉1/2〈v, v〉1/2 + 〈v, v〉
= ||u||2 + 2 ||u|| ||v||+ ||v||2

= (‖u‖+ ‖v‖)2

which gives (iii) at once.
(iv) We have

‖u− w‖ = ‖u− v + v − w‖ ≤ ‖u− v‖+ ‖v − w‖
by (iii). 2

6.2 Orthogonal and orthonormal sets

Vectors u and v in an inner product space are orthogonal if 〈u, v〉 = 0. A set
v1, . . . , vm of nonzero vectors in an inner product space V is said to be an orthog-
onal set if

〈vj , vk〉 = 0 whenever j 6= k.

We think of the vectors as perpendicular to each other. An orthonormal set is
an orthogonal set of vectors each having length 1.

Orthogonal sets have some very convenient properties.

Lemma 6.2.1 An orthogonal set v1, . . . , vm is a linearly independent set.
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Proof. Suppose that
x1v1 + · · ·+ xmvm = 0

for scalars x1, . . . , xm. Taking the inner product of both sides with vj ,

〈x1v1 + · · ·+ xmvm, vj〉 = 0.

However,

〈x1v1 + · · ·+ xmvm, vj〉
= x1〈v1, vj〉+ · · ·+ xm〈vm, vj〉
= xj〈vj , vj〉.

The other terms vanish by orthogonality. We conclude that xj〈vj , vj〉 = 0. Since
vj 6= 0, we deduce that xj = 0. Since j is arbitrary, linear independence follows. 2

We now see that there cannot be an orthogonal set of more than n vectors in
Rn or Cn, answering a question from Chapter 1.

Example 6.2.2 In Rn or Cn, the standard basis

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)

is an orthonormal set. Since span {e1, · · · , en} = Fn for F = C or R, {e1, · · · , en}
is called an orthonormal basis for Fn.

Example 6.2.3 Let a,b be in R3, a 6= 0, b 6= 0, 〈a,b〉 = 0. Then

a,b,a× b

is an orthogonal basis of R3 (a basis that is an orthogonal set).

Let v1, . . . , vm be an orthogonal set in V . In particular v1, . . . , vm is a basis of

(6.5) W = span{v1, . . . , vm}.
Coordinate computations are easy in this basis.

Lemma 6.2.4 Let v1, . . . , vm be an orthogonal set and define W by 6.5. Let w ∈
W . Then

w =
〈w, v1〉
〈v1, v1〉 v1 + · · ·+ 〈w, vm〉

〈vm, vm〉 vm.

Proof. Certainly
w = x1v1 + · · ·+ xmvm

for scalars xj . Take the inner product of both sides with vj :

〈w, vj〉 = 〈x1v1 + · · ·+ xmvm, vj〉
= xj〈vj , vj〉. 2

Recall that from Proposition 5.6.2,

ea+ib = ea (cos (b) + i sin (b))

and that
d

dt
e(a+ib)t = (a + ib) e(a+ib)t.
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Example 6.2.5 In Example 6.1.4, take [a, b] = [0, 2π], F = C and h(x) = 1
2π . This

inner product on CC[0, 2π] is given by

〈f, g〉 =
1
2π

∫ 2π

0

f(x)g(x)dx.

We claim that the set of functions e−inx, e−i(n−1)x, . . . , e−ix, 1, eix, . . . , einx is an
orthonormal subset of CC[0, 2π]. To see this, since eiθ = e−iθ,

〈eijx, eikx〉 =
1
2π

∫ 2π

0

eijxe−ikxdx,

=
1
2π

∫ 2π

0

ei(j−k)xdx.

If j = k, the integrand is 1, and

〈eijx, eijx〉 = 1.

If j 6= k, then

ei(j−k)x =
d

dx

(
ei(j−k)x

i(j − k)

)
= f ′(x),

say. Now
∫ 2π

0

ei(j−k)xdx = f(2π)− f(0) =
1

i (j − k)
− 1

i (j − k)
= 0,

proving that our set is orthonormal.

This example lies at the foundation of the whole subject of Fourier series, which
is important in boundary value problems in PDEs; see for example Polking, Boggess
and Arnold (2002). We treat the ‘best approximation’ aspect of Fourier series below.

6.3 The Gram-Schmidt process. Projections

It is natural to ask, given a finite dimensional subspace W of an inner product
space, whether there is an orthogonal basis of W . The answer is yes, and there is a
simple algorithm, the Gram-Schmidt process, to produce such a basis starting from
any basis of W .

Lemma 6.3.1 Let V be an inner product space and let Wj be a subspace of V
having an orthogonal basis {v1, · · · , vj} . If wj+1 /∈ span {v1, · · · , vj} , and vj+1 is
given by

(6.6) vj+1 = wj+1 −
j∑

i=1

〈wj+1, vi〉
〈vi, vi〉 vi,

then {v1, · · · , vj , vj+1} is an orthogonal set of vectors, and

(6.7) span {v1, · · · , vj , vj+1} = span {v1, · · · , vj , wj+1} .
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Proof. Note that 6.6 exhibits vj+1 as a linear combination of the vectors
v1, · · · , vj , wj+1. Therefore,

span {v1, · · · , vj , vj+1} ⊆ span {v1, · · · , vj , wj+1} .

Also, 6.6 can be solved for wj+1 obtaining wj+1 as a linear combination of the
vectors v1, · · · , vj , vj+1. Therefore,

span {v1, · · · , vj , wj+1} ⊆ span {v1, · · · , vj , vj+1} .

Therefore, 6.7 follows.
It remains to verify that the vectors v1, · · · , vj , vj+1 are orthogonal. It is assumed

that this is true of v1, · · · , vj . Since wj+1 /∈ span {v1, · · · , vj}, it follows that vj+1 6=
0. Therefore, it only remains to verify that〈vj+1, vk〉 = 0 for k ≤ j.

〈vj+1, vk〉 =

〈
wj+1 −

j∑

i=1

〈wj+1, vi〉
〈vi, vi〉 vi, vk

〉

= 〈wj+1, vk〉 −
j∑

i=1

〈wj+1, vi〉
〈vi, vi〉 〈vi, vk〉

= 〈wj+1, vk〉 − 〈wj+1, vk〉 = 0.

2

Proposition 6.3.2 Let W be a subspace of V, an inner product space, and suppose
{w1, · · · , wm} is a basis for W . Then there exists an orthogonal basis for W

{v1, · · · , vm}

such that for all l ≤ r,

span {v1, · · · , vl} = span {w1, · · · , wl} .

Proof. Let v1 = w1/ ||w1|| . Now suppose v1, · · · , vj have been chosen such that

span {v1, · · · , vi} = span {w1, · · · , wi}

for all i ≤ j and {v1, · · · , vj} is an orthogonal set of vectors. Since wj+1 /∈
span {v1, · · · , vj} , it follows from Lemma 6.3.1 that there exists vj+1 such that

span {v1, · · · , vj , vj+1} = span {v1, · · · , vj , wj+1}
= span {w1, · · · , wj , wj+1}

and {v1, · · · , vj , vj+1} is an orthogonal set of vectors. Continuing this way, yields
the existence of the orthogonal basis of the proposition.2

If each vector in the orthogonal basis is divided by its norm, the resulting set of
vectors is still an orthogonal basis but has the additional property that each vector
has norm 1. Thus the set of vectors is an orthonormal basis.
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Example 6.3.3 In the inner product space R4, find an orthogonal basis of the
column space of

A =




−1 0 1
1 2 3
0 1 2
1 3 0


 .

Let A =
(

w1 w2 w3

)
,

v1 = w1 = (−1, 1, 0, 1),

v2 = w2 − 〈w2,v1〉
〈v1,v1〉 v1

= (0, 2, 1, 3)− 5
3
(−1, 1, 0, 1),

3v2 = (0, 6, 3, 9)− (−5, 5, 0, 5) = (5, 1, 3, 4).

We observe as a check that 〈v2,v1〉 = 0. We replace v2 by 3v2, which we rename
v2. This simplification will not spoil our construction. Let

v3 = w3 − 〈w3,v1〉
〈v1,v1〉 v1 − 〈w3,v2〉

〈v2,v2〉 v2

= (1, 3, 2, 0)− 2/3(−1, 1, 0, 1)− 14
51

(5, 1, 3, 4),

51v3 = (51, 153, 102, 0)− (−34, 34, 0, 34)− (70, 14, 42, 56)
= (15, 105, 60,−90) = 15(1, 7, 4,−6).

Replace v3 by (1, 7, 4,−6) which we rename v3, and check 〈v3,v1〉 = 〈v3,v2〉 = 0.
Our orthogonal basis is

v1 = (−1, 1, 0, 1),v2 = (5, 1, 3, 4),v3 = (1, 7, 4,−6).

It is often useful to convert an orthogonal basis v1, . . . , vm into an orthonormal basis

u1 =
v1

‖v1‖ , . . . , um =
vm

‖vm‖ ,

(this is called normalizing). In the above example,

u1 =
1√
3

(−1, 1, 0, 1),u2 =
1√
51

(5, 1, 3, 4),u3 =
1√
102

(1, 7, 4,−6).

The projection P in Example 5.1.3 of Chapter 5 can be generalized to the setting
of an inner product space V .

Let W be a finite-dimensional subspace of V and let v ∈ V . Then Pv (in this
setting) is the element w = Pv of W for which d(v, w) is the smallest. (Recall
d (v, w) is notation which means distance from v to w.) It is easy to see that
Example 5.1.3 of Chapter 5 is a special case, with V = Rn,W = {w ∈ Rn;wn = 0};
the closest vector in W to (x1, . . . , xn−1, xn) is (x1, . . . , xn−1, 0). In the general
situation, it is natural to ask

(i) is there such a ‘closest’ point Pv?
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(ii) is the mapping P : V → W a linear mapping?

Theorem 6.3.4 Let W be a finite-dimensional subspace of the inner product space
V . Let v1, . . . , vk be an orthogonal basis of W . Define P : V → W by

(6.8) Pv =
〈v, v1〉
〈v1, v1〉 v1 + · · ·+ 〈v, vk〉

〈vk, vk〉 vk.

Then

(6.9) ‖v − w‖ > ‖v − Pv‖ (w ∈ W,w 6= Pv)

For w1 ∈ W , w1 = Pv if and only if

(6.10) 〈(v − w1), w〉 = 0 for all w ∈ W.

It is obvious from 6.8 that the mapping P : V → W is linear. We call Pv the
projection of v onto W .

Proof. Let j ∈ {1, . . . , k}. Using the definition of Pv in 6.8 and the properties
of the inner product,

〈v − Pv, vj〉 = 〈v, vj〉 − 〈Pv, vj〉

= 〈v, vj〉 − 〈v, vj〉
〈vj , vj〉 〈vj , vj〉 = 0.

It follows that

(6.11) 〈v − Pv, w〉 = 0

for every w in W because every w is a linear combination of the vectors {v1, . . . , vk}.
We note that

‖w1 + w2‖2 = ‖w1‖2 + ‖w2‖2 + 2 Re 〈w1, w2〉

(6.12) = ‖w1‖2 + ‖w2‖2

whenever w1, w2 are in V and 〈w1, w2〉 = 0. Now let w ∈ W,w 6= Pv. To prove 6.9,
we observe that

(6.13) 〈v − Pv, Pv − w〉 = 0

as a particular case of 6.11. From 6.12, using the above orthogonality,

‖v − w‖2 = ‖v − Pv + Pv − w‖2
= ‖v − Pv‖2 + ‖Pv − w‖2
> ‖v − Pv‖2.

Finally, take any w1 in W . Then using 6.13,

〈v − w1, Pv − w1〉 = 〈v − Pv + Pv − w1, Pv − w1〉
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= 〈v − Pv, Pv − w1〉+ 〈Pv − w1, Pv − w1〉 = ||Pv − w1||2 .

If 6.10 holds, then the above equals 0, and so Pv = w1. If Pv = w1, then 6.10
follows from 6.11. 2

The geometric significance of Pv being closest to v is illustrated in the following
picture which captures the essence of the idea in every inner product space, but is
drawn here to represent the situation in R3.

Ww

v

Pv

Example 6.3.5 Find the point in the plane W with equation

x1 + x2 − 2x3 = 0

that is closest to (1, 6, 1).

Solution. Choose two independent vectors in the plane,

w1 = (1,−1, 0),w2 = (2, 0, 1).

Construct an orthogonal basis v1,v2 of W :

v1 = w1,

v2 = w2 − 〈w2,w1〉
〈w1,w1〉 w1 = (2, 0, 1)− 2

2
(1,−1, 0)

= (1, 1, 1).

The closest point that we seek is

Pv =
〈v,v1〉
〈v1,v1〉 v1 +

〈v,v2〉
〈v2,v2〉v2

=
(
−5

2
,
5
2
, 0

)
+

(
8
3
,
8
3
,
8
3

)

=
(

1
6
,
31
6

,
8
3

)

Note that, as expected,

v − Pv = (1, 6, 1)−
(

1
6
,
31
6

,
8
3

)
=

(
5
6
,
5
6
,−5

3

)

which is a normal to W .
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Example 6.3.6 In the inner product space C[−1, 1] with

〈f, g〉 =
∫ 1

−1

f(t)g(t)dt,

find the closest polynomial of degree 2 to f(x) = x4.

Solution. We construct an orthogonal basis of span{1, x, x2}. Let

v1 = 1,

v2 = x− 〈x, 1〉
〈1, 1〉 1 = x

(note that 〈xm, xn〉 = 0 for m + n odd);

v3 = x2 − 〈x2, 1〉
〈1, 1〉 1− 〈x2, x〉

〈x, x〉 x

= x2 − 1/3.

Now the closest polynomial of degree 2 to x4 is

f(x) =
〈x4, 1〉
〈1, 1〉 1 +

〈x4, x〉
〈x, x〉 x +

〈x4, x2 − 1/3〉
〈x2 − 1/3, x2 − 1/3〉 (x2 − 1/3).

Repeatedly using 〈xm, xn〉 = 0 for m + n odd and

〈xm, xn〉 =
2

m + n + 1
(m + n even),

we are led to

〈x4, x2 − 1/3〉 = 16/105, 〈x2 − 1/3, x2 − 1/3〉 = 8/45,

f(x) = 1/5 · 1 + 0 · x + 6/7(x2 − 1/3),

=
6x2

7
− 3

35
.

The following is the graph of the function f(x) = x4 and the second degree poly-
nomial just found, which is closest to this function using the definition of distance
which comes from the above inner product.
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Example 6.3.7 Find the point in the hyperplane W in Rn with equation

a1x1 + · · ·+ anxn = 0

that is closest to b = (b1, . . . , bn). Here a = (a1, . . . , an) 6= 0.

Note that dim W = n − 1, the nullity of [a1, . . . , an]. Our solution is more
efficient than in Example 6.3.5. For any orthogonal basis {v1, . . . ,vn−1} , for W , it
follows that {v1, . . . ,vn−1,a} is an orthogonal set, indeed an orthogonal basis of
Rn. So

b =

Pb︷ ︸︸ ︷
〈b,v1〉
〈v1,v1〉 v1 + · · ·+ 〈b,vn−1〉

〈vn−1,vn−1〉 vn−1 +
〈b,a〉
〈a,a〉a,

and it follows that

Pb =
〈b,v1〉
〈v1,v1〉 v1 + · · ·+ 〈b,vn−1〉

〈vn−1,vn−1〉 vn−1 = b−〈b,a〉
〈a,a〉a.

(Lemma 6.2.4).
In Example 6.3.5,

P (1, 6, 1) = (1, 6, 1)− 〈(1, 1,−2), (1, 6, 1)〉
6

(1, 1,−2)

= (1, 6, 1)− 5
6
(1, 1,−2) =

(
1
6
,
31
6

,
8
3

)
.

Given a function f ∈ CC[0, 2π], how closely can we approximate f in mean
square by a trigonometric polynomial of degree at most n,

s(x) =
n∑

k=−n

akeikx?

That is, we want to minimize
∫ 2π

0

|f(x)− s(x)|2dx

over all possible choices of aj (j = −n, . . . , n) in C.
The Fourier series of f is the formal series

∞∑

k=−∞
f̂(k)eikx

where

f̂(k) =
1
2π

∫ 2π

0

f(x)e−ikxdx.

It is a ‘formal series’ because it may actually diverge for some x (but not for f ∈
SC[0, 2π]). See Katznelson (2004) or Stein and Shakarchi (2003). The nth partial
sum of the Fourier series is

sn(x) =
n∑

k=−n

f̂(k)eikx.
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Theorem 6.3.8 Let f ∈ CC[0, 2π]. The minimum value of

∫ 2π

0

|f(x)− s(x)|2dx,

over trigonometric polynomials s of degree at most n, is attained by s(x) = sn(x),
the nth partial sum of the Fourier series of f .

Proof. With the inner product as in Example 6.2.5, we have to show that
‖f − sn‖ ≤ ‖f − s‖ for all s in W = span{einx, . . . , e−ix, 1, . . . , einx}. This follows
from Theorem 6.3.4 with k = 2n+1, w1 = e−inx, . . . , w2n+1 = einx (which we recall
is an orthonormal set). In this particular case,

Pf = 〈f, w1〉w1 + · · ·+ 〈f, w2n+1〉w2n+1.

That is,

(Pf)(x) =
n∑

j=−n

f̂(j)eijx = sn(x). 2

Example 6.3.9 Let f(x) = x (0 ≤ x ≤ 2π). Find the partial sum sn(x) of the
Fourier series of f .

We first evaluate

f̂(k) =
1
2π

∫ 2π

0

xeikxdx.

Of course f̂(0) = 1
2π

1
2 (2π)2 = π. For k 6= 0, we use integration by parts:

∫ 2π

0

xe−ikx =
xe−ikx

−ik
|2π
0 −

∫ 2π

0

e−ikx

−ik
dx

=
2πi

k
.

So f̂(k) = ik−1,

sn(x) =
n∑

k=−n, k 6=0

ieikx

k
+ π.

Grouping −k and k together, k = 1, . . . , n,

ieikx

k
+

ie−ikx

−k
= i

(2i sin kx)
k

= −2 sin kx

k
.

Hence

sn(x) = π − 2
n∑

k=1

sin kx

k
.

The graph of s6(x) is sketched below along with the functionf (x) = x.
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Example 6.3.10 Show that for u, v in the inner product space V over F ,

(6.14)
∥∥∥∥u− 〈u, v〉

〈v, v〉 v

∥∥∥∥ ≤ ‖u− tv‖

for all t ∈ F . This shows that we made the best choice of t in the proof of Theorem
6.1.6 (ii).

The claim is a restatement of Theorem 6.3.4 with u, v in place of v, v1 and W =
span{v}. Here

Pu =
〈u, v〉v
〈v, v〉 ,

and 6.9 obviously reduces to 6.10.

6.4 The method of least squares

We shall only give a simple account of this method, which is tremendously important
in applications. See Golub and Van Loan (1996) and Hogben (2007) for substantial
information about the method. In this section, the field of scalars is C. Suppose we
have a possibly inconsistent linear system

(6.15) Ax = b,

where A = (a1 . . .an) is m× n and b ∈ Cm. To get an ‘approximate’ solution, we
find an x̂ in Cn such that

(6.16) ‖b−Ax̂‖ ≤ ‖b−Ax‖

for all x in Cn. Any such x̂ is called a least-squares solution of 6.15.

Definition 6.4.1 Let A be an m× n matrix. Then we define A∗as

A∗ = At.

In words: Take the transpose of A and then replace every entry by the complex
conjugate. This matrix is called the adjoint.
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Example 6.4.2




1− i 2i 4 3
2 3i 2 + i 3
2 1 2 0



∗

=




1− i 2i 4 3
2 3i 2 + i 3
2 1 2 0




t

=




1− i 2 2
2i 3i 1
4 2 + i 2
3 3 0




=




1 + i 2 2
−2i −3i 1
4 2− i 2
3 3 0




For A a real m×n matrix, A∗ = At. The importance of the adjoint of a matrix
is the first result in the following lemma.

Lemma 6.4.3 Let A be an m × n matrix. Then denoting by 〈·, ·〉Cn , 〈·, ·〉Cm the
inner products on Cn and Cm respectively,

〈Ax,y〉Cm = 〈x,A∗y〉Cn

for all x ∈ Cn,y ∈ Cm. Also, if the product AB exists, then

(AB)∗ = B∗A∗.

Furthermore,
(A + B)∗ = A∗ + B∗, (A∗)∗ = A.

Proof. By the definition of the inner product in Cn,Cm, it follows that for

x =(x1, · · · , xn) , y = (y1, · · · , ym) ,

〈Ax,y〉Cm =
m∑

i=1




n∑

j=1

Aijxj


 yi

=
n∑

j=1

m∑

i=1

Aijxjyi =
n∑

j=1

m∑

i=1

xjA
t
jiyi

=
n∑

j=1

xj

m∑

i=1

At
jiyi =

n∑

j=1

xj

m∑

i=1

At
jiyi

= 〈x,A∗y〉Cn .

Next, (AB)∗ = (AB)t = BtAt = Bt At = B∗A∗. The last two assertions are
obvious. This proves the lemma. 2

The following theorem is the main result.
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Theorem 6.4.4 Let A be an m× n matrix. For each y ∈ Cm, there exists x ∈ Cn

such that
||Ax− y|| ≤ ||Ax1 − y||

for all x1 ∈ Cn. Also, x is a solution to this minimization problem if and only if x
is a solution to the equation, A∗Ax = A∗y.

Proof: By Theorem 6.3.4 on Page 142, there exists a point, Ax0, in the finite
dimensional subspace Im (A) of Cm such that for all x ∈ Cn,

||Ax− y||2 ≥ ||Ax0 − y||2 .

Also, from this theorem, this inequality holds for all x if and only if Ax0−y is
perpendicular to every Ax ∈ Im (A) . Therefore, the solution is characterized by

〈Ax0−y, Ax〉 = 0

for all x ∈ Cn. By Lemma 6.4.3, this is equivalent to the statement that

〈A∗Ax0 −A∗y,x〉 = 0.

for all x ∈ Cn, in particular for x =A∗Ax0 − A∗y. In other words, a solution is
obtained by solving A∗Ax0 = A∗y for x0. This proves the lemma.2

Example 6.4.5 Find a least-squares solution x̂ of Ax = b for

A =




2 1
1 1
3 −1
−1 0


 ,b =




1
1
4
1


 .

By Theorem 6.4.4, this is equivalent to finding a solution x̂ to the system

A∗Ax̂ = A∗b.

Thus we need a solution x̂ to
(

15 0
0 3

)
x̂ =

(
14
−2

)
.

It follows right away that for x̂ = (x1, x2) ,

x1 =
14
15

, x2 = −2
3
.

Example 6.4.6 Find a least-squares solution of Ax = b for

A =




1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1




,b =




2
1
0
3
4
1




.
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Solution. In this example, A∗ = At. Maple gives

AtA =




6 2 2 2
2 2 0 0
2 0 2 0
2 0 0 2


 ,

Atb =




11
3
3
5


 .

The augmented matrix [AtA|Atb] has row reduced form



1 0 0 1 5
2

0 1 0 −1 −1
0 0 1 −1 −1
0 0 0 0 0


 .

The general solution is

x1 = 5/2− x4, x2 = −1 + x4, x3 = x4 − 1,

and we can choose any x4 to provide a least squares solution of Ax = b.
A nice application of least squares is finding a straight line in R2 that is a

good fit to n given points (x1, y1), . . . , (xn, yn). The least-squares line (or line of
regression of y on x) is the line

y = px + q

that minimizes the sum of the squares of the residuals

px1 + q − y1, . . . , pxn + q − yn.

In other words we are minimizing (over all p, q)

(6.17) (px1 + q − y1)2 + · · ·+ (pxn + q − yn)2.

This is exactly the same as finding a least squares solution of

Ax̂ = y

where

A =




1 x1

1 x2

...
...

1 xn


 , x̂ =

(
q
p

)
,y =




y1

...
yn


 .

For the square of the distance ‖Ax̂− y‖ is the expression in 6.17.
For n ≥ 2 there is a unique solution to this particular least squares problem

involving the regression line and in fact, AtA will be invertible. (See Problem 6
below.) However, in general least squares problems, the solution x̂ is not unique.
All that is known is that for x̂ a least squares solution to Ax = b, the Ax̂ is unique,
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being the closest point in Im (A) to b. When A is not one to one, there may be
many x for which Ax = Ax̂. Therefore, an interesting problem involves picking the
“best” least squares solution. This is discussed in the exercises. See Problem 26
and the exercises which follow for an introduction to the Moore Penrose inverse,
which is taken up in the text in Chapter 11. In short, the best least squares solution
is the one which is closest to 0.

Example 6.4.7 Find the least-squares line for the data points (1, 7.1), (2, 9.8),
(3, 12.9), (4, 15.2), (5, 18.1).

Solution. Here At = A∗.

A =




1 1
1 2
1 3
1 4
1 5




,

(AtA)−1 =
(

5 15
15 55

)−1

=
1
10

(
11 −3
−3 1

)
,

while

Aty =
(

1 1 1 1 1
1 2 3 4 5

)



7.1
9.8
12.9
15.2
18.1




=
(

63.1
216.7

)
.

Thus (
q
p

)
=

1
10

(
11 −3
−3 1

)(
63.1
216.7

)
=

(
4. 4
2. 74

)
.

The approximating line
y = 2.74x + 4.4

is sketched along with the data points below.

6.5 Exercises

1. Suppose you define the dot product on C2 by (x, y) · (a, b) = ax + by. As
mentioned, this is not right, but suppose you did it this way. Give an example
of a nonzero vector x ∈ C2 such that x · x = 0.
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2. Examine the Gram Schmidt process for vectors and show that for {v1, · · · ,vn}
an independent set of vectors in Cn and {u1, · · · ,un} the orthonormal basis
from the Gram Schmidt process with the property that span {u1, · · · ,uk} =
span {v1, · · · ,vk} for each k ≤ n, the process is of the form uk = lkvk + zk

where zk is a vector in span {v1, · · · ,vk−1} , and lk > 0. Explain why, in
terms of matrices, this implies

(
u1 · · · un

)
=

(
v1 · · · vn

)



l1 · · · ∗
. . .

...
0 ln




Explain why the inverse of an upper triangular matrix is also upper triangular.
Multiplying on the right by the inverse of the upper triangular matrix, show
that this yields (

u1 · · · un

)
R =

(
v1 · · · vn

)

where R is upper triangular having all positive entries down the main diagonal.
Explain why this also shows that for all k ≤ n,

(
u1 · · · un

)
Rk =

(
v1 · · · vk

)

where Rk is the n×k matrix which comes from keeping only the first k columns
of R. Denote the matrix

(
u1 · · · un

)
as Q. Explain why Q∗Q = QQ∗ = I.

Also explain why this shows that if A is an n× k matrix having rank k, then
there exists an n× k matrix R with the property that rij = 0 whenever j > i
and a matrix Q satisfying Q∗Q = QQ∗ = I such that

A = QR

This is called the QR factorization of A. Note that the first k columns of Q
yield an orthonormal basis for span {v1, · · · ,vk}.

3. Find the best solution to the system

2 + 2y = 6
2x + 3y = 5
3x + 2y = 0

4. Find the best solution to
x + y = 5
x + 2y = 7

3x + 5y = 19

5. Find an orthonormal basis for R3, {w1,w2,w3} given that w1 is a multiple
of the vector (1, 1, 2). Recall this is an orthogonal basis in which every vector
has unit length.

6. In the Example 6.4.6 for the linear regression line, you looked for a least
squares solution to the system of equations

A

(
p
q

)
= y
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which is of the form

(6.18)




1 x1

...
...

1 xn




(
p
q

)
=




y1

...
yn




where the x1, x2, · · · are distinct numbers.

(a) Show the n× 2 matrix on the left in 6.18 is one to one.

(b) Show that for any m× n matrix A,

ker (A∗A) = ker (A) .

(c) Explain why the matrix A∗A, where A is as above, is always invertible
if n ≥ 2.

(d) Explain why there exists a unique p, q solving the problem for the least
squares regression line.

7. Relax the assumptions in the axioms for the inner product. Change the axiom
about 〈x, x〉 ≥ 0 and equals 0 if and only if x = 0 to simply read 〈x, x〉 ≥ 0.
Show that the Cauchy Schwarz inequality still holds in the following form.

(6.19) |〈x, y〉| ≤ 〈x, x〉1/2 〈y, y〉1/2
.

Hint: First let ω be a complex number having absolute value 1 such that

ω 〈x, y〉 = |〈x, y〉|
Letting

p (t) = 〈ωx + ty, ωx + ty〉 ,
explain why p (t) ≥ 0 for all t ∈ R. Next explain why the remaining axioms
of the inner product imply

p (t) = 〈x, x〉+ 2t |〈x, y〉|+ t2 〈y, y〉 ≥ 0.

If 〈y, y〉 = 0, explain why |〈x, y〉| = 0, thus implying 6.19. If 〈y, y〉 > 0,
explain, using the quadratic formula, completing the square, or taking the
derivative and setting equal to zero to find an optimal value for t, why the
inequality of 6.19 is still valid.

8. Let V be a complex inner product space and let {uk}n
k=1 be an orthonormal

basis for V . Show that

〈x, y〉 =
n∑

k=1

〈x, uk〉 〈y, uk〉.

9. Let the vector space V consist of real polynomials of degree no larger than 3.
Thus a typical vector is a polynomial of the form

a + bx + cx2 + dx3.
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For p, q ∈ V define the inner product,

(p, q) ≡
∫ 1

0

p (x) q (x) dx.

Show that this is indeed an inner product. Then state the Cauchy Schwarz
inequality in terms of this inner product. Show that

{
1, x, x2, x3

}
is a basis for

V . Finally, find an orthonormal basis for V. This is an example of orthonormal
polynomials.

10. Let Pn denote the polynomials of degree no larger than n − 1, which are
defined on an interval (a, b) . Let {x1, · · · , xn} be n distinct points in (a, b) .
Now define for p, q ∈ Pn,

(p, q) ≡
n∑

j=1

p (xj) q (xj).

Show that this yields an inner product on Pn. Hint: Most of the axioms
are obvious. The one which says (p, p) = 0 if and only if p = 0 is the only
interesting one. To verify this one, note that a nonzero polynomial of degree
no more than n− 1 has at most n− 1 zeros.

11. Let C ([0, 1]) denote the vector space of continuous real valued functions de-
fined on [0, 1]. Let the inner product be given as

〈f, g〉 ≡
∫ 1

0

f (x) g (x) dx.

Show that this is an inner product. Also let V be the subspace described in
Problem 9. Using the result of this problem, find the vector in V which is
closest to x4.

12. Consider the following system of equations

αC1 + βC2 = 0
γC1 + δC2 = 0

in which it is known that C2
1 + C2

2 6= 0. Show that this requires αδ − βγ = 0.

13. ↑A regular Sturm Liouville problem involves the differential equation, for
an unknown function of x which is denoted here by y,

(p (x) y′)′ + (λq (x) + r (x)) y = 0, x ∈ [a, b] .

It is assumed that p (t) , q (t) > 0 for any t ∈ [a, b] and also there are boundary
conditions,

C1y (a) + C2y
′ (a) = 0

C3y (b) + C4y
′ (b) = 0

where
C2

1 + C2
2 > 0, and C2

3 + C2
4 > 0.
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There is an immense theory connected to these important problems. The
constant λ is called an eigenvalue. Show that if y is a solution to the above
problem corresponding to λ = λ1 and if z is a solution corresponding to λ =
λ2 6= λ1, then

(6.20)
∫ b

a

q (x) y (x) z (x) dx = 0.

Show 6.20 defines an inner product. Hint: Do something like this:

(p (x) y′)′ z + (λ1q (x) + r (x)) yz = 0,

(p (x) z′)′ y + (λ2q (x) + r (x)) zy = 0.

Now subtract and either use integration by parts or show that

(p (x) y′)′ z − (p (x) z′)′ y = ((p (x) y′) z − (p (x) z′) y)′

and then integrate. Use the boundary conditions to show that y′ (a) z (a) −
z′ (a) y (a) = 0 and y′ (b) z (b)− z′ (b) y (b) = 0. The formula, 6.20 is called an
orthogonality relation. It turns out that there are typically infinitely many
eigenvalues. It is interesting to write given functions as an infinite series of
these “eigenfunctions”, solutions to the Sturm Liouville problem for a given
λ.

14. Consider the subspace V ≡ ker (A) where

A =




1 4 −1 −1
2 1 2 3
4 9 0 1
5 6 3 4


 .

Find an orthonormal basis for V. Hint: You might first find a basis and then
use the Gram Schmidt procedure.

15. Let W be a subspace of a finite dimensional inner product space V . Also let
P denote the map which sends every vector of V to its closest point in W .
Show using Theorem 6.3.4 that P is linear and also that

||Px− Py|| ≤ ||x− y|| .
16. Verify the parallelogram identify for any inner product space,

||x + y||2 + ||x− y||2 = 2 ||x||2 + 2 ||y||2 .

Why is it called the parallelogram identity?

17. Let H be an inner product space and let K ⊆ H be a nonempty convex subset.
This means that if k1, k2 ∈ K, then the line segment consisting of points of
the form

tk1 + (1− t) k2 for t ∈ (0, 1)

is also contained in K. Suppose, for each x ∈ H, there exists Px defined to
be a point of K closest to x. Show that Px is unique, so that P actually is
a map. Hint: Suppose z1 and z2 both work as closest points. Consider the
midpoint, (z1 + z2) /2 and use the parallelogram identity of Problem 16 in an
auspicious manner.
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18. Give an example of two vectors x,y in R4 and a subspace V such that 〈x,y〉 =
0 but 〈Px,Py〉 6= 0 where P denotes the projection map which sends x to its
closest point on V .

19. Suppose you are given the data, (1, 2) , (2, 4) , (3, 8) , (0, 0) . Find the linear
regression line using the formulas derived above. Then graph the given data
along with your regression line.

20. Generalize the least squares procedure to the situation in which data is given
and you desire to fit it with an expression of the form y = af (x) + bg (x) + c
where the problem would be to find a, b and c in order to minimize the sum
of the squares of the error. Could this be generalized to higher dimensions?
How about more functions?

21. Let A be an m×n matrix of complex entries. Thus A : Cn → Cm. Show that

(6.21) 〈Ax,y〉 = 〈x,A∗y〉
if and only if A∗ = At. This shows that A∗ can be defined in terms of the
above equation. Note that if A has all real entries, A∗ reduces to At.

22. ↑For A an m× n matrix of complex entries, show ker (A∗A) = ker (A).

23. ↑Show using only the equation 6.21 that (AB)∗ = B∗A∗ without making any
reference to the entries of A.

24. ↑Let A be an m× n matrix having complex entries. Show that the rank of A
equals the rank of A∗A. Next justify the following inequality to conclude that
the rank of A equals the rank of A∗.

rank (A) = rank (A∗A) ≤ rank (A∗)

= rank (AA∗) ≤ rank (A) .

Hint: Start with an orthonormal basis, {Axj}r
j=1 of A (Cn) and verify that

{A∗Axj}r
j=1 is a basis for A∗A (Cn) . You might also want to use the result

of Problem 22 and Theorem 5.4.10.

25. Let V be a vector space and let L be a subspace. Sketch a representative
picture of L. Now sketch a representative picture of L + x defined as

L + x = {l + x : l ∈ L} .

Why is x ∈ L + x? If x1 ∈ L + x, is L + x1 = L + x?

26. Suppose V is an inner product space and L is a nonzero subspace. Define

M = x + L.

Show that there exists a point m of M which is closest to 0 and that this m
is given by the following formula.

x−
∑

j

〈x, uj〉uj
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where {u1, · · · , ur} is an orthonormal basis for L. Hint: First explain why a
typical point m ∈ M is of the form x −∑

j ajuj . Thus it is desired to find

the aj in order to minimize
∣∣∣
∣∣∣x−∑

j ajuj

∣∣∣
∣∣∣. Now review Theorem 6.3.4.

27. ↑Let A be an m× n matrix and consider the set

My = {x ∈ Cn : A∗Ax = A∗y} .

Thus My is the set of least squares solutions to the equation

Ax = y.

Show My = x0 + ker (A∗A) where x0 is any vector in My.

28. ↑Using Problem 26 explain why, for A an m×n matrix, there exists a unique
point A+y of My, the set of least squares solutions to

Ax = y

which is closest to 0. This point is defined by the formula

A+y = x−
r∑

j=1

〈
x,uj

〉
uj .

where x is any point of My and {u1, · · · ,ur} is an orthonormal basis for
ker (A∗A).

My

±I

x

A+(y)

ª

ker(A∗A)¾

In a sense, this point is the ‘best’ least squares solution. The mapping A+

just described is called the Moore Penrose inverse. Some of its properties are
described in the following problems.

29. ↑In the above problem, show that A+ : Rm → Rn is a linear mapping and
therefore, can be considered as a matrix which will also be denoted by A+.
Hint: First show that if x1,x2 are least squares solutions to Ax = y1 and
Ax = y2 respectively, and if a, b are scalars, then ax1 + bx2 is a least squares
solution to A = ay1 + by2. Now use the above formula for A+y.
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30. ↑The Penrose conditions for the Moore Penrose inverse are the following.

AA+A = A, A+AA+ = A+,

and A+A and AA+ are Hermitian, meaning
(
A+A

)∗ = A+A,
(
AA+

)∗ = AA+.

It can be shown that these conditions characterize the Moore Penrose inverse
in the sense that the Moore Penrose inverse is the unique matrix which satisfies
these conditions. This is discussed more conveniently later in the book in the
context of the singular value decomposition. Show that if A is an n × n
invertible matrix, the Penrose conditions hold for A−1 in place of A+.

31. ↑Recall that

A+y = x−
r∑

j=1

〈
x,uj

〉
uj

where the uj are an orthonormal basis for ker (A∗A) and x is any least squares
solution to Ax = y. In particular, A+y =A+y−∑r

j=1

〈
A+y,uj

〉
uj . Using

this, explain why A+y is the least squares solution to Ax = y which satisfies

(6.22) A∗A
(
A+y

)
= A∗y,

〈
A+y, z

〉
= 0 for all z ∈ ker (A∗A) .

32. ↑Establish the first Penrose condition,

AA+A = A.

Hint: Follow the steps below.

(a) Using the description of the Moore Penrose inverse in Problem 31, show
that

A∗AA+Ax = A∗Ax.

(b) Show next that for any y ∈ Cn,

〈(
AA+A−A

)
x,Ay

〉
= 0.

(c) In the above equality, let y = (A+A− I)x.

33. ↑ Now establish the second Penrose condition

A+AA+ = A+.

Hint: Follow the steps below.

(a) From the first Penrose condition, explain why

A∗AA+AA+y = A∗AA+y

(b) Now explain why A+ (AA+y − y) ∈ ker (A∗A) .
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(c) Using the second condition in 6.22, explain why
〈
A+AA+y −A+y, A+AA+y −A+y

〉
= 0.

34. Find the least squares solution to



1 1
1 1
1 1 + ε




(
x
y

)
=




a
b
c




Next suppose ε is so small that all ε2 terms are ignored by the computer but
the terms of order ε are not ignored. Show the least squares equations in this
case reduce to

(
3 3 + ε

3 + ε 3 + 2ε

) (
x
y

)
=

(
a + b + c

a + b + (1 + ε) c

)
.

Find the solution to this and compare the y values of the two solutions. Show
that one of these is −2 times the other. This illustrates a problem with the
technique for finding least squares solutions presented in this chapter. One
way of dealing with this problem is to use the QR factorization which is
presented later in the book but also in the first problem above.

35. For A an m × n matrix with m ≥ n and the rank of A equaling n, Prob-
lem 2 above shows that there exists a QR factorization for A. Show that the
equations A∗Ax = A∗y can be written as R∗Rx = R∗Q∗y where R is up-
per triangular and R∗ is lower triangular. Explain how to solve this system
efficiently. Hint: You first find Rx and then you find x.

36. Let {b1, · · · , bn} be a basis in an inner product space. Thus any vector v can
be written in the form v =

∑n
i=1 vibi where xi is in the complex numbers.

Write a formula for 〈v, w〉 in terms of the components taken with respect the
given basis. In particular, show that

〈v, w〉 =
(

v1 · · · vn

)
G




w1

...
wn




where G is the Gramian matrix whose ijth entry is 〈bi, bj〉. This is also
called the metric tensor.

37. ↑Let {b1, · · · , bn} be vectors in an inner product space. Show that the set of
vectors is linearly independent if and only if the Gramian has rank n.

38. ↑Let {b1, · · · , bn} be a basis for an inner product space. Show that there exists
a unique dual basis

{
b1, · · · , bn

}
satisfying

〈
bi, bj

〉
= δij . (In this context, δij is

usually written as δi
j . It equals 1 if i = j and 0 if i 6= j.) In fact, bi =

∑
k Gikbk

where Gik is the ikth entry of G−1.

39. ↑Let {b1, · · · , bn} be a basis for an inner product space and let
{
b1, · · · , bn

}
be the dual basis. Show that if v is any vector, v =

∑n
i=1

〈
v, bi

〉
bi =∑n

i=1 〈v, bi〉 bi.
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40. Let {b1, · · · , bn} be linearly independent vectors in a real inner product space
and let y be a vector in this inner product space. Show that ||y −∑n

k=1 akbk||

is as small as possible when a ≡




a1

...
an


 is given by a = G−1



〈y, b1〉

...
〈y, bn〉


 for

G the Gramian.

41. Let {b1, · · · , bn} be a basis for an inner product space H. We say L ∈ H ′ if L
is a linear transformation which maps H to the complex numbers. Show that
there exists a unique z ∈ H such that Lv = 〈v, z〉 for all v ∈ H. This is called
the Riesz representation theorem.

42. ↑With the Riesz representation theorem, it becomes possible to discuss the
adjoint of a linear transformation in the correct way. Let A : H → F where
H and F are finite dimensional inner product spaces and A is linear. Show
that there exists a unique A∗ : F → H such that 〈Ax, y〉F = 〈x,A∗y〉H and
A∗ is linear. Also show that (AB)∗ = B∗A∗ directly from this definition.

43. Let S be a nonempty set in an inner product space. Let S⊥ denote the set

S⊥ = {x : 〈x, s〉 = 0 for all s ∈ S} . Show that S⊥ is always a subspace.

44. Let H, F be two finite dimensional inner product spaces and let A be a linear
transformation which maps H to F . The Fredholm alternative says that
there exists a solution to Ax = y if and only if y ∈ ker (A∗)⊥ . Here ST is
defined as the collection of all vectors which have the property that the inner
product of the vector with any vector of S equals 0. Prove the Fredholm
alternative. Also show that A is onto, if and only if A∗ is one to one.

45. You can consider any complex finite dimensional vector space as an inner
product space. Here is how you can do this. Start with a basis {b1, · · · , bn} .
Then DECREE that 〈bi, bj〉 = δij . Then if u,w are any two vectors, it
follows that 〈u,w〉 must equal

∑
i uiwi where u =

∑
i uibi, similar for w.

Show that this satisfies all the axioms of an inner product space. When you
do this, you are bestowing a geometric structure on something which is only
algebraic.



Similarity and determinants

7.1 Change of basis

Let V be a vector space over F and consider two bases β = {v1, . . . , vn}, γ =
{w1, . . . , wn} of V . Recall that for v a vector,

[v]β =




x1

...
xn


 ,

where

v =
n∑

i=1

xivi.

Lemma 7.1.1 The mapping θβ (v) defined as [v]β is a well defined linear bijection
from V to Fn.

Proof. First observe that this mapping is well defined. This is because

{v1, . . . , vn}
is a basis. If

0 =
n∑

j=1

xjvj −
n∑

j=1

yjvj =
n∑

j=1

(xj − yj) vj ,

so that x and y are both coordinate vectors for v, then by linear independence, it
follows that xi − yi = 0 for all i.

Next consider the claim that this mapping is linear. Letting a, b be scalars, and
v, w be vectors such that x = [v]β and y = [v]β ,

θβ (av + bw) =


a

n∑

j=1

xjvj + b

n∑

j=1

yjvj




β

=




n∑

j=1

(axj + byj) vj




β

= ax + by = aθβ (v) + bθβ (v)

161
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Now consider the claim that the mapping is one to one. If

x = [v]β = θβ (v) = 0,

then from the definition,

v =
n∑

i=1

xivi =
n∑

i=1

0vi = 0,

and so v = 0. It follows that the mapping is one to one as claimed.
If x ∈ Fn is arbitrary, consider

v =
n∑

i=1

xivi.

Then by definition,
θβ (v) = [v]β = x,

and so the mapping θβ is onto. 2

Let
[v]β , [v]γ

be two coordinate vectors for the same vector v in V corresponding to two different
bases β and γ. What is the relation between the coordinate vectors [v]β , [v]γ?

Lemma 7.1.2 Let β = {v1, . . . , vn}, γ = {w1, . . . , wn} be two bases for V . There
exists an invertible matrix P such that

[v]β = P [v]γ .

This matrix is given by P = (pji) where

(7.1) wi =
n∑

j=1

pjivj .

Furthermore,
[v]γ = P−1 [v]β .

Proof. [v]β = θβv = θβθ−1
γ [v]γ . This shows that the mapping [v]β → [v]γ is a

linear bijection and hence has an invertible matrix P associated to it. By Lemma
5.2.3, column i of P equals θβθ−1

γ ei, that is, θβwi. This vector is
(

p1i · · · pni

)t

by 7.1. Thus [v]β = P [v]γ and so, multiplying both sides by P−1, it follows that
[v]γ = P−1 [v]β . 2

Next we consider the matrix of a linear transformation.

Theorem 7.1.3 Let T be a linear transformation mapping V to V where V is an
n dimensional vector space. Then letting β = {v1, · · · , vn} be a basis for V, there
exists a unique n× n matrix [T ]β = (aij) which satisfies

[Tv]β = [T ]β [v]β .
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This matrix is defined by

Tvi =
n∑

k=1

akivk.

In terms of the coordinate map for the basis β,

[T ]β x = θβTθ−1
β (x) .

Proof. The existence of the matrix follows from the following computation
which comes directly from the definitions. Let v ∈ V be arbitrary.

[Tv]β =

[
T

(
n∑

i=1

(
[v]β

)
i
vi

)]

β

=

[
n∑

i=1

(
[v]β

)
i
Tvi

]

β

=

[
n∑

i=1

(
[v]β

)
i

n∑

k=1

akivk

]

β

=

[
n∑

k=1

(
n∑

i=1

aki

(
[v]β

)
i

)
vk

]

β

.

It follows from the definition of the coordinate vector that
(
[Tv]β

)
k

=
n∑

i=1

aki

(
[v]β

)
i
,

and this implies that for all v ∈ V,

[Tv]β = A [v]β ,

where A is the matrix (aij).
Consider the claim of uniqueness. Let B be another n×n matrix which satisfies

the above equation. By Lemma 7.1.1, the map v → [v]β is onto, it follows that for
all x ∈ Fn,

Ax = Bx,

which implies A = B. This proves the theorem with [T ]β defined as A.
Finally, the last claim follows from

[
Tθ−1

β x
]

β
= [T ]β

[
θ−1

β x
]

β
= [T ]β θβθ−1

β x = [T ]β x.

2

We say that T has matrix [T ]β for the basis β.

Example 7.1.4 Let F = R,w1 = (1, 2),w2 = (2, 3). Let T be defined by

(7.2) T (x1w1 + x2w2) = 6x1w1 + 5x2w2.

Then, writing β = {w1,w2},

[T ]β =
(

6 0
0 5

)
.

This is because
(

6 0
0 5

)(
x1

x2

)
=

(
6x1

5x2

)
= [T (x1w1 + x2w2)]β .
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A natural question is: what is the relation between [T ]β and [T ]γ for distinct
bases β and γ of V ?

Lemma 7.1.5 Let β, γ be the bases {v1, . . . , vn}, {w1, . . . , wn} of V , related by

[w]β = P [w]γ .

Then
[T ]γ = P−1 [T ]β P.

Proof. This follows from the following computation.

P−1 [T ]β P [v]γ = P−1 [T ]β [v]β
= P−1 [Tv]β = P−1P [Tv]γ
= [Tv]γ = [T ]γ [v]γ

By Lemma 7.1.1, which says θγ is onto, it follows that

P−1 [T ]β P = [T ]γ .

2

We also have the following simple lemma.

Lemma 7.1.6 Let V be a finite dimensional vector space with basis β and let A,B
be two linear mappings from V to V . Then for a, b scalars,

[aA + bB]β = a [A]β + b [B]β .

Also, if id is the identity linear transformation, then for any basis,

[id]β = I,

the identity matrix.

Proof. This follows right away from the observation that the coordinate maps
and their inverses are linear. Thus

[aA + bB]β = θβ (aA + bB) θ−1
β

= aθβAθ−1
β + bθβBθ−1

β

= a [A]β + b [B]β .

As for the last claim,
[id]β = θβ id θ−1

β = I. 2

Example 7.1.7 With β = {w1,w2} and T as in Example 7.1.4, let v1 = e1,v2 =
e2, γ = {e1, e2}. Thus

P =
(

1 2
2 3

)
.
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We obtain P−1 =
( −3 2

2 −1

)
after a simple calculation. So

P−1AP =
(

6 0
0 5

)
,

A = P

(
6 0
0 5

)
P−1 =

(
2 2
−6 9

)
.

Here A is the matrix of T with respect to the standard basis (which we usually call
‘the matrix of T ’, of course).

Check

Tw1 =
(

2 2
−6 9

)(
1
2

)
=

(
6
12

)
= 6w1,

Tw2 =
(

2 2
−6 9

)(
2
3

)
=

(
10
15

)
= 5w2,

(using A), which conforms with the definition of T .
A very non - trivial example which is of interest in computer graphics is the

problem of rotating all vectors about a given unit vector.
Consider three unit vectors u1,u2,u3 which form a right handed system and are

mutually orthogonal. If T is the transformation which rotates all vectors about u3

through an angle θ, it follows from analogy to the case of rotating about the vector
k that

Tu1 = u1 cos θ + u2 sin θ

Tu2 = −u1 sin θ + u2 cos θ

Tu3 = u3

Thus the matrix of this rotation with respect to the basis γ = {u1,u2,u3} is

[T ]γ =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 .

With β = {e1, e2, e3} , the problem is to find [T ]β . By Theorem 7.1.3, this matrix
is given by

[T ]β = θβTθ−1
β = θβθ−1

γ [T ]γ θγθ−1
β

=
(

u1 u2 u3

)
[T ]γ

(
u1 u2 u3

)−1
.

It follows that [T ]β is

(7.3)
(

u1 u2 u3

)



cos θ − sin θ 0
sin θ cos θ 0

0 0 1


(

u1 u2 u3

)−1
.

Note that, since the vectors are mutually orthogonal, the inverse on the right may
be computed by taking the transpose. This gives the matrix which rotates about a
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given vector u3, provided u1 and u2 can be constructed such that u1,u2,u3 form
a right handed system. We consider this now.

Recall the geometric description of the cross product in Problem 16 on Page 10.
Given the vectors x,y, the cross product x× y satisfies the following conditions

|x× y| = |x| |y| sin θ

where θ is the included angle, and x,y,x× y forms a right handed system with
x× y being perpendicular to both x and y.

Let u3 = (a, b, c) a given unit vector. We will assume for the sake of convenience
that |c| < 1. A unit vector perpendicular to the given vector is

u1 =
(−b, a, 0)√

a2 + b2
.

Now it remains to choose u2, a unit vector, such that u1,u2,u3 is a right hand
system and the vectors are mutually orthogonal.

-

ª

6

u2
u1

u3

Using the right hand rule for the cross product, such a vector is u3 × u1 =

u2 = (a, b, c)× (−b, a, 0)√
a2 + b2

=
−1√

a2 + b2

(
ac, bc, c2 − 1

)

where we used the fact that a2 + b2 + c2 = 1. It follows that the matrix of interest
is 


−b√

a2+b2
−ac√
a2+b2

a
a√

a2+b2
−bc√
a2+b2

b

0 1−c2√
a2+b2

c







cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 ·




−b√
a2+b2

−ac√
a2+b2

a
a√

a2+b2
−bc√
a2+b2

b

0 1−c2√
a2+b2

c




t

.

Doing the routine computations and simplifications, it follows that [T ]β equals

=




a2 +
(
1− a2

)
cos θ ab (1− cos θ)− c sin θ ac (1− cos θ) + b sin θ

ab (1− cos θ) + c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ)− a sin θ

ac (1− cos θ)− b sin θ bc (1− cos θ) + a sin θ c2 +
(
1− c2

)
cos θ


 .

This also gives the correct answer if |c| = 1 as can be verified directly. In this
case, c = ±1 and both a, b = 0. Summarizing, if u = (a, b, c) is a unit vector in R3,
rotation about u may be accomplished by multiplying the vector of R3 on the left
by the above matrix.
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Definition 7.1.8 We say that n× n matrices A and B over F are similar over
F (or, A is similar to B over F ) if A = PBP−1 for an invertible n× n matrix P
over F .

Note that B = P−1AP = QAQ−1 with Q = P−1, so the order of A and B in
defining similarity is of no consequence. Lemma 7.1.5 says that the change of basis
from β to γ has the effect of replacing [T ]β by a similar matrix [T ]γ .

Definition 7.1.9 An n× n matrix of the form

D =




d1

. . .
dn




(that is, D = [dij ] with dij = 0 for i 6= j, dii = di) is said to be diagonal.

Be careful in using the convention, adopted from here on, that ‘blank’ entries
in a matrix are 0.

Definition 7.1.10 If the matrix A over F is similar over F to a diagonal matrix
D over F , we say that A is diagonalizable over F .

Thus in Examples 1, 2,
(

2 2
−6 9

)
is diagonalizable. The point of the definition

is that the linear mapping Tx = Ax ‘looks much simpler after a change of basis’,
as in 7.2. But how are we to tell which matrices are diagonalizable? The answer
(find the eigenvalues and eigenvectors) must be postponed until Chapter 8.

The repetition of the phrase ‘over F ’ in the above definition is necessary. We
shall see examples where a real matrix A is diagonalizable over C but not R. That
is, we can write

A = PDP−1.

only by allowing complex entries on the right-hand side.

7.2 Determinants

Every square matrix A over a field F has a determinant, an element det A of F . It
turns out that det A 6= 0 if A is invertible and det A = 0 if A is singular. To take a
simple example,

det
(

a11 a12

a21 a22

)
= a11a22 − a12a21.

The simplest way to describe determinants in the n × n case is to use permu-
tations. A permutation of 1, . . . , n is a rearrangement {p(1), p(2), . . . , p(n)} of
Jn = {1, . . . , n}. Formally, we have p : Jn → Jnand p is a bijection. For example,
when n = 3 the notation

p : 2, 1, 3

means that p(1) = 2, p(2) = 1, p(3) = 3.
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A permutation contains a number (possibly 0) of disordered pairs, that is
pairs of integers listed in reverse order. Such a pair need not be adjacent. In

(7.4) p : 2, 1, 3, 4

there is one disordered pair, (2, 1). In

p′ : 4, 3, 2, 1

there are six: (4, 3), (4, 2), (4, 1), (3, 2), (3, 1), (2, 1).

Definition 7.2.1 The permutation p is even if the number of disordered pairs in
p is even. Otherwise, p is odd.

A useful fact is that the transposition of two integers alters the parity (changes
an even permutation to odd and vice versa). This with p as in 7.4,

p′′ : 4, 1, 3, 2

is obtained from p by a transposition, and has 4 disordered pairs. So p is odd, p′′

is even.

Lemma 7.2.2 Suppose that p′ is obtained from

p : p(1), p(2), . . . , p(n)

by a transposition. Then p and p′ have opposite parity.

Proof. Say p(i), p(j) are interchanged to produce p′. Pairs which change places are
(p(i), p(j)) and (p(i), p(k)), (p(j), p(k)) for all k, i < k < j. That is an odd number
of place changes, so an odd number of ±1’s is added to the disordered pair count.
2

For example, consider J4 = {1, 2, 3, 4} , and switch the 3 and the 1. This yields

p : 3 2 1 4

There are now three disordered pairs, (3, 2) , (3, 1) , (2, 1) where initially there were
none.

Lemma 7.2.3 There are n! permutations of 1, . . . , n, where n! = n ·(n−1) · · · 2 ·1.

Proof. This is obvious if n = 1. Suppose it is so for k ≤ n− 1 and consider the
permutations of {1, 2, · · · , n}. There are n choices for the last number in the list
and for each of these choices, induction implies there are (n− 1)! ways to order the
remaining numbers. Thus there are n! permutations in all.2

Definition 7.2.4 The determinant of

A =




a11 · · · a1n

...
an1 · · · ann



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is

(7.5) det A =
∑

p

(−1)paip(1) . . . anp(n).

Here

(i) the sum is over all n! permutations p of Jn;

(ii) (−1)p means 1 if p is even and −1 if p is odd.

Note that the products which appear in 7.5 contain one factor from each row of
A, and also contain one factor from each column of A.

Example 7.2.5 Let n = 1. The only permutation p has p(1) = 1 and p is even. So

det (a11) = a11.

Example 7.2.6 Let n = 2. The permutations are

p : 1, 2 (even)
p′ : 2, 1 (odd).

So

det
(

a11 a12

a21 a22

)
= a1p(1)a2p(2) − a1p′(1)a2p′(2)

= a11a22 − a12a21.

Example 7.2.7 Let n = 3. The permutations are:

p1 : 1, 2, 3 p2 : 2, 3, 1 p3 : 3, 1, 2 (even),
p4 : 1, 3, 2 p5 : 2, 1, 3 p6 : 3, 2, 1 (odd).

Listing terms in 7.5 in the order p1, . . . , p6,

det




a11 a12 a13

a21 a22 a23

a31 a32 a33


 =a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31.

Evaluating detA from the definition becomes unworkable as n increases. Deter-
minants (whether computed by hand or via Maple) are actually found using row
reduction.

Lemma 7.2.8 Let B be obtained from the n× n matrix A by interchanging row i
and row j. Then

detB = −detA.
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Proof. A product of the form

(7.6) b1p(1) . . . bnp(n)

is equal to

(7.7) a1p′(1) . . . anp′(n),

where p′ is obtained from p by transposing p(i), p(j). To see this, p(k) = p′(k) for
k 6∈ {i, j}, p(i) = p′(j) and p(j) = p′(i),

bjp(j) = aip(j) = aip′(i),

and similarly
bip(i) = ajp′(j).

The other factors are the same in 7.6, 7.7.
As p runs over all permutations, so does p′. Further, because of Lemma 7.2.2,

(7.8) (−1)pb1p(1) . . . bnp(n) = −(−1)p′a1p′(1) . . . anp′(n).

Adding all n! terms in equation 7.8 gives det B = − detA. 2

Lemma 7.2.9 Let A be an n× n matrix with two identical rows. Then detA = 0.

Proof. Suppose rows i, j are identical. Associate p′ with p as in the last proof.
Then

detA =
∑

p even

(a1p(1) . . . anp(n) − a1p′(1) . . . anp′(n))

because p′ runs over the odd permutations when p runs over the even ones. The
subtracted pair inside the brackets are identical. (They are given by 7.6, 7.7 with
A = B.) So

detA =
∑

p even

0.2

A determinant can be regarded as a fixed linear function of a given row. Thus

(7.9) L(x) = det




x1 x2 x3

a21 a22 a23

a31 a32 a33


 = u1x1 + u2x2 + u3x3

where, after a short calculation, we obtain

(7.10) u1 = det
(

a22 a23

a32 a33

)
, u2 = − det

(
a21 a23

a31 a33

)
, u3 = det

(
a21 a22

a31 a32

)
.

We have

(7.11) L(cx + dy) = cL(x) + dL(y)
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(without needing to specify u1, u2, u3). More generally, if rj = (aj1, . . . , ajn),

(7.12) L(x) = det




r1

...
rj−1

x
rj

...
rn




then (with u1, . . . , un depending on the aik with i 6= j)

L(x) = u1x1 + · · ·+ unxn.

This holds simply because each product in the determinant contains exactly one of
x1, . . . , xn. Again, 7.11 holds.

Lemma 7.2.10 Let B be obtained from the n × n matrix A by multiplying row i
by c. Then

detB = c det A.

Proof. In 7.12,

detB = L(cri) = cL(ri) = c detA. 2

Lemma 7.2.11 Let B be obtained from the n× n matrix A by adding c times row
i to row j, where j 6= i. Then

detB = det A.

Proof. In 7.12

detB = L(rj + cri)
= L(rj) + cL(ri) = det A + cL(ri).

But L(ri) is the determinant of a matrix with two identical rows. So L(ri) = 0
by Lemma 7.2.9 2

Certain determinants are rather easy to evaluate.

Lemma 7.2.12 Let A be upper triangular,

A =




a11 · · · a1n

. . .
...

ann


 .

That is, aij = 0 for i > j. Then

detA = a11a22 · · · ann.
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Proof. Consider a nonzero product a1p(1) · · · anp(n). Since the product is
nonzero, this requires p(n) = n. This forces p(n − 1) = n − 1. We can con-
tinue the process and show that p(j) = j for j = n, . . . , 1. Hence the only nonzero
term in the sum det A is a11 · · · ann. 2

Lemma 7.2.13 Let A be n× n. Then

det At = det A.

Proof. The n! products appearing in the sum det At are of the form

(7.13) ap(1)1 · · · ap(n)n.

These are all products which contain one term from each row, and one term from
each column, of A. They are the products for det A, but we have to check that the
± signs are correct.

Let us rewrite 7.13 by rearranging the product as

(7.14) a1q(1) · · · anq(n)

where q is a permutation that depends on p. Now p, q have the same number of
disordered pairs. In 7.14 this is the number of ‘subproducts’ aiuajv with i < j and
u > v. But i = p (u) and j = p (v) , so this is equal to the number of pairs u, v with
v < u and p (v) > p (u). Thus (−1)p = (−1)q as required. 2

Example 7.2.14 Let F = R. Evaluate det A,

A =




1 3 5 6
2 1 1 1
3 1 6 2
0 1 1 1


 .

We note that, doing appropriate row operations,

A
−2×top + second→




1 3 5 6
0 −5 −9 −11
3 1 6 2
0 1 1 1




−3× top + third→




1 3 5 6
0 −5 −9 −11
0 −8 −9 −16
0 1 1 1




switch 2 and 3→




1 3 5 6
0 1 1 1
0 −8 −9 −16
0 −5 −9 −11




Use second row→




1 3 5 6
0 1 1 1
0 0 −1 −8
0 0 −4 −6


 →




1 3 5 6
0 1 1 1
0 0 −1 −8
0 0 0 26




Write this chain as A → B1 → B2 → B3 → B4 → B5. We have (using Lemmas
7.2.8 and 7.2.11)

det B5 = det B4 = det B3 = − detB2 = − detB1 = det A.

Since det B5 = −26, we get det A = 26.
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It is of course quicker to use Maple. But Example 7.2.14 illustrates the fact that
in any chain obtained from row operations

(7.15) A → B1 → · · · → Bk.

starting with an n× n matrix and ending in a row reduced matrix Bk, each deter-
minant is a nonzero multiple of the preceding one (by Lemmas 7.2.8, 7.2.10, 7.2.11).
So

detA = 0 if det Bk = 0
detA 6= 0 if det Bk 6= 0.

Note that if A is singular then Bk, which has the same rank as A, has a zero row ;
so det Bk = 0 and det A = 0.

Lemma 7.2.15 Let A and B be n× n. Then

det(AB) = det A detB.

If A is an n× n matrix, det (A) 6= 0 if and only if R (A) = n.

Proof. If A is singular, (R (A) < n) , then so is AB, and

det AB = 0 = det A det B.

In the other case that A is invertible, (R (A) = n) we note the particular case

(7.16) det(EB) = det E det B,

where E is an elementary matrix. This is a restatement of Lemmas 7.2.8, 7.2.10
and 7.2.11.

Now if A is invertible, we recall that

A = E1 · · ·Ek

with each Ej elementary. See Problem 31 on Page 74. Using 7.16 repeatedly,

detAB = det(E1 . . . EkB)
= det E1 detE2 · · · detEk detB.

Since det A = det E1 · · · detEk from the particular case B = I, the first claim of
the lemma follows.

Now consider the claim about rank. If R (A) = n, then the columns of A
are linearly independent, and so they are each pivot columns. Therefore, the row
reduced echelon form of A is I. It follows that a product of elementary matrices
corresponding to various row operations, when applied to the left of A, yields I,

E1E2 · · ·EpA = I.

Now take the determinant of both sides of the above expression to conclude that
det (A) cannot equal 0. Next suppose det (A) 6= 0. Then the row reduced echelon
form for A also has nonzero determinant. It follows that this row reduced echelon
form must equal I since otherwise the row reduced echelon form of A would have a
row of zeros and would have zero determinant. Hence, by Lemma 3.1.10 the rank
of A must equal n. 2
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Example 7.2.16 (The Vandermonde determinant.) Show that

(7.17) det




1 z1 · · · zn−1
1

1 z2 · · · zn−1
2

...
...

...
1 zn · · · zn−1

n


 =

∏

j>i

(zj − zi).

Notation 7.2.17 The large
∏

indicates a product, and the ‘j > i ’ underneath
indicates that we multiply all zj − zi for pairs i, j with 1 ≤ i < j ≤ n. In the 3× 3
case, the value of the determinant is

(z3 − z1)(z3 − z2)(z2 − z1).

To get 7.17 we use polynomials in several variables. A polynomial in z1, . . . , zn

is a sum of monomials

a(i1, . . . , in)zi1
1 · · · zin

n , a(i1, . . . , in) 6= 0.

(We can work over any field F , so that a(i1, . . . , in) ∈ F .) The degree of this
monomial is i1 + · · · + in, and the degree of a polynomial P is the largest degree
among the monomials whose sum is P .

Both the left-hand and right-hand sides of 7.17 are polynomials in z1, . . . , zn. A
short calculation shows that both have degree 0+1+2+ · · ·+n−1. This is obvious
for P the polynomial on the left, given by the determinant. It is also true for Q,
the polynomial on the right.

Lemma 7.2.18 The degree of Q is 1 + 2 + · · ·+ n− 1.

Proof. This is obvious if n = 2. Suppose the statement is true for n− 1 where
n ≥ 3. Then

∏

n≥j>i

(zj − zi) =
∏

n>i

(zn − zi)
∏

(n−1)≥j>i

(zj − zi) .

Now the first of the two factors clearly has degree n− 1 and the second has degree

1 + 2 + · · ·+ n− 2

by induction. Hence the degree of their product is 1 + 2 + · · ·+ n− 1.2

Lemma 7.2.19 P (z1, . . . , zn) is divisible by zj − zi if j > i. That is,

P (z)
zj − zi

is a polynomial.

Proof. Fixing each zj for j 6= i, the function zi → P (z1, . . . , zn) = q (zi) is
an ordinary polynomial which is a function of the single variable zi. Then when
zi = zj , q (zi) becomes the determinant of a matrix which has two equal rows and is
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therefore, equal to 0. Now from the Euclidean algorithm for polynomials Theorem
1.8.3, there exists a polynomial k (zi) such that

q (zi) = k (zi) (zi − zj) + r (zi)

where the degree of r (xi) < 1 or else r (zi) equals 0. However, since q (zj) = 0, it
follows that r (zj) = 0, and so r (zi) = 0. This proves the lemma.2

Thus
P (z) = (zj − zi) P ′ (z) .

The same reasoning applies to P ′ (z) . It equals 0 when zi = zk for another k > i.
Thus, repeating this argument a finite number of times, the quotient

R(z) =
P (z)
Q(z)

is a polynomial of degree 0. That is, R(z) is a constant c. In fact, c = 1, since P, Q
both contain the term z2z

2
3 . . . zn−1

n . This establishes 7.17.
Determinants can be used to give an algebraic formula for A−1, e.g.

det A =
1

detA

(
a22 −a12

−a21 a11

)

when n = 2, detA 6= 0. To obtain the general formula, we begin with

(7.18) det A =
n∑

j=1

(−1)i+jaij det Aij ,

where Aij is the matrix obtained by deleting row i and column j. This is an
expansion by row i. Expansion by column j is the similar formula

(7.19) det A =
n∑

i=1

(−1)i+jaij det Aij .

See the exercises for a proof of 7.19.

Definition 7.2.20 It is customary to refer to the quantity (−1)j+k
Ajk described

above as the jkth cofactor. It is often written as

(−1)j+k
Ajk = cof (A)jk .

The determinant Ajk is called the jkth minor.

Example 7.2.21 To evaluate det




0 3 1
2 4 6
5 2 1


, the natural choice is ‘expand by

row 1’ or ‘expand by column 1’. We get by the first expansion the value

detA = −3(2− 30) + 1(4− 20)
= 68.

The second expansion yields

detA = −2(3− 2) + 5(18− 4) = 68.



176 SIMILARITY AND DETERMINANTS

Theorem 7.2.22 The formula 7.18 is valid.

Proof. To begin with, it is clear that 7.18 is correct apart perhaps from the
± signs (−1)i+j . Every j on the right-hand side corresponds to (n− 1)! distinct
products that appear in detA, namely all

a1p(1) . . . anp(n)

for which the given integer i has p(i) = j. Adding these up, we get all the terms of
det A, but it is not clear that the ± signs are correct.

Consider the matrix B obtained from A, by interchanging adjacent rows i − 1
times, then interchanging adjacent columns j − 1 times, to bring aij to top left
position (b11 = aij). Clearly B11 = Aij . Now

(7.20) det B = (−1)i+j−2 detA; det A = (−1)i+j detB.

The sign of a term ±b2p(2) . . . bnp(n) of det B11 is evidently the same as the sign
of ±b11b2p(2) . . . bnp(n) in det B. Hence detB includes the terms b11 detB11 =
aij det Aij , and recalling 7.20, det A includes the terms (−1)i+jaij detAij .2

Definition 7.2.23 The adjugate of A is the matrix C = (cij) over F with entries

cij = (−1)i+j detAji (i, j = 1, . . . , n).

We write adj A for C.

It is a simple matter to deduce from 7.18 that

(7.21) A adjA = (det A)I.

The ijth entry of A adjA is

(7.22)
n∑

k=1

aik(−1)j+k detAjk.

This is of course just det A if i = j, since we can refer to 7.18. If i 6= j, then in 7.22
we have the expansion by row j of the matrix obtained from A by replacing row
j with a copy of row i. It follows that the ijth entry of A adjA is 0 if i 6= j, and
we have proved 7.21. In terms of indices,

n∑

k=1

aik(−1)j+k det Ajk = det (A) δij .

As a corollary, if det A 6= 0,

(7.23) A−1 = (detA)−1 adj A.

In terms of the ijth entries, letting a−1
ij denote the ijth entry of the inverse matrix,

a−1
ij =

1
det (A)

cof (A)ji .
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This formula for the inverse also implies a famous procedure known as Cramer’s
rule. Cramer’s rule gives a formula for the solutions x, to a system of equations
Ax = y.

In case you are solving such a system of equations Ax = y for x, it follows that
if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for
A−1 given above. Using this formula,

xi =
n∑

j=1

a−1
ij yj =

n∑

j=1

1
det (A)

cof (A)ji yj .

By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det



∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T ,
and the determinant of this modified matrix is taken and divided by det (A). This
formula is known as Cramer’s rule.

Corollary 7.2.24 Suppose A is an n×n matrix and it is desired to solve the system
Ax = y,y = (y1, · · · , yn)T for x = (x1, · · · , xn)T

. Then Cramer’s rule says

xi =
det Ai

det A

where Ai is obtained from A by replacing the ith column of A with the column
(y1, · · · , yn)T

.

7.3 Wronskians

So far we have only proved linear independence of a set of functions f1, . . . , fn in
some rather simple cases (including orthogonality). A useful general approach is
based on the Wronskian determinant. The Wronskian determinant of f1, . . . , fn,
functions in S [a, b] , is the n× n determinant

W (x) = det




f1(x) . . . fn(x)
f ′1(x) . . . f ′n(x)

...
f

(n−1)
1 (x) . . . f

(n−1)
n (x)


 .

Example 7.3.1 For f1(x) = cos x, f2(x) = sin x,

W (x) = det
(

cosx sin x
− sin x cos x

)
= 1.



178 SIMILARITY AND DETERMINANTS

Lemma 7.3.2 Let f1, . . . , fn be as above. If there is some y ∈ [a, b] with W (y) 6= 0,
then f1, . . . , fn is a linearly independent set.

Proof. Suppose that c1, . . . , cn are scalars with

c1f1 + · · ·+ cnfn = 0.

Differentiating j times,
c1f

(j)
1 + · · ·+ cnf (j)

n = 0.

Fix y with W (y) 6= 0. The linear system

2x1f1(y) + · · ·+ xnfn(y) = 0
x1f

′
1(y) + · · ·+ xnf ′n(y) = 0
...

x1f
(n−1)
1 (y) + · · ·+ xnf (n−1)

n (y) = 0

is satisfied by x1 = c1, . . . , xn = cn. Since the coefficient matrix of this system has
determinant W (y), the matrix is invertible. We infer that

c1 = · · · = cn = 0. 2

Example 7.3.3 Show that
1
x

, sin x, ex

is a linearly independent set in S[1, 2].

Solution: The Wronskian in this case is

W (x) = det




1
x sin x ex

− 1
x2 cos x ex

1
x3 − sin x ex


 .

Try an ‘easy’ value, x = π
2 .

W
(π

2

)
= eπ/2 det




2
π 1 1
−4
π2 0 1
16
π3 −1 1


 = eπ/22

π2 + 4π + 8
π3

6= 0.

Lemma 7.3.2 gives the linear independence. (The choice of π/2 is not particularly
lucky, since there are rather few zeros of W to avoid.)

7.4 Block Multiplication Of Matrices

Consider the following problem
(

A B
C D

)(
E F
G H

)
.



7.4. BLOCK MULTIPLICATION OF MATRICES 179

You know how to do this. You get
(

AE + BG AF + BH
CE + DG CF + DH

)
.

Now what if instead of numbers, the entries, A,B, C,D, E, F, G are matrices of a
size such that the multiplications and additions needed in the above formula all
make sense. Would the formula be true in this case?

Suppose A is a matrix of the form

(7.24) A =




A11 · · · A1m

...
. . .

...
Ar1 · · · Arm




where Aij is a si × pj matrix where si is constant for j = 1, · · · ,m for each i =
1, · · · , r. Such a matrix is called a block matrix, also a partitioned matrix. How
do you get the block Aij? Here is how for A an m× n matrix:

(7.25)

si×m︷ ︸︸ ︷(
0 Isi×si 0

)
A

n×pj︷ ︸︸ ︷


0
Ipj×pj

0


.

In the block column matrix on the right, you need to have cj − 1 rows of zeros
above the small pj × pj identity matrix where the columns of A involved in Aij

are cj , · · · , cj + pj − 1 and in the block row matrix on the left, you need to have
ri − 1 columns of zeros to the left of the si × si identity matrix where the rows
of A involved in Aij are ri, · · · , ri + si. An important observation to make is that
the matrix on the right specifies columns to use in the block and the one on the
left specifies the rows. Thus the block Aij , in this case, is a matrix of size si × pj .
There is no overlap between the blocks of A. Thus the identity n×n identity matrix
corresponding to multiplication on the right of A is of the form




Ip1×p1 0
. . .

0 Ipm×pm


 ,

where these little identity matrices don’t overlap. A similar conclusion follows from
consideration of the matrices Isi×si . Note that in 7.25, the matrix on the right is a
block column matrix for the above block diagonal matrix, and the matrix on the left
in 7.25 is a block row matrix taken from a similar block diagonal matrix consisting
of the Isi×si .

Next consider the question of multiplication of two block matrices. Let B be a
block matrix of the form

(7.26)




B11 · · · B1p

...
. . .

...
Br1 · · · Brp



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and A is a block matrix of the form

(7.27)




A11 · · · A1m

...
. . .

...
Ap1 · · · Apm




such that for all i, j, it makes sense to multiply BisAsj for all s ∈ {1, · · · , p}. (That
is the two matrices Bis and Asj are conformable.) and that for fixed ij, it follows
that BisAsj is the same size for each s so that it makes sense to write

∑
s BisAsj .

The following theorem says essentially that when you take the product of two
matrices, you can partition both matrices, formally multiply the blocks to get an-
other block matrix and this one will be BA partitioned. Before presenting this
theorem, here is a simple lemma which is really a special case of the theorem.

Lemma 7.4.1 Consider the following product.



0
I
0


(

0 I 0
)

where the first is n × r and the second is r × n. The small identity matrix I is an
r× r matrix and there are l zero rows above I and l zero columns to the left of I in
the right matrix. Then the product of these matrices is a block matrix of the form




0 0 0
0 I 0
0 0 0


 .

Proof: From the definition of matrix multiplication, the product is






0
I
0


0 · · ·




0
I
0


 e1 · · ·




0
I
0


 er · · ·




0
I
0


0




which yields the claimed result. In the formula ej refers to the column vector of
length r which has a 1 in the jth position. This proves the lemma.2

Theorem 7.4.2 Let B be a q×p block matrix as in 7.26 and let A be a p×n block
matrix as in 7.27 such that Bis is conformable with Asj and each product, BisAsj

for s = 1, · · · , p is of the same size, so that they can be added. Then BA can be
obtained as a block matrix such that the ijth block is of the form

(7.28)
∑

s

BisAsj .

Proof: From 7.25

BisAsj =
(

0 Iri×ri 0
)
B




0
Ips×ps

0


(

0 Ips×ps 0
)
A




0
Iqj×qj

0



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where here it is assumed Bis is ri× ps and Asj is ps× qj . The product involves the
sth block in the ith row of blocks for B and the sth block in the jth column of A.
Thus there are the same number of rows above the Ips×ps as there are columns to
the left of Ips×ps

in those two inside matrices. Then from Lemma 7.4.1



0
Ips×ps

0


 (

0 Ips×ps 0
)

=




0 0 0
0 Ips×ps 0
0 0 0


 .

Since the blocks of small identity matrices do not overlap,

∑
s




0 0 0
0 Ips×ps

0
0 0 0


 =




Ip1×p1 0
. . .

0 Ipp×pp


 = I,

and so, ∑
s

BisAsj =

∑
s

(
0 Iri×ri 0

)
B




0
Ips×ps

0


 (

0 Ips×ps 0
)
A




0
Iqj×qj

0




=
(

0 Iri×ri 0
)
B

∑
s




0
Ips×ps

0


(

0 Ips×ps 0
)
A




0
Iqj×qj

0




=
(

0 Iri×ri 0
)
BIA




0
Iqj×qj

0


 =

(
0 Iri×ri 0

)
BA




0
Iqj×qj

0




which equals the ijth block of BA. Hence the ijth block of BA equals the formal
multiplication according to matrix multiplication,

∑
s

BisAsj .

This proves the theorem.2

7.5 Exercises

1. In the following examples, a linear transformation T is given by specifying its
action on a basis β. Find its matrix with respect to this basis. Then find its
matrix with respect to the usual basis.

(a) T

(
1
2

)
= 2

(
1
2

)
+ 1

( −1
1

)
, T

( −1
1

)
=

( −1
1

)

(b) T

(
0
1

)
= 2

(
0
1

)
+ 1

( −1
1

)
, T

( −1
1

)
=

(
0
1

)

(c) T

(
1
0

)
= 2

(
1
2

)
+ 1

(
1
0

)
, T

(
1
2

)
= 1

(
1
0

)
−

(
1
2

)
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2. Let β = {u1, · · · ,un} be a basis for Fn and let T : Fn → Fn be defined as
follows.

T

(
n∑

k=1

akuk

)
=

n∑

k=1

akbkuk

First show that T is a linear transformation. Next show that the matrix of T
with respect to this basis is [T ]β =




b1

. . .
bn


 .

Show that the above definition is equivalent to simply specifying T on the
basis vectors of β by

T (uk) = bkuk.

3. ↑In the situation of the above problem, let γ = {e1, · · · , en} be the standard
basis for Fn where ek is the vector which has 1 in the kth entry and zeros
elsewhere. Show that [T ]γ is

(7.29)
(

u1 · · · un

)−1 [T ]β
(

u1 · · · un

)
.

4. ↑Generalize the above problem to the situation where T is given by specifying
its action on the vectors of a basis β = {u1, · · · ,un} as follows.

Tuk =
n∑

j=1

ajkuj .

Letting A = (aij) , verify that for γ = {e1, · · · , en} , 7.29 still holds and that
[T ]β = A.

5. Let V,W be real inner product spaces. For w ∈ W and v ∈ V, the tensor
product, denoted as w ⊗ v is defined as a mapping from V to W as follows.

w ⊗ v (u) = 〈u, v〉V w

Show that w⊗ v is a linear mapping from V to W . If {w1, · · · , wm} is a basis
for W and {v1, · · · , vn} is a basis for V , show that {wi ⊗ vj}i,j is a basis for
the vector space of linear transformations mapping V to W . In the case where
V = W and {v1, · · · , vn} a basis for V, let L be a linear transformation, and
let aij denote the unique scalars such that

L =
∑

i,j

aijvi ⊗ vj

Let [L] denote the matrix of the linear transformation with respect to this
basis. Show that [L]ij = aij if and only if {v1, · · · , vn} is an orthonormal
basis. In general, show that [L] = AG where A is the n × n matrix having
components aij and G is the metric tensor, Gij = 〈vi, vj〉.
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6. Let P3 denote the set of real polynomials of degree no more than 3, defined
on an interval [a, b]. Show that P3 is a subspace of the vector space of all
functions defined on this interval. Show that a basis for P3 is

{
1, x, x2, x3

}
.

Now let D denote the differentiation operator which sends a function to its
derivative. Show D is a linear transformation which sends P3 to P3. Find the
matrix of this linear transformation with respect to the given basis.

7. Generalize the above problem to Pn, the space of polynomials of degree no
more than n with basis {1, x, · · · , xn} .

8. In the situation of the above problem, let the linear transformation be T =
D2 +1, defined as Tf = f ′′+ f. Find the matrix of this linear transformation
with respect to the given basis {1, x, · · · , xn}.

9. Consider the block matrix, M =
(

A B
0 C

)
where A is m×m and C is k×k.

Thus the matrix is (m + k)× (m + k) . Show that det (M) = det (A) det (C).

10. ∗Suppose {v1, · · · ,vk} are vectors in Rn. Then the k dimensional volume of
the parallelepiped determined by these vectors is defined as


det







vT
1
...

vT
k




(
v1 · · · vk

)






1/2

.

Verify that this makes sense by showing that it gives the right answer if there
is only one vector, and also gives the right answer if the vectors are othogonal.
Next verify that for any list of vectors, the above determinant is nonnegative
so one can at least take the square root as required. What is the k dimensional
volume if k > n? If k = n, show that the expression reduces to

∣∣det
(

v1 · · · vk

)∣∣ .

11. ∗Show that the definition of volume given in the above is the only one which
is geometrically reasonable. See the picture. You know what the volume of
the base is. The volume of the p + 1 dimensional parallelpiped needs to equal
the height times the volume of the base to make sense geometrically.

-

Á

3

P (v1, · · · ,vp)

v

6

N

θ
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12. In calculus, the following situation is encountered. Let f :U → Rm where U is
an open subset of Rn. Such a function is said to have a derivative or to be
differentiable at x ∈ U if there exists a linear transformation T : Rn → Rm

such that

lim
v→0

|f (x + v)− f (x)− Tv|
|v| = 0.

First show that this linear transformation, if it exists, must be unique. Next
show that for β = {e1, · · · , en} , the kth column of [T ]β is

∂f
∂xk

(x) .

Actually, the result of this problem is a well kept secret. People typically
don’t see this in calculus. It is seen for the first time in advanced calculus.

13. Recall that A is similar to B if there exists a matrix P such that A = P−1BP.
Show that if A and B are similar, then they have the same determinant.
Give an example of two matrices which are not similar but have the same
determinant.

14. It was shown in Lemma 7.1.5 that when two matrices come from the same
linear mapping but with respect to two different bases, then they are similar.
Prove the converse of this fact, that if two n × n matrices are similar, then
there exists a vector space V, a linear transformation T, and two different
bases, β, γ on V such that one matrix is [T ]β and the other is [T ]γ .

15. Prove the formula 7.19 for expansion of a determinant along a column .

16. Let A be an n× n matrix, A = (aij) . The trace of A is defined as

trace (A) =
∑

i

aii.

Show that for A,B two n× n matrices, trace (AB) = trace (BA). Now show
that if A and B are similar n× n matrices, then trace (A) = trace (B).

17. Find the inverse, if it exists, of the matrix



et cos t sin t
et − sin t cos t
et − cos t − sin t


 .

18. Consider the following two functions which are defined on (−1, 1) .

f1 (x) = x2, f2 (x) =
{

x2 if x ≥ 0
−x2 if x < 0

Show that these functions are linearly independent but that their Wronskian
is identically equal to 0.
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19. Let Ly = y(n)+an−1 (x) y(n−1)+· · ·+a1 (x) y′+a0 (x) y where the ai are given
continuous functions defined on a closed interval, (a, b) and y is some function
which has n derivatives, so it makes sense to write Ly. Suppose Lyk = 0 for
k = 1, 2, · · · , n. The Wronskian of these functions, yi is defined as

W (y1, · · · , yn) (x) ≡ det




y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y
(n−1)
1 (x) · · · y

(n−1)
n (x)


 .

Show that for W (x) = W (y1, · · · , yn) (x) to save space,

W ′ (x) = det




y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y
(n−2)
1 (x) · · · y

(n−2)
n (x)

y
(n)
1 (x) · · · y

(n)
n (x)




.

Now use the differential equation, Ly = 0 which is satisfied by each of these
functions, yi and properties of determinants presented above to verify that
W ′+an−1 (x) W = 0. Give an explicit solution of this linear differential equa-
tion, Abel’s formula, and use your answer to verify that the Wronskian of
these solutions to the equation, Ly = 0 either vanishes identically on (a, b) or
never. Hint: Multiply both sides of the differential equation by exp (A (x))
where A′ (x) = an−1 (x). Then show that what results is the derivative of
something.

20. Recall that you can find the determinant A = (aij) from expanding along the
jth column.

det (A) =
∑

i

(−1)i+j
aijAij

where Aij is the determinant obtained by deleting the ith row and the jth

column. It is customary to write

(−1)i+j
Aij = cof (A)ij .

Think of det (A) as a function of the entries, aij . Explain why the ijth cofactor
is really just

∂ det (A)
∂aij

.

21. Let U be an open set in Rn and let g :U → Rn be such that all the first
partial derivatives of all components of g exist and are continuous. Under
these conditions form the matrix Dg (x) given by

Dg (x)ij ≡
∂gi (x)

∂xj
≡ gi,j (x) .
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The best kept secret in calculus courses is that the linear transformation
determined by this matrix Dg (x) is called the derivative of g and is the
correct generalization of the concept of derivative of a function of one variable.
Suppose the second partial derivatives also exist and are continuous. Then
show that ∑

j

(cof (Dg))ij,j = 0.

Hint: First explain why
∑

i

gi,k cof (Dg)ij = δjk det (Dg) .

Next differentiate with respect to xj and sum on j using the equality of mixed
partial derivatives. Assume det (Dg) 6= 0 to prove the identity in this special
case. Then explain why there exists a sequence εk → 0 such that for gεk

(x) ≡
g (x) + εkx, det (Dgεk

) 6= 0, and so the identity holds for gεk
. Then take a

limit to get the desired result in general. This is an extremely important
identity which has surprising implications.

22. Recall that a determinant of the form
∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a0 a1 · · · an

a2
0 a2

1 · · · a2
n

...
...

...
an−1
0 an−1

1 · · · an−1
n

an
0 an

1 · · · an
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

is called a Vandermonde determinant. Give a new proof that this determinant
equals ∏

0≤i<j≤n

(aj − ai)

Hint: Show it works if n = 1, so you are looking at
∣∣∣∣

1 1
a0 a1

∣∣∣∣ .

Then suppose it holds for n−1 and consider the case n. Consider the following
polynomial.

p (t) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a0 a1 · · · t
a2
0 a2

1 · · · t2

...
...

...
an−1
0 an−1

1 · · · tn−1

an
0 an

1 · · · tn

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Explain why p (aj) = 0 for i = 0, · · · , n− 1. Thus

p (t) = c

n−1∏

i=0

(t− ai) .
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Of course c is the coefficient of tn. Find this coefficient from the above descrip-
tion of p (t) and the induction hypothesis. Then plug in t = an and observe
that you have the formula valid for n.

23. Let T : V → V be linear where V is a vector space of dimension n. Letting
β be a basis for V define det (T ) = det [T ]β . Show that this definition is
well defined. That is, show that you get the same number if you use another
definition for the basis.

24. ↑Using the above problem, show that there exists a unique polynomial p (λ)
which is of the form

p (λ) = λm + am−1λ
m−1 + · · ·+ a1λ + a0

such that
p (T ) = Tm + am−1T

m−1 + · · ·+ a1T + a0I = 0.

and m is as small as possible. This is called the minimal polynomial. Hint:
You can show this easily by using the result of Problem 16 on Page 131 to get
the existence of a polynomial which sends T to the zero linear transformation.
Now let m be the smallest integer such that for some polynomial p (λ) of degree
m, it follows that p (T ) = 0. Pick such a polynomial and divide by its leading
coefficient to obtain a monic polynomial. If you have two such polynomials,
p (λ) , p′ (λ) , then from the Euclidean algorithm, Theorem 1.8.3,

p′ (λ) = p (λ) l (λ) + r (λ)

where the degree of r (λ) is less than the degree of p (λ) or else r (λ) = 0.
Explain why this requires r (λ) = 0. Now note that since p′ (λ) and p (λ) have
the same degree, the degree of l (λ) must be 0 and hence, since they are both
monic, they must coincide.

25. Let Ai for i = 1, · · · , n be n× n matrices whose entries are in a field F which
is either Q,R,or C. Suppose also that for all |λ| sufficiently large,

A0 + A1λ + · · ·+ Anλn = 0.

Show that it follows that each Ak = 0.

26. ↑Let F be Q,R or C. Let Ak, Bk, k = 1, · · · , n be n× n matrices. Show that
if

A0 + A1λ + · · ·+ Anλn = B0 + B1λ + · · ·+ Bnλn.

for all |λ| sufficiently large enough, then Ai = Bi for each i.

27. ↑Let A be an n×n real, complex, or rational matrix. Explain why det (λI −A)
is a polynomial of degree n. Explain why there are finitely many roots of
det (λI −A) = 0. Then explain why (λI −A)−1 exists for all |λ| large enough.
This polynomial is called the characteristic polynomial.
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28. ↑ In the situation of the above problem, let C (λ) denote the adjugate matrix
of (λI −A) for all |λ| sufficiently large that (λI −A)−1 exists. Then by the
formula for the inverse 7.23,

C (λ) = det (λI −A) (λI −A)−1

= q (λ) (λI −A)−1
.

Explain why each entry in C (λ) is a polynomial in λ having degree no more
than n− 1 so that

C (λ) = C0 + C1λ + · · ·+ Cn−1λ
n−1

where each Ci is an n× n matrix. Then for all |λ| large enough,

(λI −A)
(
C0 + C1λ + · · ·+ Cn−1λ

n−1
)

= q (λ) I.

Now use the result of Problem 26. Conclude that the matrix coefficients of
the two sides are the same. Explain why λ can now be replaced with A to
conclude

0 = q (A) I = q (A) .

This is the very important Cayley - Hamilton theorem1.

1A special case was first proved by Hamilton in 1853. The general case was announced by
Cayley some time later and a proof was given by Frobenius in 1878.



Characteristic polynomial
and eigenvalues of a matrix

8.1 The Characteristic Polynomial

Let A be an n×n matrix over F . The characteristic polynomial is the expression

PA(λ) = det(λI −A).

It is a polynomial of degree n in the variable λ of the form

PA(λ) = λn + b1λ
n−1 + · · ·+ bn−1λ + bn.

Example 8.1.1 The characteristic polynomial of

A =
(

a11 a12

a21 a22

)

is

PA(λ) = det

(
λ− a11 −a12

−a21 λ− a22

)

= λ2 − (a11 + a22)λ + det A.

Example 8.1.2 Let F = R. The characteristic polynomial of

A =




1 3 0
3 1 0
3 4 6




is

PA(λ) = det




λ− 1 −3 0
−3 λ− 1 0
−3 −4 λ− 6


 .

189
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Expanding by column 3,

PA(λ) = (λ− 6) det
(

λ− 1 −3
−3 λ− 1

)

= (λ− 6)((λ− 1)2 − 9)
= (λ− 6)(λ− 4)(λ + 2).

A Maple command will evaluate PA(λ) (and give its zeros) for any given n× n
matrix A, n < 5 e.g.

A =




1 0 0 1
1 1 0 0
1 0 0 1
1 1 1 1




has characteristic polynomial λ4−3λ3+λ2. Its zeros (which are just the eigenvalues
referred to in the definition below) are 0, 0, 3/2±1/2

√
5 (shown with multiplicities).

Try changing a12 to 2; you may be surprised by the horrific appearance of the
eigenvalues.

Definition 8.1.3 Let λ ∈ F . We say that λ is an eigenvalue of A if there is a
vector x 6= 0 with

Ax = λx.

Such an x is called an eigenvector of A.

Example 8.1.4 Since



1 3 0
3 1 0
3 4 6







0
0
1


 =




0
0
6


 ,

we conclude that e3 is an eigenvector of



1 3 0
3 1 0
3 4 6


 ,

and the corresponding eigenvalue is 6.
The usefulness of the characteristic polynomial comes from the following result.

Lemma 8.1.5 Let A be an n × n matrix over F . The eigenvalues of A are the
zeros of PA(λ) in F .

Proof. Clearly λ is an eigenvalue if, and only if, ker(A − λI) 6= {0}. So λ is an
eigenvalue if, and only if, R(A − λI) < n. (Theorem 5.4.10 of Chapter 5.) This is
equivalent in turn to det(A− λI) = 0 (Lemma 7.2.15). 2

The eigenvalues of the matrix A in Example 8.1.1 are now known to be 6, 4 and
−2. A short calculation is needed to find the eigenvectors. These lie in what are
called eigenspaces.
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Definition 8.1.6 For an eigenvalue λ of A, the eigenspace corresponding to λ is
ker(λI −A), in other words the set of solutions of

Ax = λx.

Thus the eigenspace corresponding to λ contains all the eigenvectors with eigen-
value λ, plus the vector 0.

Example 8.1.7 Find the eigenspaces of

A =




1 3 0
3 1 0
3 4 6


 .

The eigenspace for λ = 6 is

ker




5 −3 0
−3 5 0
−3 −4 0


 = ker A6, say.

Here A6 ∼



1 0 0
0 1 0
0 0 0


 = B6, since the first two columns are a basis for Col (A6).

The corresponding set of equations B6x = 0 reads x1 = x2 = 0. The general
solution is (0, 0, x3), so span{e3} is the eigenspace for λ = 6.

Similarly, after row reduction, the eigenspace for λ = 4 is

ker




3 −3 0
−3 3 0
−3 −4 −2


 = ker




1 0 2/7
0 1 2/7
0 0 0


 .

The corresponding equations read x1 + 2/7x3 = 0, x2 + 2/7x3 = 0. The eigenspace
for λ = 4 is seen to be span{(−2,−2, 7)}.

Similarly the eigenspace for λ = −2 is

ker



−3 −3 0
−3 −3 0
−3 −4 −8


 = ker




1 0 −8
0 1 8
0 0 0




= span{(8,−8, 1)}.

Example 8.1.8 (Maple) Find the eigenvalues and eigenspaces of



5 12 −18 −3
2 15 −18 −3
2 10 −13 −3
−4 −8 18 8


 .

Solution: Right click and choose in turn ‘Eigenvalues etc.’, ‘Eigenvectors’. The
display is 



5
5
3
2


 ,




1/4 3/2 0 −1
1/4 3/2 −1/2 −1
0 1 −1/2 −1
1 0 1 1


 ,
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meaning that 5 is an eigenvalue with multiplicity 2 and the corresponding eigenspace
is

span{(1/4, 1/4, 0, 1), (3/2, 3/2, 1, 0)}
3 is an eigenvalue with corresponding eigenspace

span{(0,−1/2,−1/2, 1)}
and 2 is an eigenvalue with corresponding eigenspace

span{(−1,−1,−1, 1)}.
.

We now recall Definition 7.1.10. We say an n×n matrix A can be diagonalized
over F if there exists an invertible n× n matrix P and a diagonal matrix

D =




λ1 · · · 0
...

. . .
...

0 · · · λn




where each λk is in F and
P−1AP = D,

equivalently
A = PDP−1.

We can now answer the question: Which matrices A can be diagonalized over
F? We can even write down P and D in the equation

A = PDP−1,

(P invertible, D diagonal).

Theorem 8.1.9 Let A be an n × n matrix over F . The following statements are
equivalent.

(i) A can be diagonalized over F ,

(ii) there is a basis w1, . . . ,wn of Fn with each wj an eigenvector of A, Awj =
λjwj.

Proof. If (i) holds, then A = PDP−1 (D diagonal, P inverible), D having
λ1 . . . λn down the main diagonal. Let

(8.1) P =
(

w1 · · · wn

)
.

Now

(8.2) AP = PD.

This can be rewritten

(8.3)
(

Aw1 · · · Awn

)
=

(
λ1w1 · · · λnwn

)

which yields (ii).
If (ii) holds, then this implies 8.3 which we rewrite in the form 8.1, 8.2. Hence

P−1AP = D and this implies (i). 2
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Example 8.1.10 We revisit Example 8.1.2.

Given the eigenvalues and eigenspaces that were found there,



1 3 0
3 1 0
3 4 6


 = PDP−1,

with

P =




0 −2 8
0 −2 −8
1 7 1


 , D =




6 0 0
0 4 0
0 0 −2


 .

All we have done is place a vector from each eigenspace as a column of P (in
a position corresponding to the eigenvalue in D). It is easily checked that P is
invertible.

To use Maple to decide diagonalizability of A place the cursor over A, right-click
on ‘Solvers and forms’ and select ‘Jordan form’. The Jordan form J is a matrix
similar to A which is diagonal except possibly for some 1’s immediately above the
diagonal. For instance,




5 0 0 0
0 5 0 0
0 0 3 0
0 0 0 3


 ,




5 1 0 0
0 5 0 0
0 0 3 0
0 0 0 3







5 1 0 0
0 5 0 0
0 0 3 1
0 0 0 3




are examples of Jordan forms of 4 × 4 matrices of characteristic polynomial (λ −
5)2(λ− 3)2. The diagonalizability of A is equivalent to the Jordan form of A being
a diagonal matrix. See Hogben (2007) for more detailed information. However, it is
impossible to compute the Jordan form for a general matrix unless the eigenvalues
can be found exactly, even for computer algebra systems, so this procedure will not
always work.

The linear independence of the columns of P in Example 8.1.10 could have been
predicted from the following result.

Lemma 8.1.11 Let λ1, . . . , λk be distinct eigenvalues of A with corresponding eigen-
vectors v1, . . . ,vk. Then v1, . . . ,vk is a linearly independent set.

Proof. Suppose the claim of the lemma is not true. Then there exists a linear
combination of the vectors

(8.4)
r∑

j=1

cijvij = 0,

where each cij 6= 0 and r is as small as possible for this to take place. Then apply
A to both sides of the above equation to obtain

r∑

j=1

cij λijvij = 0.
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Next multiply both sides of 8.4 by λir
and subtract from the above. This yields

r−1∑

j=1

cij

(
λij − λir

)
vij = 0

It follows that each cij for j = 1, . . . , r − 1 equals 0. But from 8.4, this would
require that cir

vir
= 0 and since cir

is given to be nonzero, vir
= 0 contradicting

the assertion that this vector is an eigenvector. This is a contradiction. Hence the
set of vectors is linearly independent as claimed. 2

Example 8.1.12 We can easily construct a matrix that cannot be diagonalized.

With any field F , let

A =
(

1 1
0 1

)
.

Then A cannot be diagonalized over F . For obviously 1 is the only eigenvalue.
The eigenspace is

ker
(

0 −1
0 0

)
= span{(1, 0)}.

There is no basis of F 2 consisting of eigenvectors of A.

Example 8.1.13 Let θ be an angle, 0 < θ < π, and A =
(

cos θ − sin θ
sin θ cos θ

)
.

Then A can be diagonalized over C but cannot be diagonalized over R.

The characteristic polynomial is

(λ− cos θ)2 + sin2 θ = (λ− cos θ + i sin θ)(λ− cos θ − i sin θ).

So the eigenvalues are cos θ± i sin θ (note that sin θ > 0). Lemma 8.1.11 guarantees
two linearly independent eigenvectors (we need not compute them) and A can be
diagonalized over C. On the other hand, if we work over the field R, there are no
eigenvalues and no eigenvectors.

A simple geometrical argument also shows the absence of eigenvectors, since the
rotated vector Ax lies outside span{x} whenever x 6= 0,x ∈ R2.

It is important to note that transposing a square matrix does not affect the
determinant or the eigenvalues. This follows from Lemma 7.2.13.

It is a simple consequence of Lemma 7.2.13 that column operations affect the
determinant in just the same way as row operations, e.g.

det
(

a1 + ka2 a2 a3

)
= det

(
a1 a2 a3

)
.

In this particular case we would argue as follows that:

det
(

a1 + ka2 a2 a3

)
= det




at
1 + kat

2

at
2

at
3




= det




at
1

at
2

at
3


 = det

(
a1 a2 a3

)
.
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We have left as an exercise the fact that if λ has multiplicity h as a zero of the
characteristic polynomial PA, the corresponding eigenspace has dimension at most
h. See Problem 16 on Page 184.

An application of eigenvalues and eigenvectors is to the computation of powers
of a matrix. We illustrate with a representative example.

Example 8.1.14 Let A =




3 2 2
3 5 3
−7 −8 −6


 . Find A35 in terms of powers of the

matrix.

The eigenvalues and eigenvectors are



0
−1
1


 ↔ 2,




1
1
−3


 ↔ −1,



−1
0
1


 ↔ 1

Therefore, a matrix which will produce the desired diagonalization is

P =




0 1 −1
−1 1 0
1 −3 1


 .

Thus

P−1 =



−1 −2 −1
−1 −1 −1
−2 −1 −1




and P−1AP is a diagonal matrix D having the diagonal entries 2,−1, 1 from upper
left to lower right. Now

An = PDP−1PDP−1 · · ·PDP−1

= PDnP−1.

It is very easy to raise a diagonal matrix to a power:



λ1

λ2

. . .
λn




r

=




λr
1

λr
2

. . .
λr

n




and so, continuing with our example,

A35 =



−1 −2 −1
−1 −1 −1
−2 −1 −1







235 0 0
0 −1 0
0 0 1







0 1 −1
−1 1 0
1 −3 1




=



−3 −235 + 5 235 − 1
−2 −235 + 4 235 − 1
−2 −236 + 4 236 − 1


 .
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8.2 Exercises

1. Here are some matrices. The eigenvalues are 1,2, and 3. Find the eigenvectors
which go with the given eigenvalues.

(a)



−11 −3 −7
4 3 2
22 5 14




(b)



−7 −2 −5
−4 1 −2
18 4 12




(c)




1 −2 2
−1 0 2
−1 −3 5




(d)



−17 −4 −11
−14 −1 −8
38 8 24




2. The following matrix has eigenvalues −3, 1.



−25 −11 −78
−4 −5 −12
8 4 25




Describe all eigenvectors which correspond to the given eigenvalues. Does
there exist a basis of eigenvectors? When there is no basis of eigenvectors, the
matrix is called defective. By Theorem 8.1.9 this implies that a defective
matrix cannot be diagonalized.

3. The following matrix has eigenvalues −1, 1.



−1 0 0
0 −1 0
2 2 1




Find all eigenvectors which go with each of these eigenvalues. Does there exist
a basis of eigenvectors?

4. Write each of the above matrices in Problem 1 in the form S−1DS where

D =




1 0 0
0 2 0
0 0 3


 .

5. For each matrix A in Problem 1, find A23 in terms of powers of the eigenvalues.

6. Suppose A,B are two n × n matrices and that there exists a single matrix
P such that P−1AP and P−1BP are both diagonal matrices. Show that
AB = BA.
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7. Let T be an upper triangular matrix which can be diagonalized because all
the entries on the main diagonal are distinct. Show that, corresponding to
the ith diagonal entry from the top left corner, there exists an eigenvector of

the form
(

a
0

)
where a is an i× 1 matrix. Show that this implies that there

exists an upper triangular S such that S−1TS is a diagonal matrix.

8. A discrete dynamical system is of the form

xn = Axn−1, x0 = a

where A is an p × p matrix. Suppose that A can be diagonalized. Recall
that this means that there exists a basis {y1, . . . ,yp} of eigenvectors for F p.
Letting λk be an eigenvalue which corresponds to yk, show that the solution
to the dynamical system is

xm =
p∑

k=1

akλm
k yk

where the ak are defined by

a =
p∑

k=1

akyk.

9. ↑An important example of a dynamical system is the case where A is a
Markov matrix.

Definition 8.2.1 A matrix A = (aij) is a Markov matrix if each aij ≥ 0 and∑
i aij = 1. That is, the sum along any column equals 1.

Show that 1 is always an eigenvalue of a Markov matrix and that if λ is an
eigenvalue, then |λ| ≤ 1. Hint: Recall that the eigenvalues of A and At are the
same because these matrices have the same characteristic polynomials. Es-
tablish the result for At and then draw the desired conclusion for A. Consider
the column vector consisting entirely of ones.

10. ↑Suppose A is a Markov matrix A = (aij) where each aij > 0. Show that
other than 1, all eigenvalues λ satisfy |λ| < 1. Hint: Let B = At, so that the
sum along the rows equals 1. Then if |λ| = 1 where λ is an eigenvalue with
eigenvector x, ∑

j

bijxj = λxi.

Take the complex inner product of both sides with λxi. Explain why

|xi|2 ≥
∑

j

bij |xj | |xi| ≥
∑

j

bijxjλxi = |xi|2

and why this requires that for each j, xjλxi ≥ 0. Hence λ is real and nonneg-
ative.
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11. Suppose that A is a Markov matrix which can be diagonalized. Suppose
also that 1 is an eigenvalue of algebraic multiplicity 1 and that all the other
eigenvalues have absolute value less than 1. Show that for Ax = x, and xn

the solution to the dynamical system

xn = Axn−1, xn = a,

the following limit is obtained.

lim
n→∞

xn = kx

where k is chosen in such a way that k (
∑

i xi) =
∑

i ai. Hint: Show that for
A a Markov matrix,

∑
i (Ax)i =

∑
i xi.

12. Using the method of the above problem, find limn→∞ xn where xn is the
solution to the dynamical system

xn = Axn−1, x0 = a

where a =(1, 1, 1)t and A is the Markov matrix

A =




.5 .4 .8

.3 .1 .1

.2 .5 .1


 .

13. Let A be an n × n matrix. Show that (−1)n det (A) is the constant term of
the characteristic polynomial of A, det (λI −A) .

14. Let A be a complex n × n matrix. Show that the coefficient of λn−1 in the
characteristic polynomial is the trace of A, defined as

∑
i aii, the sum of the

entries down the main diagonal. Also verify that the trace of A is equal to
the sum of the eigenvalues.

15. If det (A) 6= 0, show that A−1 may be obtained as a polynomial in A. Hint:
Use the Cayley - Hamilton theorem.

16. Recall Problem 24 on Page 83 which shows that if V,W are two vector spaces
over a field of scalars F then L (V,W ) is also a vector space over the same field
of scalars. Let {v1, . . . , vn} be a basis for V and suppose Lvi = wi ∈ W. Thus
L is defined on the basis vectors of V . Now define L on all linear combinations
of these basis vectors as follows.

L

(
n∑

k=1

ckvk

)
=

n∑

k=1

ckLvk.

Verify that with this definition, L ∈ L (V,W ) and is well defined and uniquely
determined. Thus you can define a linear transformation by specifying what
it does to a basis.
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17. ↑In the case that V and W are finite dimensional vector spaces, it is natural
to ask for the dimension of L (V, W ). Let {v1, . . . , vn} be a basis for V and
let {w1, . . . , wm} be a basis for W . Define the linear transformation denoted
by wivj as follows.

wivj (vk) = wiδjk

Thus wivj (vk) = wi if k = j and wivj (vk) = 0 if k 6= j. Show that if
L ∈ L (V, W ) , then

L =
∑

i,j

Lijwivj

where the Lij are defined by

Lvi =
∑

j

Ljiwj

Thus {wivj}i,j is a spanning set of L (V, W ). These special transformations
are called dyadics.

18. ↑In the situation of the above problem, show {wivj}i,j are linearly independent
in addition to spanning L (V, W ). Therefore, these form a basis. Conclude
that the dimension of L (V, W ) = mn. The matrix of L ∈ L (V, W ) is defined
as (Lij) where

L =
∑

i,j

Lijwivj .

19. ↑Show that if T ∈ L (V, V ) where dim (V ) = n, there exists a unique monic
polynomial p (λ) of minimal degree which satisfies p (T ) = 0. This is a more
elegant version of Problem 24 on Page 187 because it makes no reference to
matrices or particular coordinate systems.

20. For T ∈ L (V, V ) , give conditions on the minimal polynomial for T which will
ensure that T−1 exists. Then find a formula for T−1 in terms of a polynomial
in T .

21. Let V, W be finite dimensional vector spaces having bases {v1, . . . , vn} and
{w1, . . . , wm} respectively. Also let {wivj}i,j be as defined in Problem 17 and
the problems following that one. Show that (wivj) (vkwl) = δjkwiwl. Also
show that idW =

∑
i,j δijwiwj , where idW denotes the identity map on W.

Thus the matrix of the identity map is just the usual identity matrix. Now
consider the identity with respect to two different bases on W .

idW =
∑

i,j

cijw
′
iwj , idW =

∑
r,s

drswrw
′
s.

Show that the matrices (cij) and (drs) are inverses of each other.

22. ↑Now suppose {v1, . . . , vn} and {w1, . . . , wm} are two bases for V and W
respectively and let {v′1, . . . , v′n} and {w′1, . . . , w′m} denote respectively two
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other bases for V and W and let L ∈ L (V, W ) . How do the matrices of L
with respect to these bases compare? Hint:

∑

i,j

Lijwivj = L = idW L idV =
∑

i,j,p,q,r,s

cijw
′
iwj (Lpqwpvq) drsvrv

′
s.

Now use the preceding problem to get
∑

i,j,r,s

w′icijLjrdrsv
′
s.

In the case where W = V, establish the usual result that [L]β = P−1 [L]β′ P
for a suitable matrix P as a special case.

23. Let A be a complex n×n matrix with characteristic polynomial PA (λ). Sup-
pose an eigenvalue µ has algebraic multiplicity h. This means that when the
characteristic polynomial is factored, it is of the form

PA (λ) = (λ− µ)h
q (λ)

where q (µ) 6= 0. Show that the eigenspace for µ has dimension at most h.
Hint: Use the Cayley - Hamilton theorem and Problem 15 on Page 131 to
show that

Cn = ker
(
(A− µI)h

)
⊕ ker (q (A)) .

Now let β1 = {v1, . . . ,vr} be a basis for ker (A− µI) and extend this to a
basis for ker

(
(A− µI)h

)
which is of the form {v1, . . . ,vr, β2}. Now letting

β3 be a basis for ker (q (A)) and β = {β1, β2, β3} , explain why β is a basis
and why the matrix [A]β is a block diagonal matrix of the form




D
E

F




where D is a diagonal matrix which has r entries down the diagonal, each
equal to µ. Show that (λ− µ)r divides the characteristic polynomial, and so
r ≤ h.

24. Let A be an m × n matrix and let B be an n ×m matrix for m ≤ n. Then
denoting by pN (t) the characteristic polynomial of the matrix N, show that

pBA (t) = tn−mpAB (t) ,

so the eigenvalues of BA and AB are the same including multiplicities except
that BA has n−m extra zero eigenvalues. Hint: Use block multiplication to
write (

AB 0
B 0

)(
I A
0 I

)
=

(
AB ABA
B BA

)

(
I A
0 I

) (
0 0
B BA

)
=

(
AB ABA
B BA

)
.
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Explain why this implies that the following two matrices are similar and there-
fore have the same characteristic equation.

(
AB 0
B 0

)
,

(
0 0
B BA

)

Now note that AB is m×m and BA is n× n. Explain why

tm det (tI −BA) = tn det (tI −AB)

25. In the case where A is an m × n matrix with m ≥ n and A has full rank,
Problem 2 on Page 152 outlined why there exists an n×n matrix Q having the
property that Q∗Q = QQ∗ = I obtained from the Gram Schmidt procedure
by having the columns of Q form an orthonormal set such that A = QR where
R is upper triangular in the sense that rij = 0 if i > j. Show, using block
multiplication that there exists Q1 an m×n matrix and R an upper triangular
n× n matrix such that A = Q1R. This is called the thin QR factorization by
Golub and Van Loan.

26. Suppose A is a complex n × n matrix which can be diagonalized. Consider
the first order initial value problem

x′ = Ax, x (0) = x0.

Letting {v1, . . . ,vn} be a basis of eigenvectors, Avk = λkvk, show that there
is a unique solution to the initial value problem and it is given by

x (t) =
n∑

k=1

akvkeλkt

where ak is defined by

x0 =
n∑

k=1

akvk.

For the meaning of eλkt, see Proposition 5.6.2. Hint: By assumption, P =(
v1 · · · vn

)
is such that

P−1AP = D, PDP−1 = A

where D is a diagonal matrix having the eigenvalues of A down the main
diagonal. Hence

x′ = PDP−1x.

Now let y = P−1x and argue that

y′i (t) = λiyi (t) , yi (0) =
(
P−1x0

)
i
(0)

Use Proposition 5.6.2 to determine y and then use x = Py.

27. Let Φ (t) =
(

y1 (t) · · · yn (t)
)

where each yk (t) is a differentiable vector
valued function. Show that

(detΦ)′ (t) =
n∑

k=1

det
(

y1 (t) · · · y′k (t) · · · yn (t)
)
.



202 CHARACTERISTIC POLYNOMIAL AND EIGENVALUES OF A MATRIX

28. Establish Abel’s formula in the case where A can be diagonalized. This for-
mula says that if Φ (t) is an n× n matrix whose columns are solutions of the
differential equation

x′ (t) = Ax (t) ,

then there exists a constant C such that

det Φ (t) = Cetrace(A)t

which shows that Φ (t) is either invertible for all t or for no t. This determinant
is called the Wronskian. Hint: Reduce to the case where

Ψt′ = ΨtD.

for D a diagonal matrix having the eigenvalues of A down the main diagonal
and Ψ = P−1Φ where D = P−1AP . Use Problem 14 above or else note that,
since D is similar to A, its trace equals the trace of A. (Problem 23 on Page
200.)

29. Let A be a complex n × n matrix. The ith Gerschgorin disk is the set of all
z ∈ C such that

|aii − z| ≤
∑

j 6=i

|aij | .

Thus there are n Gerschgorin disks, one for each diagonal entry of A.
Gerschgorin’s theorem says that all eigenvalues of A are contained in the
union of the Gerschgorin disks. Prove this important theorem.

30. Explain why A is invertible if and only if it has no zero eigenvalues. A complex
n× n matrix is called diagonally dominant if for each i,

|aii| >
∑

j 6=i

|aij | .

Show that such a diagonally dominant matrix must be invertible.

31. Explain carefully why every complex n× n matrix has an eigenvector.

32. ↑Let A be a complex n × n matrix. Show that there exists an orthonormal
basis {u1, · · · ,un} such that Au1 = λu1.

33. ↑Let A be a complex n × n matrix. Show that there exists a matrix U such
that U∗AU is of the form

(
λ r
0 A1

)

and U∗U = I where U∗ =
(
U

)T
, the tranpose of the conjugate of U . That

is, you replace every entry of U with its complex conjugate and then take the
transpose of the result. Thus the ijth entry of U∗U is ui · uj = 〈uj ,ui〉 . In
the formula, A1 is an (n− 1)× (n− 1) matrix, 0 is an (n− 1)× 1 matrix and
r is a 1× (n− 1) matrix.
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34. ↑Let A be a complex n×n matrix. Show that there exists a matrix U such that
U∗U = I and U∗AU is an upper triangular matrix T . Hint: Use the above
result and induction. This is Schur’s theorem, possibly the most important
theorem in spectral theory.

35. ↑Let T be a complex upper triangular n × n matrix. Show by induction on
the size of T that there exists a unique solution to the first order initial value
problem given by




x′1 (t)
...

x′n (t)


 = T




x1 (t)
...

xn (t)


 +




f1 (t)
...

fn (t)


 ,




x1 (0)
...

xn (0)


 =




x10

...
xn0


 .

This is written more compactly as x′ = Tx + f , x (0) = x0. Here you must
assume only that each fi is a continuous function so that it is possible to
take an integral. Hint: To solve the scalar equation y′ = ay + f, write as
y′ − ay = f and multiply both sides by e−at. Verify that this reduces the
left side to d

dt (e−aty) . Then integrate both sides to get rid of the derivative.
Hence, in particular, there exists a unique solution in the case that T is 1× 1.

36. ↑Let A be an n×n complex matrix. Show that there exists a unique solution
to the initial value problem y′ = Ay + f , y (0) = y0. Hint: Use the above
problem and Schur’s theorem. When you have done this problem, you have
almost done all the mathematical content of a typical ordinary differential
equations class.

37. Let A be a complex n × n matrix. The trace of A denoted as trace(A) is
defined as the sum of the entries on the main diagonal of A. Thus the trace
equals

∑
i Aij . Show that if A is simlar to B then they have the same trace.

Then show using Schur’s theorem that the trace is always equal to the sum
of the eigenvalues.

38. ↑Let A, B be complex m×n matrices. The Frobenius inner product is defined
as 〈A,B〉 = trace(AB∗) where B∗ is defined as

(
B

)T
. Show this is an inner

product and that ||A||2 =
∑

i,j |Aij |2. Show that the matrices eij obtained
by placing a 1 in the ijth position and a 0 in every other position is an
orthonormal basis for the space of m×n matrices. Thus the dimension of the
vector space of m× n matrices is mn.

39. ↑Let A be an n × n complex matrix. Show that there exists a unique monic
polynomial p (λ) having smallest possible degree such that p (A) = 0. Also
describe an easy way to find this minimal polynomial. (Monic means the
coefficient of the highest power of λ equals 1.) Using the Cayley-Hamilton
theorem, explain why the minimal polynomial must divide the characteristic
polynomial.

40. Find the minimal polynomial for the matrix
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

−14 −30 0
5 11 0
−11 −23 1




Is this the same as the characteristic polynomial?

41. Find the minimal polynomial for the matrix




5 12 16
0 1 0
−1 −3 −3




Is this the same as the characteristic polynomial?

42. If you have an n×n matrix A, then you can obtain its characteristic polynomial
det (λI −A) . This is a monic polynomial of degree n. Suppose you start with
a monic polynomial of degree n. Can you produce a matrix which has this
polynomial as its characteristic polynomial? The answer is yes, and such a
matrix is called a companion matrix. Show that the matrix




0 · · · 0 −a0

1 0 · · · −a1

. . .
...

1 −an−1




is a companion matrix for the polynomial p (λ) = λn+an−1λ
n−1+· · ·+a1λ+a0.

8.3 The Jordan Canonical Form∗

Earlier we showed how to find the matrix of a linear transformation with respect
to various bases. The Jordan form of a matrix is one of these matrices. It exists
exactly when the minimal polynomial, described above in Problem 24 on Page 187,
splits. This term means that there exist scalars λi ∈ F such that

p (λ) = (λ− λ1)
r1 (λ− λ2)

r2 · · · (λ− λp)
rp .

One situation in which this always happens is when the field of scalars equals C.
The Jordan form is the next best thing to a diagonal matrix.

Recall the definition of direct sum of subspaces given in Problem 14 on Page
130. One writes

(8.5) V = V1 ⊕ · · · ⊕ Vp

if every v ∈ V can be written in a unique way in the form v = v1+· · ·+vp where each
vk ∈ Vk. Recall also from this problem that if βj is a basis for Vj , then

{
β1, · · · , βp

}
is a basis for V .
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Theorem 8.3.1 Let T be a linear transformation mapping V to V, an n dimen-
sional vector space, and suppose 8.5 holds for the subspaces Vi of V . Suppose also
that T : Vi → Vi. Letting Ti denote the restriction of T to Vi, suppose that the ma-
trix of Ti with respect to Vi is Mi with respect to βi, a basis for Vi. Then it follows
that that the matrix of T with respect to

{
β1, · · · , βp

}
is the block diagonal matrix

M =




M1

. . .
Mp


 .

Proof. Let θ denote the coordinate map corresponding to β =
{
β1, · · · , βp

}
.

Also, letting βi be the above basis for Vi, let θi denote the coordinate map from Vi

to F di where di is the dimension of Vi. It follows that that for v = v1 + · · · + vp

where each vi ∈ Vi,

θv = (θ1v1, · · · , θpvp) .

Thus from the definition of the matrix of a linear transformation, and using block
multiplication,

Mθv =




M1θ1v1

...
Mpθpvp


 =




θ1T1v1

...
θpTpvp




= θ (T1v1 + · · ·+ Tpvp) = θTv.

Therefore, M is the matrix of T with respect to β as claimed. 2

Definition 8.3.2 Let W be a vector space and let N : W → W be linear and satisfy
Nrw = 0 for all w ∈ W . Such a linear mapping is called nilpotent.

We also need the following definition.

Definition 8.3.3 Jk (α) is a Jordan block if it is a k × k matrix of the form

Jk (α) =




α 1 0

0
. . . . . .

...
. . . . . . 1

0 · · · 0 α




In words, there is an unbroken string of ones down the super diagonal, and the
number α filling every space on the main diagonal, with zeros everywhere else.

Proposition 8.3.4 Let N ∈ L (W,W ) be nilpotent,

Nm = 0

for some m ∈ N. Here W is an p dimensional vector space with field of scalars F.
Then there exists a basis for W such that the matrix of N with respect to this basis
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is of the form 


Jr1 (0) 0
Jr2 (0)

. . .
0 Jrs

(0)




where r1 ≥ r2 ≥ · · · ≥ rs ≥ 1 and
∑s

i=1 ri = p. In the above, the Jrj
(0) is a Jordan

block of size rj × rj with 0 down the main diagonal.

Proof: First note the only eigenvalue of N is 0. This is because if

Nv = λv, v 6= 0,

and λ 6= 0, then 0 = Nmv = λm+1v which contradicts the requirement that v 6= 0.
See Problem 18 on Page 132.

Let v1 be an eigenvector. Then {v1, v2, · · · , vr} is called a chain based on v1 if
Nvk+1 = vk for all k = 0, 1, 2, · · · , r where v0 is defined as 0. It will be called a
maximal chain if there is no solution v, to the equation Nv = vr.

Claim 1: The vectors in any chain are linearly independent and for

{v1, v2, · · · , vr}

a chain based on v1,

(8.6) N : span {v1, v2, · · · , vr} → span {v1, v2, · · · , vr} .

Also if {v1, v2, · · · , vr} is a chain, then r ≤ p.
Proof: First note that 8.6 is obvious because N

∑r
i=1 civi =

∑r
i=2 civi−1. It

only remains to verify that the vectors of a chain are independent. This is true if
r = 1. Suppose true for r − 1 ≥ 1. Then if

∑r
k=1 ckvk = 0, an application of N to

both sides yields
∑r

k=2 ckvk−1 = 0. By induction, each ck, k > 1 equals 0. Hence
c1 = 0 also and so the claim follows.

Consider the set of all chains based on eigenvectors. Since all have total length
no larger than p, it follows that there exists one which has maximal length,

{
v1
1 , · · · , v1

r1

} ≡ B1.

If span {B1} contains all eigenvectors of N, then stop. Otherwise, consider all chains
based on eigenvectors not in span {B1} and pick one, B2 ≡

{
v2
1 , · · · , v2

r2

}
which is

as long as possible. Thus r2 ≤ r1. If span {B1, B2} contains all eigenvectors of N,
stop. Otherwise, consider all chains based on eigenvectors not in span {B1, B2} and
pick one, B3 ≡

{
v3
1 , · · · , v3

r3

}
such that r3 is as large as possible. Continue this way.

Thus rk ≥ rk+1.
Claim 2: The above process terminates with a finite list of chains

{B1, · · · , Bs}

because for any k, {B1, · · · , Bk} is linearly independent.
Proof of Claim 2: The claim is true if k = 1. This follows that from Claim

1. Suppose it is true for k− 1, k ≥ 2. Then {B1, · · · , Bk−1} is linearly independent.
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Now consider the induction step going from k − 1 to k. Suppose that there exists
a linear combination of vectors from from {B1, · · · , Bk−1, Bk} .

p∑
q=1

cqwq = 0, cq 6= 0

By induction, some of these wq must come from Bk. Let vk
i be the vector of Bk

for which i is as large as possible. Then apply N i−1 to both sides of the above
equation to obtain vk

1 , the eigenvector upon which the chain Bk is based, is a linear
combination of {B1, · · · , Bk−1} contrary to the construction. Since {B1, · · · , Bk}
is linearly independent, the process terminates. This proves the claim.

Claim 3: Suppose Nw = 0 (w is an eigenvector). Then there exist scalars ci

such that

w =
s∑

i=1

civ
i
1.

Recall that the ith chain is based on vi
1.

Proof of Claim 3: From the construction, w ∈ span {B1, · · · , Bs} since other-
wise, it could serve as a base for another chain. Therefore,

w =
s∑

i=1

ri∑

k=1

ck
i vi

k.

Now apply N to both sides. It follows that 0 =
∑s

i=1

∑ri

k=2 ck
i vi

k−1, and so by
Claim 2, ck

i = 0 if k ≥ 2, i = 1, · · · , s. Therefore, w =
∑s

i=1 c1
i v

i
1 and this proves

the claim.
In fact, there is a generalization of this claim.
Claim 4: Suppose Nkw = 0, k a positive integer. Then w ∈ span {B1, · · · , Bs} .
Proof of Claim 4: From Claim 3, this is true if k = 1. Suppose that it is true

for k − 1 ≥ 1 and Nkw = 0. Then if Nk−1w = 0 the result follows by induction, so
suppose Nk−1w 6= 0. Then Nk−1w, · · · , Nw,w is a chain based on Nk−1w having
length k. It follows that each Bi has length at least as long as k because the
construction chooses chains of maximal length. From Claim 3 there exist scalars
cj
1 such that

Nk−1w =
s∑

j=1

cj
1v

j
1 =

s∑

j=1

cj
1N

k−1vj
k.

Therefore, 0 = Nk−1
(
w −∑s

j=1 cj
1v

j
k

)
. Now by induction

w −
s∑

j=1

cj
1v

j
k ∈ span (B1, · · · , Bs)

which shows w ∈ span (B1, · · · , Bs).
From this claim, it is clear that span {B1, · · · , Bs} = W because Nm = 0 on W .

Since {B1, · · · , Bs} is linearly independent, this shows it is a basis for W .
Now consider the matrix of N with respect to this basis. Since {B1, · · · , Bs} is

a basis, it follows that

W = span (B1)⊕ · · · ⊕ span (Bs) .
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Also each span {Bk} is N invariant. It follows that from Theorem 8.3.1 that the
matrix of N with respect to this basis is block diagonal in which the kth block is the
matrix of Nk, the restriction of N to span (Bk) . Denote this matrix as Jk. Then
by the definition of the matrix of a linear transformation,

vk
j−1 = Nvk

j =
∑

i

Jk
ijv

k
i ,

and so

Jk
ij =

{
1 if i = j − 1
0 otherwise

Hence this block is of the form



0 1 0

0
. . .
. . . 1

0 0



≡ Jrk

(0)

where there are rk vectors in Bk. This proves the proposition. 2

Let V be an n dimensional vector space and let T be a linear mapping which
maps V to V . Also suppose the minimal polynomial (See Problem 19 on Page
199.) splits as described above. Then it follows from a repeat of the arguments
of Problems 15 - 17 beginning on Page 131 that there exist scalars λ1, · · · , λp such
that

V = ker ((A− λ1I)r1)⊕ · · · ⊕ ker ((A− λp)
rp)

= V1 ⊕ · · · ⊕ Vp.

Just replace the term n×n matrix with the words “linear mapping” and the results
of these problems give the above direct sum.

Each (A− λiI) is nilpotent on Vi. Therefore, letting βi denote the basis on Vi

for which
[A− λiI]βi

is of the form given in the above proposition, it follows that from Lemma 7.1.6 that

[A]βi
= [A− λiI]βi

+ λiI.

(8.7) =




Jr1 (λi) 0
Jr2 (λi)

. . .
0 Jrs (λi)


 = Ji.

Then from Theorem 8.3.1, the matrix of A with respect to the basis
{
β1, β2, · · · , βp

}
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is of the form

(8.8)




J1 0
J2

. . .
0 Jp


 .

This proves the following theorem.

Theorem 8.3.5 Let T : V → V be a linear mapping for V a finite dimensional
vector space. Suppose also that the minimal polynomial splits. Then there exists a
basis β for V such that [T ]β is of the form shown in 8.8 where each of the blocks Ji

is of the form shown in 8.7 for Jr (λ) described in Definition 8.3.3.

Much more can be said relative to the uniqueness of the Jordan form, but we
will only need its existence. Note that the Jordan form of the linear transforma-
tion, determined by multiplication by an n × n matrix A, is an upper triangular
matrix. Therefore, the diagonal entries are the eigenvalues of A, listed according
to multiplicity since the Jordan form of A and A are similar and therefore have the
same characteristic polynomial.

The existence of the Jordan form makes possible the proof of many significant
results. A few of these are illustrated in the following exercises.

8.4 Exercises

1. Here is a matrix. Find its Jordan canonical form by finding chains of general-
ized eigenvectors based on eigenvectors to obtain a basis which will yield the
Jordan form. The eigenvalues are 1 and 2.




−3 −2 5 3
−1 0 1 2
−4 −3 6 4
−1 −1 1 3




Why is it typically impossible to find the Jordan canonical form?

2. Here is a matrix in Jordan form.



2 1 0 0
0 2 0 0
0 0 3 0
0 0 0 4


 .

What is the Jordan form of



2 1 0 0
0 2.000001 0 0
0 0 3 0
0 0 0 4


?
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3. Let A be a complex n× n matrix. Show that there exists a sequence of n× n
matrices {Ak}∞k=1 such that the ijth entry of Ak converges to the ijth entry of
A and each Ak can be diagonalized. Hint: If A can be diagonalized, there is
nothing to prove. Suppose then that J = P−1AP where J is in Jordan form,
being a block diagonal matrix with each block having a single eigenvalue down
the main diagonal. Describe a modified matrix Jk such that Jk has n distinct
entries down the main diagonal and such that the entries of Jk all converge as
k →∞ to the corresponding entries of J . Explain why Jk can be diagonalized.
(See Lemma 8.1.11.) Then consider Ak = PJkP−1.

4. Let A be an n× n matrix over a field F which can be diagonalized. Give an
exceedingly easy proof of the Cayley - Hamilton theorem for such a matrix.

5. Now use the above Problem 3 to prove the Cayley - Hamilton theorem for any
complex n× n matrix.

6. Using the Jordan form, show that for any complex n × n matrix A and p a
positive integer,

σ (Ap) = σ (A)p
.

Here σ (B) denotes the set of eigenvalues of B and σ (A)p denotes the set
{λp : λ ∈ σ (A)}. Hint: Use block multiplication in the Jordan form.

7. Let f be an analytic function, one which is given correctly by a power series,

f (z) =
∞∑

k=0

akzk.

Define for A a complex n× n matrix

||A|| = max {|aij | , i, j ≤ n} .

Show first that ||AB|| ≤ n ||A|| ||B|| and ||A + B|| ≤ ||A||+ ||B|| . Next show
that if

∑∞
k=0 akzk converges for all complex z, then if one defines

Bm =
m∑

k=0

akAk

it follows that for every ε > 0, there exists Nε such that if m, p ≥ Nε, then
||Bm −Bp|| < ε. Explain why this shows that for each i, j the ijth entry of Bm

is a Cauchy sequence in C and so, by completeness, it must converge. Denote
by f (A) the matrix whose ijth entry is this limit. Using block multiplication
and the Jordan form, show that f (σ (A)) = σ (f (A)) where

f (σ (A)) = {f (λ) : λ ∈ σ (A)} .

8. ↑Let ||A|| be as defined in the above problem for A a complex n × n matrix
and suppose |λ| > n ||A|| . Show that then λI − A must be invertible so that
λ /∈ σ (A). Hint:It suffices to verify that λI − A is one to one. If it is not,
then there exists x 6= 0 such that

λx = Ax.
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In particular
λxi =

∑

j

aijxj .

Let |xi| be the largest of all the |xj | . Then explain why

|λ| |xi| ≤ ||A||n |xi| .

9. ↑The spectral radius of A, denoted by ρ (A) is defined as

ρ (A) = max {|λ| : λ ∈ σ (A)} ,

In words, it is the largest of the absolute values of the eigenvalues of A. Use the
Jordan form of a matrix and block multiplication to show that if |λ| > ρ (A) ,

then for all k sufficiently large,
∣∣∣
∣∣∣Ak

λk

∣∣∣
∣∣∣
1/k

≤ 1. Thus for any ε > 0, it follows
that for k sufficiently large,

∣∣∣∣Ak
∣∣∣∣1/k ≤ ρ (A) + ε.

Hint: Recall that there exists an invertible matrix P such that A = P−1JP
where J is Jordan form. Thus J is block diagonal having blocks of the form
λkI + Nk where Nk is upper triangular having ones or zeros down the super
diagonal and zeros elsewhere. Since Nk and λkI commute, you can apply the
binomial theorem to the product

(
λkI + Nk

λ

)m

.

Using some elementary calculus involving the ratio test or the root test, verify
that the entries of these blocks raised to the mth power converge to 0 as
m →∞. Thus

∣∣∣∣Jm

λm

∣∣∣∣ → 0 as m → 0. Explain why
∣∣∣∣
∣∣∣∣
Am

λm

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣P−1 Jm

λm P

∣∣∣∣
∣∣∣∣ ≤ Cn

∣∣∣∣P−1
∣∣∣∣ ||P ||

∣∣∣∣
∣∣∣∣
Jm

λm

∣∣∣∣
∣∣∣∣ ≤ 1.

whenever m is large enough. Here Cn is a constant which depends on n.

10. ↑For A a complex n× n matrix, a famous formula of Gelfand says that

ρ (A) = lim
p→∞

||Ap||1/p

where ||B|| is the norm of the matrix. Here we will define this norm as1

||B|| = max {|aij | , i, j = 1, . . . , n} .

Hint: If λ ∈ σ (A) , then λp ∈ σ (Ap) by Problem 6. Hence by Problem 8,
|λ|p = |λp| ≤ n ||Ap|| . Finally use Problem 9 to explain why for each ε > 0,
there exists a Pε such that if p ≥ Pε,

n1/p ||Ap||1/p ≥ ρ (A) ≥ ||Ap||1/p − ε.

1It turns out that it makes absolutely no difference in this formula how you define the norm
provided it satisfies certain algebraic properties. This is just a convenient norm which was used
in the above problems.
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Using some elementary calculus and the above inequality, show that

lim
p→∞

||Ap||1/p
.

exists and equals ρ (A).2

11. Explain how to find the Jordan form of a complex n×n matrix whenever the
eigenvalues can be found exactly. Hint:The proof of its existence actually
gives a way to construct it. It might help to consider how the chains were
constructed in Proposition 8.3.4. If you have a basis for W {w1, . . . , wm} ,
and if Npx 6= 0 for some x ∈ W, explain why Npwk 6= 0 for some wk. Thus
you could consider wk, Nwk, N2wk, . . . for each wk and one of these must have
maximal length.

12. Let A be an n × n matrix and let J be its Jordan canonical form. Recall J
is a block diagonal matrix having blocks Jk (λ) down the diagonal. Each of
these blocks is of the form

Jk (λ) =




λ 1 0

λ
. . .
. . . 1

0 λ




.

Now for ε > 0 given, let the diagonal matrix Dε be given by

Dε =




1 0
ε

. . .
0 εk−1


 .

Show that D−1
ε Jk (λ)Dε has the same form as Jk (λ) but instead of ones

down the super diagonal, there is ε down the super diagonal. That is, Jk (λ)
is replaced with 



λ ε 0

λ
. . .
. . . ε

0 λ




.

Now show that for A an n×n matrix, it is similar to one which is just like the
Jordan canonical form except instead of the blocks having 1 down the super
diagonal, it has ε.

13. Proposition 8.3.4 gave the existence of a canonical form of a certain sort.
Show that this matrix described there is unique. Then give a sense in which
the Jordan canonical form is uniquely determined. Hint: Suppose you have

2This amazing theorem is normally done using the theory of Laurent series from complex
analysis. However, the Jordan form allows this much more elementary treatment in the case of
finite dimensions.
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two such matrices which are of the sort described in the proposition J and J ′.
Then since these are similar matrices, R

(
Jk

)
= R

(
J ′k

)
for each k = 1, 2, . . ..

However, this condition would be violated if there is a discrepancy in the size
of the blocks when viewed from the upper left toward lower right. Explain
why. As to the Jordan form, the blocks corresponding to each eigenvalue must
be of the same size, because this size equals the algebraic multiplicity of the
eigenvalues due to the fact that the two Jordan forms are similar. Next pick
an eigenvalue and subtract λkI from both of the two Jordan forms and explain
why the rank of the resulting matrices is determined by the rank of the blocks
corresponding to λk. Now use the Proposition about nilpotent matrices.

14. Let A be an n×n matrix whose entries are from a field F . It was shown above
that the Jordan canonical form of A exists provided the minimal polynomial
pF (λ) splits. Recall the definition of the minimal polynomial pF (λ) as the
monic polynomial having coefficients in the field of scalars F with the property
that pF (A) = 0 and pF (λ) has smallest degree out of all such polynomials.
Using Problem 21 on Page 106, show that there exists a possibly larger field
G such that pF (λ) splits in this larger field. Of course A is a matrix whose
entries are in G, and one can consider the minimal polynomial pG (λ) . Since
pF (A) = 0, explain why pG (λ) must divide pF (λ) . Now explain why there
exists a field G containing F such that pG (λ) splits. Thus, in this larger field,
A has a Jordan canonical form. Next show that if a matrix has a Jordan
canonical form, then the minimal polynomial must divide the characteristic
polynomial. Finally, note that the characteristic polynomial of A described
above does not change when the fields are enlarged. What does this say
about the generality of the Cayley-Hamilton theorem (See Problem 28 on
Page 188)? In fact, show that the minimal polynomial of L always divides
the characteristic polynomial of L, for L any linear transformation from a
vector space to itself.

15. To find the Jordan canonical form, you must be able to exactly determine
the eigenvalues and corresponding eigenvectors. However, this is a very hard
problem and typically cannot be done. Various ways of approximating the
eigenvalues and eigenvectors have been used. Currently the best method is the
QR algorithm, discussed briefly later. An earlier method was based on the LU
factorization. Consider the following algorithm. A = LU,UL = L1U1 = A1.
Continuing this way, you obtain An = LnUn and UnLn = An+1. Show that
An+1 = U−1

n AnUn. Iterating this, show that the sequence of matrices {An}
are each similar to the original matrix A. Now it can be shown that if B is close
to C in the sense that corresponding entries are close, then the eigenvalues of
B will be close to the eigenvalues of C when they are counted according to
multiplicity. This follows from Rouche’s theorem in complex analysis. This is
an algebra book, so we will agree to believe this result. Then if the matrices
An are close to a given matrix A which has a form suitable to easily finding its
eigenvalues, it follows that we could find them and thereby have approximate
values for the eigenvalues of A. This method, based on an LU factorization, is
inferior to the QR algorithm because of stability considerations, among other
issues such as a given matrix not having an LU factorization. Nevertheless,
it does work, at least on simple examples.
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Some applications

9.1 Limits of powers of stochastic matrices

The existence of the Jordan form is the basis for the proof of limit theorems for
certain kinds of matrices called stochastic matrices.

Definition 9.1.1 An n × n matrix A = (aij) , is a transition matrix if aij ≥ 0
for all i, j and

∑

i

aij = 1.

It may also be called a Markov matrix or a stochastic matrix. Such a matrix is
called regular if some power of A has all entries strictly positive. A vector v ∈ Rn

is a steady state if Av = v.

Lemma 9.1.2 The property of being a transition matrix is preserved by taking
products.

Proof: Suppose the sum over a column equals 1 for A and B. Then letting the
entries be denoted by (aij) and (bij) respectively, the sum of the kth column of AB
is given by

∑

i


∑

j

aijbjk


 =

∑

j

bjk

(∑

i

aij

)
= 1.

It is obvious that when the product is taken, if each aij , bij ≥ 0, then the same will
be true of sums of products of these numbers.

Theorem 9.1.3 Let A be a p× p transition matrix and suppose the distinct eigen-
values of A are {1, λ2, . . . , λm} where each |λj | < 1.

Then limn→∞An = A∞ exists in the sense that limn→∞ an
ij = a∞ij , the ijth

entry of A∞. Also, if λ = 1 has algebraic multiplicity r, then the Jordan block
corresponding to λ = 1 is just the r × r identity.

215
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Proof. By the existence of the Jordan form for A, it follows that that there
exists an invertible matrix P such that

P−1AP =




I + N
Jr2 (λ2)

. . .
Jrm

(λm)


 = J

where I is r × r for r the multiplicity of the eigenvalue 1, and N is a nilpotent
matrix for which Nr = 0. We will show that because the sum over every column is
1, N = 0.

First of all,
Jri

(λi) = λiI + Ni

where Ni satisfies Nri
i = 0 for some ri > 0. It is clear that Ni (λiI) = (λiI) N be-

cause a multiple of the identity commutes with any matrix, and so, by the binomial
theorem,

(Jri (λi))
n =

n∑

k=0

(
n

k

)
Nk

i λn−k
i =

ri∑

k=0

(
n

k

)
Nk

i λn−k
i

which converges to 0 due to the assumption that |λi| < 1. There are finitely many
terms and a typical one is a matrix whose entries are no larger than an expression
of the form

|λi|n−k
Ckn (n− 1) · · · (n− k + 1) ≤ Ck |λi|n−k

nk.

This expression converges to 0 because, by the root test, the series
∑∞

n=1 |λi|n−k
nk

converges. Thus for each i = 2, . . . , p,

lim
n→∞

(Jri (λi))
n = 0.

By Lemma 9.1.2, An is also a transition matrix. Therefore, since the entries
are nonnegative and each column sums to 1, the entries of An must be bounded
independent of n.

It follows easily from

n times︷ ︸︸ ︷
P−1APP−1APP−1AP · · ·P−1AP = P−1AnP

that

(9.1) P−1AnP = Jn.

Hence Jn must also have bounded entries as n →∞. However, this requirement is
incompatible with an assumption that N 6= 0.

If N 6= 0, then Ns 6= 0 but Ns+1 = 0 for some 1 ≤ s ≤ r. Then

(I + N)n = I +
s∑

k=1

(
n

k

)
Nk.
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One of the entries of Ns is nonzero by the definition of s. Let this entry be ns
ij .

Then this implies that one of the entries of (I + N)n is of the form
(
n
s

)
ns

ij . This
entry dominates the ijth entries of

(
n
k

)
Nk for all k < s because

lim
n→∞

(
n

s

)
/

(
n

k

)
= ∞.

Therefore, the entries of (I + N)n cannot all be bounded independent of n. From
block multiplication,

P−1AnP =




(I + N)n

(Jr2 (λ2))
n

. . .
(Jrm

(λm))n


 ,

and this is a contradiction because entries are bounded on the left and unbounded
on the right.

Since N = 0, the above equation implies limn→∞An exists and equals

P




I
0

. . .
0


P−1.

This proves the theorem. 2

What is a convenient condition which will imply a transition matrix has the
properties of the above theorem? It turns out that if aij > 0, not just ≥ 0, then
the eigenvalue condition of the above theorem is valid.

Lemma 9.1.4 Suppose A = (aij) is a transition matrix. Then λ = 1 is an eigen-
value. Also if λ is an eigenvalue, then |λ| ≤ 1. If aij > 0 for all i, j, then if µ is
an eigenvalue of A, either |µ| < 1 or µ = 1. In addition to this, if Av = v for a
nonzero vector v ∈ Rn, then vjvi ≥ 0 for all i, j,, so the components of v have the
same sign.

Proof: Since each column sums to 1, we have I −A ∼



0 0 · · · 0
−a21 1− a21 · · · −a2n

...
. . . . . .

...
−an1 −an2 · · · 1− ann




on adding the other rows to the first row. Therefore, the determinant of I −A = 0.
Suppose then that µ is an eigenvalue. Are the only two cases |µ| < 1 and µ = 1?

As noted earlier, µ is also an eigenvalue of At. Let v be an eigenvector for At and
let |vi| be the largest of the |vj | . Then

µvi =
∑

j

at
ijvj .
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Now multiply both sides by µvi to obtain

|µ|2 |vi|2 =
∑

j

at
ijvjviµ =

∑

j

at
ij Re (vjviµ)

≤
∑

j

at
ij |µ| |vi|2 = |µ| |vi|2

Therefore, |µ| ≤ 1.
Now assume each aij > 0. If |µ| = 1, then equality must hold in the above, and

so vjviµ must be real and nonnegative for each j. In particular, this holds for j = 1
which shows µ and hence µ are real and nonnegative. Thus, in this case, µ = 1.
The only other case is where |µ| < 1. 2

The next lemma says that a transition matrix conserves the sum of the entries
of the vectors.

Lemma 9.1.5 Let A be any transition matrix and let v be a vector having all its
components non negative with

∑
i vi = c. Then if w = Av, it follows that wi ≥ 0

for all i and
∑

i wi = c.

Proof: From the definition of w,

wi ≡
∑

j

aijvj ≥ 0.

Also ∑

i

wi =
∑

i

∑

j

aijvj =
∑

j

∑

i

aijvj =
∑

j

vj = c.2

The following theorem about limits is now easy to obtain.

Theorem 9.1.6 Suppose A is a transition matrix in which aij > 0 for all i, j and
suppose w is a vector. Then for each i,

lim
k→∞

(
Akw

)
i
= vi

where Av = v. In words, Akw always converges to a steady state. In addition to
this, if the vector, w satisfies wi ≥ 0 for all i and

∑
i wi = c, Then the vector, v

will also satisfy the conditions, vi ≥ 0,
∑

i vi = c.

Proof: By Lemma 9.1.4, since each aij > 0, the eigenvalues are either 1 or
have absolute value less than 1. Therefore, the claimed limit exists by Theorem
9.1.3. The assertion that the components are nonnegative and sum to c follows
from Lemma 9.1.5. That Av = v follows from

v = lim
n→∞

Anw = lim
n→∞

An+1w = A lim
n→∞

Anw = Av.

This proves the theorem.2
This theorem and the following corollary are special cases of the Perron - Frobe-

nius theorem applied to transition matrices. To see different proofs from those
presented here, see the book by Nobel and Daniel [11]. In the next section, we will
present an important example of a transition matrix involving a Markov chain with
absorbing states in which these theorems cannot be applied.
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Corollary 9.1.7 Suppose A is a regular transition matrix and suppose w is a vec-
tor. Then for each i,

lim
n→∞

(Anw)i = vi

where Av = v. In words, Anw always converges to a steady state. In addition to
this, if the vector, w satisfies wi ≥ 0 for all i and

∑
i wi = c, Then the vector, v

will also satisfy the conditions, vi ≥ 0,
∑

i vi = c.

Proof: Let the entries of Ak be all positive. Now suppose that aij ≥ 0 for all
i, j and A = (aij) is a transition matrix. Then if B = (bij) is a transition matrix
with bij > 0 for all ij, it follows that BA is a transition matrix which has strictly
positive entries. The ijth entry of BA is

∑

k

bikakj > 0,

Thus, from Lemma 9.1.4, Ak has an eigenvalue equal to 1 for all k sufficiently large,
and all the other eigenvalues have absolute value strictly less than 1. The same must
be true of A, for if λ is an eigenvalue of A with |λ| = 1, then λk is an eigenvalue for
Ak and so, for all k large enough, λk = 1 which is absurd unless λ = 1. By Theorem
9.1.3, limn→∞Anw exists. The rest follows as in Theorem 9.1.6. This proves the
corollary. ¤

9.2 Markov chains

We now give an application of Corollary 9.1.7. The mathematical model is a simple
one, but it is the starting point for more sophisticated probability models (stochastic
processes).

We are given a family of objects F , each of which is in one of n possible states,
State 1, . . . , State n. The objects can move from State i to State j. We record the
number of objects in each state at time intervals of (say) one year. We find that the
probability pij of an object moving from State j to State i is the same year after
year. We now have a Markov chain with n× n transition matrix A = (pij).

Example 9.2.1 F is the set of fields under cultivation in an area that grows only
peas (State 1), beans (State 2) and potatoes (State 3). If the transition matrix is

A =




0.2 0.5 0.1
0.3 0.4 0.2
0.5 0.1 0.7


 ,

then the fraction of fields switching from potatoes to peas each year is 0.1; the
fraction of fields that stick with potatoes each year is 0.7.

You can easily make up further examples. We concentrate here on a phenomenon
which occurs unless the transition matrix is a rather unusual one: there is a steady
state, that is, in the long run, the proportion of objects in State j approaches a
limiting value pj .
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Definition 9.2.2 A probability vector is a vector.

p =




p1

...
p2




with pj ≥ 0 (j = 1, . . . , n) and

p1 + p2 + · · ·+ pn = 1.

Thus a transition matrix is an n×n matrix A =
(

p1 · · · pn

)
whose columns

pj are probability vectors.

The conditions in the definition of a transition matrix arise in an obvious way.
Once j is fixed, the sum over i = 1, . . . , n of the fractions pij of objects in F
switching from State j to State i must be 1.

We can use a probability vector qh to represent year h, with the ith entry showing
the fraction of objects in state i that year. We have the simple relation

qh+1 = Aqh.

To see this, let qh =




a1

...
an


 ,qh+1 =




b1

...
bn


. Then

bj = fraction of objects in State j in year h + 1

=
n∑

k=1

(fraction of objects in State k in year h)

× (probability of moving from State k to State j)

=
n∑

k=1

akpjk, or

qh+1 = Aqh.

We call q0 the initial probability vector, measured in year 0. Now

q1 = Aq0,q2 = Aq1 = A2q0,q3 = Aq2 = A3q0

and so on. Evidently qh = Ahq0.
We have the following corollary of Theorem 9.1.3 and Corollary 9.1.7.

Corollary 9.2.3 Suppose that the eigenvalues λj of the transition matrix A are
either 1 or satisfy |λj | < 1. Then the vector qh representing year h has a limit p
as h →∞. Moreover,

(i) p is a probability vector.

(ii) Ap = p.
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The above condition on the eigenvalues will hold if some power of the transition
matrix has all positive entries.

Proof. In the case where the transition matrix A is regular, the corollary follows
from Corollary 9.1.7. Assume the first condition about the eigenvalues, which may
hold even if the condition on the power of the matrix does not. By Theorem 9.1.3,

lim
h→∞

Ah = C

exists. So
lim

h→∞
qn = lim

h→∞
Ahq0 = Cq0

exists. Let Cq0 = p =
(

p1 . . . pn

)t.
Since pi is the limit of entry i of qh,

pi ≥ 0.

Also, p1 + · · ·+ pn is the limit of the sequence 1, 1, 1, . . . (the sum of the entries of
qh is 1). So p1 + · · ·+ pn = 1. Thus p is a probability vector.

Why is p an eigenvector of A with eigenvalue 1? We have

Aqh = qh+1.

Take the limit on both sides to obtain

Ap = p. 2

The vector p in the Corollary is a steady state vector.
Recall it was shown in Lemma 9.1.4 that the eigenvalues of any transition matrix

are in absolute value no larger than 1 and as discussed above, regular transition
matrices, as well as many which are not, have the property that the only eigenvalue
having magnitude 1 is λ = 1. However, it is easy to find transition matrices having
the eigenvalue −1, so that the Corollary fails to apply.

Example 9.2.4 Let A be a transition matrix with column i = ej and column
j = ei, where i 6= j. Let q = aei + bej . Then

Aq = aej + bei.

This shows that

(i) −1 is an eigenvalue (take a = 1, b = −1),

(ii) there is a probability vector q0 = 1/3ei +2/3ej (for instance) such that Ahqi

oscillates between two values for odd and even h. (There is no steady state
vector.)

The following example is much more typical.

Example 9.2.5 Find the steady state vector in Example 9.2.1.
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Notice that the value of q0 has not been provided! The matrix of this example
is a regular transition matrix, so all the above theory applies, and one only needs to
find the steady state which is an eigenvector for λ = 1 because from the above, all
other eigenvalues have absolute value less than 1. This eigenvector, scaled so that
the sum of its components is 1, will be the limit. Thus, to find the limit vector p,
we compute the eigenspace for λ = 1:

ker(I −A) = ker




0.8 −0.5 −0.1
−0.3 0.6 −0.2
−0.5 −0.1 0.3




After row operations, this equals

= ker




1 0 −16/33
0 1 −19/33
0 0 0




The corresponding set of equations reads x1 = 16/33x3, x2 = 19/33x3. The
eigenspace is the line span{(16, 19, 33)}. Since p is a probability vector on this
line,

p = (16/68, 19/68, 33/68) .

Notice that the argument shows that when the transition matrix has eigenvalues
which are either 1 or have absolute value less than 1, then the limit must exist and
the limit will be an eigenvector for λ = 1. If the eigenspace for λ = 1 is one
dimensional as in this case, then the steady state vector does not depend on q0. It
is the unique vector in the one-dimensional space ker(I−A) whose coordinates add
up to 1.

Example 9.2.6 Let A =




0.3 0.9 0.2 0.1
0.2 0.1 0.6 0.3
0.4 0 0.1 0.5
0.1 0 0.1 0.1


 . It is a regular transition ma-

trix because A2 has all positive entries. Maple gives the approximate eigenvalues
1,−0.18+0.39i,−0.18−0.39i,−0.04, conforming to the above theory. Thus limn→∞
Anq0 exists and is an eigenvector for λ = 1. The eigenspace corresponding to 1 is

span{(684, 437, 369, 117)},

which is one dimensional, and so the limiting vector is (dividing by the sum of the
coordinates)

p =
1

1607
(684, 437, 369, 117).

It might be interesting to note that this theory of transition matrices is the
basis for the way which google orders web sites. A transition matrix is determined
according to number of times a link to a web site is followed from one web site
to another. This defines a transition matrix which is very large. Then a limiting
vector is obtained which ranks the web sites. This is discussed in Moler, Cleve, The
world’s largest matrix computation. MATLAB News and notes, The Mathworks,
Natick, MA, October 2002.
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9.3 Absorbing states

There is a different kind of Markov chain containing so called absorbing states
which result in transition matrices which are not regular. However, Theorem 9.1.3
may still apply. One such example is the Gambler’s ruin problem. There is a total
amount of money denoted by b + 1. The Gambler starts with an amount j > 0 and
gambles till he either loses everything or gains everything. He does this by playing
a game in which he wins with probability p and loses with probability q. When he
wins, the amount of money he has increases by 1 and when he loses, the amount of
money he has, decreases by 1. Thus the states are the integers from 0 to b + 1. Let
pij denote the probability that the gambler has i at the end of a game given that
he had j at the beginning. Let pn

ij denote the probability that the gambler has i
after n games given that he had j initially. Thus

pn+1
ij =

∑

k

pikpn
kj ,

and so pn
ij is the ijth entry of Pn where P is the transition matrix. The above

description indicates that this transition probability matrix is of the form P =

(9.2)




1 q 0 · · · 0

0 0
. . . 0

0 p
. . . q

...
...

. . . 0 0
0 · · · 0 p 1




The absorbing states are 0 and b + 1. In the first, the gambler has lost everything
and hence has nothing else to gamble, so the process stops. In the second, he has
won everything and there is nothing else to gain, so again the process stops.

To consider the eigenvalues of this matrix, we give the following lemma.

Lemma 9.3.1 Let p, q > 0 and p + q = 1. Then the eigenvalues of



0 q 0 · · · 0
p 0 q · · · 0

0 p 0
. . .

...
... 0

. . . . . . q

0
... 0 p 0




have absolute value less than 1.

Proof: By Gerschgorin’s theorem, (See Page 202) if λ is an eigenvalue, then
|λ| ≤ 1. Now suppose v is an eigenvector for λ. Then

Av =




qv2

pv1 + qv3

...
pvn−2 + qvn

pvn−1




= λ




v1

v2

...
vn−1

vn




.
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Suppose |λ| = 1. Then the top row shows that q |v2| = |v1|, so |v1| < |v2| . Suppose
|v1| < |v2| < · · · < |vk| for some k < n. Then

|λvk| = |vk| ≤ p |vk−1|+ q |vk+1| < p |vk|+ q |vk+1| ,

and so subtracting p |vk| from both sides,

q |vk| < q |vk+1|

showing {|vk|}n
k=1 is an increasing sequence. Now a contradiction results on the

last line which requires |vn−1| > |vn|. Therefore, |λ| < 1 for any eigenvalue of the
above matrix and this proves the lemma.

Now consider the eigenvalues of 9.2. For P given there,

P − λI =




1− λ q 0 · · · 0

0 −λ
. . . 0

0 p
. . . q

...
...

. . . −λ 0
0 · · · 0 p 1− λ




and so, expanding the determinant of the matrix along the first column and then
along the last column yields

(1− λ)2 det




−λ q

p
. . . . . .
. . . −λ q

p −λ




.

The roots of the polynomial after (1− λ)2 have absolute value less than 1 because
they are just the eigenvalues of a matrix of the sort in Lemma 9.3.1. It follows that
the conditions of Theorem 9.1.3 apply and therefore, limn→∞ Pn exists.

Of course, the above transition matrix, models many other kinds of problems.
It is called a Markov process with two absorbing states.

Of special interest is limn→∞ pn
0j , the probability that the gambler loses every-

thing given that he starts with an amount j. The determination of this limit is left
for the exercises.

9.4 Exercises

1. Suppose

A =




1 0 .7
0 1 0
0 0 .3


 .

Find limn→∞Ane1. Now find limn→∞Ane2, and limn→∞Ane3. If you did it
right, you see that this matrix does not produce a single steady state vector.
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2. Here are some transition matrices. Determine whether the given transition
matrix is regular. Next find whether the transition matrix has a unique steady
state probability vector. If it has one, find it.

(a)
(

.5 .7

.5 .3

)

(b)




.1 .2 .4
0 .5 .6
.9 .3 0




(c)




0 0 0
.1 .5 .2
.9 .5 .8




(d)




.1 0 .1

.1 .5 .2

.8 .5 .7




3. Suppose A is a transition matrix which has eigenvalues {1, λr+1, . . . , λn} where
each |λj | < 1 and 1 has algebraic multiplicity r. Let V denote the set of vectors
v which satisfy

v = lim
n→∞

Anw

for some w. Show that V is a subspace of Cn and find its dimension. Hint:
Consider the proof of Theorem 9.1.3.

4. In the city of Ichabod, it has been determined that if it does not rain, then
with probability .95 it will not rain the next day. On the other hand, if it
does rain, then with probability .7 it will rain the following day. What is the
probability of rain on a typical day?

5. In a certain country, the following table describes the transition between being
married (M) and being single (S) from one year to the next.

S M
S .7 .1
M .3 .9

The top row is the state of the initial marital situation of the person and the
side row is the marital situation of the person the following year. Thus the
probability of going from married to single is .1. Determine the probability of
a person being married.

6. In the city of Nabal, there are three political persuasions, republicans (R),
democrats (D), and neither one (N). The following table shows the transi-
tion probabilities between the political parties, the top row being the initial
political party and the side row being the political affiliation the following
year.

R D N
R .9 .1 .1
D .1 .7 .1
N 0 .2 .8
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Find the probabilities that a person will be identified with the various political
persuasions. Which party will end up being most important?

7. The University of Poohbah offers three degree programs, scouting education
(SE), dance appreciation (DA), and engineering (E). It has been determined
that the probabilities of transferring from one program to another are as in
the following table.

SE DA E
SE .8 .1 .3
DA .1 .7 .5
E .1 .2 .2

where the number indicates the probability of transferring from the top pro-
gram to the program on the left. Thus the probability of going from DA to E
is .2. Find the probability that a student is enrolled in the various programs.
Which program should be eliminated if there is a budget problem?

8. From the transition matrix for the gambler’s ruin problem, it follows that

pn
0j = qpn−1

0(j−1) + ppn−1
0(j+1)for j ∈ [1, b− 1] ,

pn
00 = 1, and pn

0b = 0.

Assume here that p 6= q. The reason for the top equation is that the ijth entry
of Pn is

pn
0j =

∑

k

pn−1
0k pkj = qpn−1

0(j−1) + ppn−1
0(j+1)

Now it was shown above that limn→∞ pn
0j exists. Denote by Pj this limit.

Then the above becomes much simpler if written as

Pj = qPj−1 + pPj+1 for j ∈ [1, b− 1] ,(9.3)
P0 = 1 and Pb = 0.(9.4)

It is only required to find a solution to the above difference equation with
boundary conditions. To do this, look for a solution in the form Pj = rjand
use the difference equation with boundary conditions to find the correct values
of r. Show first that the difference equation is satisfied by r =

1
2p

(
1 +

√
1− 4pq

)
,

1
2p

(
1−

√
1− 4pq

)

Next show that
√

1− 4pq =
√

1− 4p + 4p2 = 1 − 2p. Show that the above
expressions simplify to 1 and q

p . Therefore, for any choice of Ci, i = 1, 2,

C1 + C2

(
q

p

)j

will solve the difference equation. Now choose C1, C2 to satisfy the boundary
conditions. Show that this requires that the solution to the difference equation
with boundary conditions is

Pj =
qb − pb−jqj

qb − pb
= qj

(
qb−j − pb−j

qb − pb

)
.
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9. To find the solution in the case of a fair game, it is reasonable to take the
limp→1/2 of the above solution. Show that this yields

Pj =
b− j

b
.

Find a solution directly in the case where p = q = 1/2 in 9.3 and 9.4 by
verifying directly that Pj = 1 and Pj = j are two solutions to the difference
equation and proceeding as before.

10. Using similar techniques to the above, find the probability that in the gam-
bler’s ruin problem, he eventually wins all the money.

11. In the gambler’s ruin problem, show that with probability 1, one of the two
absorbing states is eventually attained.

9.5 The Cayley-Hamilton theorem

As another application of the Jordan canonical form, we give another proof of the
Cayley- Hamilton theorem in addition to the earlier one given in Problem 28 on
Page 188. This is a better proof because it can be generalized (See Problem 14
on Page 213) to include the case of an arbitrary field of scalars, in contrast to the
proof given in Page 188 which was based on taking a limit as |λ| → ∞, which option
might not be available for some fields, such as a field of residue classes. However, we
are mainly interested in the case where the field of scalars is C or R, so the earlier
version is entirely adequate for our purposes.

Theorem 9.5.1 Let A be an n × n matrix with entries in a field F . Suppose the
minimal polynomial of A (see Problem 16 on Page 131) factors completely into
linear factors.1 Then if q (λ) is the characteristic polynomial,

det (λI −A) = q (λ) ,

it follows that
q (A) = 0.

Proof. Since the minimal polynomial factors, it follows that A has a Jordan
canonical form. Thus there exists a matrix P such that

P−1AP = J

where J is of the form

J =




J1

. . .
Jp


 .

1In case F = C, this is automatic because of the fundamental theorem of algebra. In general,
when F is an arbitrary field, one can enlarge the field sufficiently to obtain a proof of the Cayley-
Hamilton theorem in complete generality.
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Here Ji is an ri × ri matrix of the form

Ji = λiIri
+ Ni, Nri

i = 0.

with λ1, . . . , λp the distinct eigenvalues of A. Therefore, the characteristic polyno-
mial of A is of the form

p∏

i=1

(λ− λi)
ri = λn + an−1λ

n−1 + . . . + a1λ + a0.

It follows from block multiplication that

q (J) =




q (J1)
. . .

q (Jp)


 .

It follows that

q (Jj) =
p∏

i=1

(
Jj − λiIrj

)ri =
∏

i 6=j

(
Jj − λiIrj

)ri
Nri

i = 0.

It follows that q (J) = 0 and so

q (A) = q
(
PJP−1

)
= Pq (J)P−1 = 0.

This proves the Cayley- Hamilton theorem. 2

9.6 Systems of linear differential equations

We give a further application. For a set of functions y1(x), . . . , yn(x) in SC[a, b] we
write

(9.5) y′ = (y′1, . . . , y
′
n)t

for the vector of derivatives. Consider a system of linear differential equations of
the form

y′1 = a11y1 + · · ·+ amyn

...
y′n = an1y1 + · · ·+ a1nyn,

where A = [aij ] is a matrix over C. We may write this

y′ = Ay.

A way to find a solution to this system of equations is to look for one which is
of the form

y (t) = veλt.
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Then this will be a solution to the equation if and only if

λeλtv = Aveλt.

Cancelling the eλt on both sides, this shows that

λv = Av,

so that (λ,v) is an eigenvalue with corresponding eigenvector.

Example 9.6.1 Solve the linear system x′ = Ax using Maple, in the case

A =




1 3 3
−3 −5 −3
3 3 1




Using Maple, we find the eigenvalues and eigenvectors are of the form


−1
1
−1


 ↔ 1,




1
0
−1


 ,




0
1
−1


 ↔ −2

Therefore, we can obtain three solutions to the first order system,


−1
1
−1


 et,




1
0
−1


 e−2t, and




0
1
−1


 e−2t.

It follows easily that any linear combination of these vector valued functions will
be a solution to the system of equations x′ = Ax.

The main question is whether such linear combinations yield all possible solu-
tions. In this case the answer is yes. This happens because the three eigenvectors
are linearly independent, which will imply that if x (t) is any solution to the system
of equations, then there exist constants ci such that

x (0) = c1



−1
1
−1


 + c2




1
0
−1


 + c3




0
1
−1




It will follow that both x (t) and

(9.6) c1



−1
1
−1


 et + c2




1
0
−1


 e−2t + c3




0
1
−1


 e−2t

are solutions to the initial value problem

y′ = Ay, y (0) = x (0) .

It will be shown below that there is a unique solution to this system, and so 9.6
must equal x (t).

Note that this general solution can also be written in the form

(9.7)



−et e−2t 0
et 0 e−2t

−et −e−2t −e−2t


 c

where c is a constant vector in R3.
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9.7 The fundamental matrix

In the above, it was easy to come up with this general solution because in this exam-
ple, the matrix A had a basis of eigenvectors. However, such a basis of eigenvectors
does not always exist. Furthermore, even in the case where there exists such a basis,
it may be impossible to find the eigenvalues and eigenvectors exactly. Therefore, it
is important to have another way to obtain solutions of this problem which will be
completely general. The matrix in 9.7 is sometimes called a fundamental matrix.
We will be a little more specific about this term, however.

Definition 9.7.1 If Φ(t) is a matrix with differentiable entries,

Φ(t) =
(

q1 (t) q2 (t) · · · qn (t)
)

then Φ′ (t) is defined as

Φ′ (t) =
(

q′1 (t) q′2 (t) · · · q′n (t)
)
.

Let A be an n× n matrix. Then Φ(t) is called a fundamental matrix for A if

(9.8) Φ′ (t) = AΦ(t) , Φ(0) = I,

and Φ(t)−1 exists for all t ∈ R.

The fundamental matrix plays the same role in solving linear systems of differ-
ential equations of the form

y′ (t) = Ay (t) + f (t) , y (0) = y0

as the inverse matrix does in solving an algebraic system of the form

Ay = b.

Once you know the fundamental matrix, you can routinely solve every such system.
We will show that every complex n × n matrix A has a unique fundamental

matrix. When this has been done, it is completely routine to give the variation of
constants formula for the solution to an arbitrary initial value problem

y′ = Ay + f (t) , y (0) = y0.

To begin with, consider the special case for a complex valued function y satisfying

(9.9) y′ = ay + f (t) , y (0) = y0.

By Proposition 5.6.2, there is a unique solution to the initial value problem

y′ (t) = (a + ib) y (t) , y (0) = 1,

and this solution is e(a+ib)t with the definition

e(a+ib)t = eat (cos (bt) + i sin (bt)) .
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Proposition 9.7.2 Let f (t) , a, y0 be complex valued with f (t) continuous. Then
there exists a unique solution to 9.9 and it is given by a simple formula.

Proof. Using Proposition 5.6.2 and the rules of differentiation,

d

dt

(
e−aty

)
= e−atf (t) .

Then after an integration,

e−aty (t)− y0 =
∫ t

0

e−asf (s) ds,

and so

y (t) = eaty0 +
∫ t

0

ea(t−s)f (s) ds. 2

Now here is the main result, due to Putzer [13]. This result is outstanding be-
cause it gives a good approximation to the fundamental matrix, even if the eigenval-
ues are not known exactly. This is in stark contrast to the usual situation presented
in ordinary differential equations which relies on finding the exact eigenvalues. It
also has no dependence on the existence of the Jordan form, depending only on the
much easier Cayley- Hamilton theorem for complex vector spaces.

Theorem 9.7.3 Let A be a complex n× n matrix whose eigenvalues are
{λ1, · · · , λn} repeated according to multiplicity. Define

Pk (A) =
k∏

m=1

(A− λmI) , P0 (A) = I,

and let the scalar valued functions rk (t) be the solutions to the following initial
value problem




r′0 (t)
r′1 (t)
r′2 (t)

...
r′n (t)




=




0
λ1r1 (t) + r0 (t)
λ2r2 (t) + r1 (t)

...
λnrn (t) + rn−1 (t)




,




r0 (0)
r1 (0)
r2 (0)

...
rn (0)




=




0
1
0
...
0




Now define

Φ(t) =
n−1∑

k=0

rk+1 (t)Pk (A) .

Then

(9.10) Φ′ (t) = AΦ(t) , Φ(0) = I.

Note that the equations in the system are of the type in Proposition 9.7.2.
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Proof. This is an easy computation.

Φ (0) =
n−1∑

k=0

rk+1 (0)Pk (A) = r1 (0) P0 (A) = I.

Next consider the differential equation.

Φ′ (t) =
n−1∑

k=0

r′k+1 (t)Pk (A)

=
n−1∑

k=0

(λk+1rk+1 (t) + rk (t)) Pk (A) .

Also

AΦ(t) =
n−1∑

k=0

rk+1 (t)APk (A) .

By the Cayley- Hamilton theorem, Pn (A) = 0. Then the above equals

=
n−1∑

k=0

rk+1 (t) (A− λk+1I)Pk (A) +
n−1∑

k=0

rk+1 (t) λk+1Pk (A)

=
n∑

k=1

rk (t)Pk (A) +
n−1∑

k=0

rk+1 (t) λk+1Pk (A)

=
n−1∑

k=0

rk (t)Pk (A) +
n−1∑

k=0

rk+1 (t) λk+1Pk (A)

because r0 (t) = 0. This is the same thing as Φ′ (t) . This proves the theorem.2
This theorem establishes an important theoretical conclusion, that every n× n

matrix has a fundamental matrix of the sort described above. However, in finding
the fundamental matrix, we usually use more ad hoc methods. Suppose

Φ (t) =
(

x1 (t) · · · xn (t)
)

and A can be diagonalized. This often happens. (Recall Lemma 8.1.11 which
implies that if the eigenvalues are distinct, then the matrix can be diagonalized.)
When it does, the computation of the fundamental matrix is particularly simple.
This is because, for some invertible P,

Φ′ (t) =

A︷ ︸︸ ︷
P−1DPΦ(t) , PΦ(0) = P,

where D is a diagonal matrix. Therefore, letting Ψ (t) = PΦ(t) ,

(9.11) Ψ′ (t) = DΨ(t) , Ψ(0) = P,

D =




λ1

. . .
λn


 .
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It is particularly easy to solve this initial value problem. In fact, a solution to 9.11
is

Ψ (t) =




eλ1t

. . .
eλnt


 P,

because

Ψ′ (t) =




λ1e
λ1t

. . .
λneλnt


P =




λ1

. . .
λn







eλ1t

. . .
eλnt


P = DΨ (t) ,

and
Ψ (0) = P.

Then the fundamental matrix is Φ (t) where

Φ (t) = P−1Ψ (t) .

We illustrate with the following example.

Example 9.7.4 Find the fundamental matrix for

A =



−3 −2 −8
3 2 6
1 1 3




This matrix can be diagonalized. To do so, you find the eigenvalues and then
let the columns of P−1 consist of eigenvectors corresponding to these eigenvalues.
As explained earlier, PAP−1 is then a diagonal matrix. Maple and other computer
algebra systems are adept at diagonalizing matrices when this can be done. To do
so, you ask for the Jordan form of the matrix. If the matrix is diagonalizable, the
Jordan form will be a diagonal matrix. In this case



−3 −2 −8
3 2 6
1 1 3


 =

P−1

︷ ︸︸ ︷


1 2 −2
−1 0 1
0 −1 1






−1 0 0
0 1 0
0 0 2




P︷ ︸︸ ︷


1 0 2
1 1 1
1 1 2




Thus Ψ (t) =



e−t 0 0
0 et 0
0 0 e2t







1 0 2
1 1 1
1 1 2


 =




e−t 0 2e−t

et et et

e2t e2t 2e2t


 ,
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and so Φ (t) =



1 2 −2
−1 0 1
0 −1 1







e−t 0 2e−t

et et et

e2t e2t 2e2t




=




e−t + 2et − 2e2t 2et − 2e2t 2e−t + 2et − 4e2t

−e−t + e2t e2t −2e−t + 2e2t

−et + e2t −et + e2t −et + 2e2t


 .

Checking this, Φ′ (t) =


−e−t + 2et − 4e2t 2et − 4e2t −2e−t + 2et − 8e2t

e−t + 2e2t 2e2t 2e−t + 4e2t

−et + 2e2t −et + 2e2t −et + 4e2t




and AΦ(t) =


−3 −2 −8
3 2 6
1 1 3







e−t + 2et − 2e2t 2et − 2e2t 2e−t + 2et − 4e2t

−e−t + e2t e2t −2e−t + 2e2t

−et + e2t −et + e2t −et + 2e2t




=



−e−t + 2et − 4e2t 2et − 4e2t −2e−t + 2et − 8e2t

e−t + 2e2t 2e2t 2e−t + 4e2t

−et + 2e2t −et + 2e2t −et + 4e2t




which is the same thing. The multiplications are tedious but routine. They were
accomplished here through the use of a computer algebra system.

We need to justify the use of the definite article in referring to the fundamental
matrix. To do this, we need a simple result which depends on calculus. It is called
Gronwall’s inequality.

Lemma 9.7.5 Let u (t) be a continuous nonnegative function which satisfies

u (t) ≤ a +
∫ t

0

ku (s) ds, k ≥ 0.

for t ≥ 0. Then u (t) ≤ aekt for all t ≥ 0.

Proof. Let w (s) =
∫ s

0
u (τ) dτ. Then w (s) ≥ 0, w (0) = 0. By the fundamental

theorem of calculus, w′ (s) exists and equals u (s) . Hence

w′ (s)− kw (s) ≤ a

Multiply both sides by e−ks. Then using the chain rule and product rule,

d

ds

(
e−ksw (t)

) ≤ ae−ks

Applying the integral
∫ t

0
ds to both sides,

0 ≤ e−ktw (t) ≤ a

∫ t

0

e−ksds = a
1− e−tk

k
.
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It follows that w (t) ≤ a
(

1
kekt − 1

k

)
, and so a + kw (t) ≤ ae−kt. Therefore, from the

assumptions,
0 ≤ u (t) ≤ a + kw (t) ≤ ae−kt. 2

Definition 9.7.6 Let A be a complex m× n matrix. Let

||A|| = max {|Aij | , i ∈ {1, · · · ,m} , j ∈ {1, · · · , n}} .

The integral of a matrix whose entries are functions of t is defined as the matrix
in which each entry is integrated. Thus

(∫ t

0

Φ(s) ds

)

ij

=
∫ t

0

Φ (s)ij ds.

Lemma 9.7.7 Let A be an m× n matrix and let B be a n× p matrix. Then

||AB|| ≤ n ||A|| ||B|| .
Also, ∣∣∣∣

∣∣∣∣
∫ t

0

Φ(s) ds

∣∣∣∣
∣∣∣∣ ≤

∫ t

0

||Φ(s)|| ds.

Proof. This follows from the definition of matrix multiplication.

∣∣∣(AB)ij

∣∣∣ ≤
∣∣∣∣∣
∑

k

AikBkj

∣∣∣∣∣ ≤
∑

k

|Aik| |Bkj | ≤ n ||A|| ||B|| .

Since ij is arbitrary, the inequality follows. Consider the claim about the integral.
∣∣∣∣∣
(∫ t

0

Φ(s) ds

)

ij

∣∣∣∣∣ =
∣∣∣∣
∫ t

0

Φ(s)ij ds

∣∣∣∣ ≤
∫ t

0

∣∣∣Φ(s)ij

∣∣∣ ds ≤
∫ t

0

||Φ (s)|| ds.

Hence the result follows. 2

Lemma 9.7.8 Let Φ be a matrix which satisfies

(9.12) Φ′ (t) = AΦ(t) , Φ(0) = 0.

Then Φ(t) = 0. Also, the solution to 9.10 is unique.

Proof. Integrating both sides, it follows that

Φ (t) =
∫ t

0

AΦ(s) ds.

Therefore,

||Φ(t)|| =
∣∣∣∣
∣∣∣∣
∫ t

0

AΦ(s) ds

∣∣∣∣
∣∣∣∣ ≤

∫ t

0

n ||A|| ||Φ(s)|| ds.

It follows from Lemma 9.7.5 with a = 0 that Φ (t) = 0 for all t ≥ 0. This proves
the first part. To prove the second part, if Φi is a solution to 9.10 for i = 1, 2, then
Ψ (t) = Φ1 (t)− Φ2 (t) solves 9.12. Therefore, from what was just shown, Ψ (t) = 0
for all t ≥ 0. 2
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Corollary 9.7.9 The fundamental matrix Φ(t) of 9.10 has an inverse for all t.
This inverse is Φ (−t) . Furthermore, Φ(t)A = AΦ(t) for all t ≥ 0. In addition,

(9.13) Φ (t− s) = Φ (t)Φ (−s) .

Proof. First consider the claim that A and Φ (t) commute. Let Ψ (t) = Φ (t)A−
AΦ(t) . Then

Ψ′ (t) = Φ′ (t) A−AΦ′ (t) = AΦ(t) A−A2Φ(t)
= A (Φ (t) A−AΦ(t)) = AΨ(t) .

Also Ψ (0) = A−A = 0. Therefore, by Lemma 9.7.8, Ψ (t) = 0 for all t ≥ 0.
Now consider the claim about the inverse of Φ (t) . For t ≥ 0,

(Φ (t)Φ (−t))′ = Φ′ (t)Φ (−t)− Φ(t)Φ′ (−t)
= AΦ(t)Φ (−t)− Φ(t)AΦ (−t)
= Φ (t)AΦ(−t)− Φ(t)AΦ (−t) = 0.

Also Φ (0)Φ (0) = I, and each entry of Φ (t)Φ (−t) is a constant. Therefore, for all
t ≥ 0,

Φ(t)Φ (−t) = I.

Recall that this shows Φ (t)−1 exists and equals Φ (−t) for all t ∈ R.
To verify the last claim, fix s and let Ψ (t) = Φ (t− s) − Φ(t)Φ (−s) . Then

Ψ (0) = 0. Moreover,

Ψ′ (t) = Φ′ (t− s)− Φ′ (t)Φ (−s)
= A (Φ (t− s)− Φ(t)Φ (−s)) = AΨ(t) .

By Lemma 9.7.8, it follows that Ψ (t) = 0 for all t ≥ 0. 2

9.8 Existence and uniqueness

With Corollary 9.7.9 and Theorem 9.7.3, it is now easy to solve the general first
order system of equations.

(9.14) x′ (t) = Ax (t) + f (t) , x (0) = x0 ∈ Rn.

Theorem 9.8.1 Let f (t) be a continuous function defined on R. Then there exists
a unique solution to the first order system 9.14, given by the formula

(9.15) x (t) = Φ (t)x0 +
∫ t

0

Φ(t− s) f (s) ds

where Φ(t) is the fundamental matrix of Theorem 9.7.3.

Proof. From Corollary 9.7.9, the right side of the above formula for x (t) is of
the form

Φ (t)x0 + Φ(t)
∫ t

0

Φ(−s) f (s) ds
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Using the fundamental theorem of calculus and the product rule, the derivative of
this is

AΦ(t)x0 + AΦ(t)
∫ t

0

Φ(−s) f (s) ds + Φ(t) Φ (−t) f (t)

= A

(
Φ (t)x0 + Φ (t)

∫ t

0

Φ(−s) f (s) ds

)
+ f (t)

= Ax (t) + f (t) .

Therefore, the right side of 9.15 satisfies the differential equation of 9.14. Evaluating
at t = 0 yields x (0) = x0. Therefore, there exists a solution to 9.14.

In fact, this is the only solution. If y (t) is a solution to 9.14, then

y′ (t)−Ay (t) = f (t) .

Multiplying by Φ (−t) , it follows from the chain rule that

d

dt
(Φ (−t)y (t)) = −Φ′ (−t)y (t) + Φ (−t)y′ (t)

= −AΦ(−t)y (t) + Φ (−t)y′ (t)
= Φ (−t) (y′ (t)−Ay (t)) .

Therefore,
d

dt
(Φ (−t)y (t)) = Φ (−t) f (t) .

Now apply
∫ t

0
to both sides to obtain

Φ (−t)y (t)− x0 =
∫ t

0

Φ(−s) f (s) ds

which yields 9.15. 2

This formula is called the variation of constants formula. Since every nth

order linear ordinary differential equation for a scalar valued function, can be con-
sidered as a first order system like the above, it follows that the above section
has included the mathematical theory of most of an ordinary differential equations
course as a special case, and has also resolved the difficult questions about existence
and uniqueness of solutions, using methods which are mainly algebraic in nature.
In addition, the above methods are not dependent on finding the exact values of
the eigenvalues in order to obtain meaningful solutions.

9.9 The method of Laplace transforms

There is a popular algebraic technique which may be the fastest way to find closed
form solutions to the initial value problem. This method of Laplace transforms
succeeds so well because of the algebraic technique of partial fractions and the fact
that the Laplace transform is a linear mapping.

We will ignore all analytical questions and emphasize only the algebraic proce-
dures. The analytical questions are not trivial and for this reason are never discussed
in undergraduate courses on differential equations anyway.
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Definition 9.9.1 Let f be a function defined on [0,∞) which has exponential
growth, meaning that

|f (t)| ≤ Ceλt

for some real λ. Then the Laplace transform of f, denoted by L (f) is defined as

Lf (s) =
∫ ∞

0

e−tsf (t) dt

for all s sufficiently large. It is customary to write this transform as F (s) and the
function as f (t) . In case f (t) is a vector valued function, its Laplace transform is
the vector valued function obtained by replacing each entry by its Laplace transform.

We leave as an exercise the verification that L is a linear mapping.
The usefulness of this method in solving differential equations, comes from the

following observation.
∫ ∞

0

x′ (t) e−tsdt = x (t) e−st|∞0 +
∫ ∞

0

se−stx (t) dt

= −x (0) + sLx (s) .

Doing this for each component, it follows that after taking the Laplace transform
of

x′ = Ax + f (t) , x (0) = x0,

we obtain the following for all s large enough.

sX (s)− x0 = AX (s) + F (s)

where X (s) = L (x) (s). Thus for all s large enough,

(sI −A)X (s) = x0 + F (s) ,

and so
X (s) = (sI −A)−1 (x0 + F (s)) .

Now you examine the component functions of X (s) and look in the table to find the
functions of t which result in these component functions. This is then the solution
to the initial value problem.

Here is a simple table. In this table, Γ (p + 1) denotes the gamma function

Γ (p + 1) =
∫ ∞

0

e−ttpdt

The function uc (t) denotes the step function which equals 1 for t > c and 0 for
t < c. The expression in formula 18.) is explained in Exercise 12 below. It models
an impulse and is sometimes called the Dirac delta function.
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Table of Laplace Transforms

f (t) = L−1 {F (s)} F (s) = L {f (t)}
1.) 1 1/s

2.) eat 1/ (s− a)

3.) tn, n positive integer n!
sn+1

4.) tp, p > −1 Γ(p+1)
sp+1

5.) sin at a
s2+a2

6.) cos at s
s2+a2

7.) eiat s+ia
s2+a2

8.) sinh at a
s2−a2

9.) cosh at s
s2−a2

10.) eat sin bt b
(s−a)2+b2

11.) eat cos bt s−a
(s−a)2+b2

12.) tneat, n positive integer n!
(s−a)n+1

13.) uc (t) e−cs

s

14.) uc (t) f (t− c) e−csF (s)

15.) ectf (t) F (s− c)

16.) f (ct) 1
cF

(
s
c

)

17.) f ∗ g =
∫ t

0
f (t− u) g (u) du F (s)G (s)

18.) δ (t− c) e−cs

19.) f
′
(t) sF (s)− f (0)

20.) (−t)n
f (t) dnF

dsn (s)

Here is an example.

Example 9.9.2 Solve the initial value problem

x′ =
(

1 1
1 2

)
x+

(
1
t

)
, x (0) =

(
1
0

)
.

Using the above discussion and the table, the Laplace transform of the solution
desired is obtained from solving the following algebraic equation.

X (s) =
(

s

(
1 0
0 1

)
−

(
1 1
1 2

))−1 ((
1
0

)
+

(
1/s
1/s2

))
.
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Therefore, X (s) equals (
s3−s2−2s+1
(s2−3s+1)s2

s2+2s−1
(s2−3s+1)s2

)
.

Now it is just a matter of using the table to find the functions whose Laplace
transforms equal these functions. However, the entries in the above vector are not
listed in the table. Therefore, we take the partial fractions expansion of these entries
to find things which are in the table. Then the above vector equals




1
s2 + 1

s + 1√
5

1(
s−

(
3
2+

√
5

2

)) − 1√
5

1(
s−

(
3
2−

√
5

2

))

− 1
s2 − 1

s +
√

5+5
10

1

s−
(

3+
√

5
2

) + 5−√5
10

1

s−
(

3
2−

√
5

2

)


 .

Each of these terms is in the table. Hence the solution to the initial value problem
is

x (t) =


 t + 1 + 1√

5
e

(
3+
√

5
2

)
t − 1√

5
e

(
3−√5

2

)
t

−t− 1 +
√

5+5
10 e

(
3+
√

5
2

)
t + 5−√5

10 e

(
3−√5

2

)
t


 .

Note that the eigenvalues of the matrix in the initial value problem are

3 +
√

5
2

,
3−√5

2
.

This is not a coincidence.

Example 9.9.3 Use the method of Laplace transforms to solve the following initial
value problem.

x′ =




3 3 2
−1 0 −1
0 −1 1


x+




1
t

sin (2t)


 ,

x (0) =




0
1
0




The matrix cannot be diagonalized.

From the above technique,

sX (s)−



0
1
0


 =




3 3 2
−1 0 −1
0 −1 1


X (s) +




1/s
1/s2

2/
(
s2 + 4

)




Then, solving for X (s) and then finding the partial fraction expansion of each entry
yields X (s) =




2
s−2 + 27

5(s−1)2
− 189

25(s−1) + 21
4s + 5

2s2 + 1
100

−34+31s
s2+4

27
5(s−1) − 2

s−2 − 9
4s − 3

2s2 − 1
20

3s−2
s2+4

2
s−2 − 27

5(s−1)2
− 15

4s + 54
25(s−1) − 3

2s2 − 1
100

26+41s
s2+4


 .
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It follows from going backwards in the table, x (t) =



2e2t + 27
5 tet − 189

25 et + 21
4 + 5

2 t + 1
100 (−17 sin (2t) + 31 cos (2t))

27
5 et − 2e2t − 9

4 − 3
2 t− 1

20 (3 cos (2t)− sin (2t))
2e2t − 27

5 tet − 15
4 + 54

25et − 3
2 t− 1

100 (13 sin (2t) + 41 cos (2t))


 .

We used a computer algebra system to accomplish these manipulations, but they
can all be done by hand with more effort.

We have now included all important techniques for solving linear ordinary dif-
ferential equations.

9.10 Exercises

1. Abel’s formula was proved for a complex n×n matrix which can be diagonal-
ized in Problem 28 on Page 202. Extend this result to an arbitrary complex
n× n matrix using Problem 3 on Page 210. Hint: Let Ak be matrices which
can be diagonalized such that the entries of Ak all converge to the correspond-
ing entries of A. Let Φk (t) correspond to Φ (t) in Problem 28 on Page 202
with A replaced with Ak. Now it follows that

||Φ(t)− Φk (t)|| ≤
∫ t

0

||(A−Ak)Φ (s)|| ds.

Apply Gronwall’s inequality to obtain that

lim
k→∞

Φk (t) = Φ (t) ,

and use the formula of Problem 28 on Page 202.

2. In the theoretical treatment above, the fundamental matrix Φ (t) satisfies

(9.16) Φ′ (t) = AΦ(t) , Φ(0) = I.

With such a fundamental matrix, the solution to

x′ = Ax + f , x (0) = x0,

was given by

x (t) = Φ (t)x0 +
∫ t

0

Φ(t− s) f (s) ds.

However, it may be less trouble to simply insist that Φ (0)−1 exists. When this
weaker requirement is made, we will refer to Φ (t) as a fundamental matrix.
Then by Abel’s formula in Problem 1, Φ (t)−1 exists for all t. Find a formula
for the solution to the initial value problem 9.16 in terms of a fundamental
matrix.

3. Suppose x1 (t) , · · · ,xn (t) each are solutions of the differential equation

y′ = Ay.
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Then let
Φ (t) =

(
x1 (t) · · · xn (t)

)

and suppose that at some t0, det (Φ (t0)) 6= 0. Using Problem 1, show that
det (Φ (t)) 6= 0 for all t and that Φ (t) is a fundamental matrix.

4. If v is an eigenvector of A corresponding to an eigenvalue λ, show that veλt

is a solution to x′ = Ax. We say that w is a generalized eigenvector for the
eigenvalue λ if for some positive integer m,

(λI −A)m w = 0.

Thus a generalized eigenvector is on the top of a chain based on an eigenvec-
tor as in the proof of the existence of the Jordan canonical form. Suppose
(λI −A)w = v where v is an eigenvector of A, so that (λI −A)2 w = 0. Show
that

weλt + tveλt

is a solution of the equation x′ = Ax. Now suppose that v,w1,w2 is a chain
satisfying (λI −A)w2 = w1, (λI −A)w1 = v. Show that

t2

2
veλt + tw1e

λt + w2e
λt

is a solution of x′ = Ax. Generalize to obtain a formula for a chain of
arbitrary length. Describe how to use this to find a fundamental matrix.
Hint: Use Problem 1 and show that every chain is linearly independent.
Why do there exist enough solutions of the various kinds just described to
yield a fundamental matrix?

5. Let A be an n×n complex matrix and suppose also that it can be diagonalized,

A = PDP−1

where

D =




λ1

. . .
λn


 .

Show that the fundamental matrix is

P




eλ1t

. . .
eλnt


P−1.

6. Here is a matrix whose eigenvalues are 1,−1, 0.

A =




1 1 2
−4 −6 −10
2 3 5




(a) Find a fundamental matrix for this matrix.
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(b) Using this fundamental matrix, give the solution to the initial value prob-
lem

x′ = Ax + f (t) , x (0) = (1, 0, 0)t
,

where

f (t) =




1
t
t2


 .

7. Solve the above problem using the method of Laplace transforms.

8. Here is a matrix whose eigenvalues are 1 + i, 1− i and 1.



1 −1 0
1 1 0
0 0 1




(a) Find a fundamental matrix for this matrix.

(b) Using this fundamental matrix, give the solution to the initial value prob-
lem

x′ = Ax + f (t) , x (0) = (0, 0, 1)t

where

f (t) =




1
1
t


 .

9. Find the solution to the above problem using the method of Laplace trans-
forms.

10. Recall that the power series for ex given by

1 + x +
x2

2!
+ . . . =

∞∑

k=0

xk

k!
.

What if you formally placed an n× n matrix in place of x? The partial sums
would all make sense and would yield a matrix which is an n×n matrix. Show
that the partial sums obtained by this formal substitution are a sequence of
n × n matrices having the property that for S (p)ij denoting the ijth entry

of the pth partial sum in the above series,
{

S (p)ij

}∞
p=1

is a Cauchy sequence

and therefore, converges. This series

∞∑

k=0

Ak

k!

is denoted by eA, not surprisingly. Go ahead and assume2 the series

∞∑

k=0

tkAk

k!

2This is not too hard to show but involves more analysis than we wish to include in this book.
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can be differentiated term by term. Show that if this is so, then this series
yields the fundamental matrix Φ (t). Hint: For ||A|| given as above, show
that it suffices to show that for every ε > 0 there exists p such that for k, l > p,

||S (k)− S (l)|| < ε.

11. Consider the following initial value problem.

y′′′ − y′′ − y′ + y = t, y (0) = 1, y′ (0) = 0, y′′ (0) = 0.

This can be considered as a first order system in the following way. Let

y′′ (t) = x3 (t)
y′ (t) = x2 (t)
y (t) = x1 (t)

Then show the above scalar system can be described as follows



x′1 (t)
x′2 (t)
x′3 (t)


 =




x2 (t)
x3 (t)

x3 (t) + x2 (t)− x1 (t) + t


 ,




x1 (0)
x2 (0)
x3 (0)


 =




1
0
0


 .

Now finish writing this in the form

x′ = Ax + f , x (0) = x0.

All such linear equations for a scalar function can be considered similarly as
a first order system. However, it does not go the other way. You cannot
consider an arbitrary first order system as a higher order equation for a scalar
function. Explain why.

12. Verify that the Laplace transform L is a linear transformation in the sence
that L acting on a linear combination equals the linear combination of the
transformed functions. Also verify the entries of the table. To get 5.) and
6.) you ought to just do 7.) and then take real and imaginary parts to save
a lot of trouble. A similar trick works well with 10.) and 11.) and in fact,
if you have done these two, you can simply let a = 0 to get many of these
entries all at once. In the table, δ (t− c) denotes the dirac measure having unit
mass at c. The way to think of this is as something which does the following:∫∞
0

δ (t− c) f (t) dt = f (c). It is an idealization of a large positive function
which has integral equal to 1 which is only nonzero on a small interval. An
example of such a thing would be the force exerted by a hammer on a nail
during the short time it is in contact with the head of the nail.

13. Use the method of Laplace transforms and Problem 5 to obtain the variation
of constants formula in the case where A can be diagonalized.
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14. Show that if Φ (t) is the fundamental matrix satisfying

Φ′ (t) = AΦ(t) , Φ(0) = I,

then the Laplace transform Φ (s) of Φ (t) equals

(sI −A)−1
.

Compare the second line of the table of Laplace transforms.

15. Using the above problem, find the fundamental matrix for the differential
equation

x′ = Ax

where

A =




3 4 4
2 3 4
−3 −4 −5


 .

This is a defective matrix which has eigenvalues 1, 1,−1. The term defective,
when applied to a matrix, means that the matrix is not similar to a diagonal
matrix.
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Unitary, orthogonal,
Hermitian and symmetric
matrices

10.1 Unitary and orthogonal matrices

Given a complex matrix A = (aij), we write

A = (āij)

for the matrix obtained by complex conjugation of the entries. We recall Definition
6.4.1: the adjoint of A is

A∗ =
(
A

)t
.

We noted in Chapter 6 that

(A∗)∗ = A, (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗

(for matrices permitting the sum or product to be formed).

Definition 10.1.1 The n× n matrix A is said to be unitary if

(10.1) AA∗ = I.

A real unitary matrix is said to be an orthogonal matrix.
Of course we could define an orthogonal matrix to be a real n × n matrix with

AAt = I.

The following is a simple but important observation.

Observation 10.1.2 A matrix A is unitary if and only if A∗A = I. A matrix is
orthogonal if and only if AtA = I.

This follows right away from the result presented earlier that for a square matrix,
right inverses, left inverses, and inverses are all the same thing. See Theorem 3.3.6
on Page 62.

247
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Example 10.1.3 The matrix
( 3+i√

11
1+i√

22

1√
11

−4−2i√
22

)
= (a1a2)

is unitary. For with a little calculation, we obtain |a1| = |a2| = 1, 〈a1,a2〉 = 0.
Hence the i, j entry of AtA is

at
jaj = 〈ai,aj〉 =

{
1 if i = j

0 if i 6= j.

This shows that AtA = I. Conjugating,

A∗A = I

and A∗ is the inverse of A.
The same argument shows that a unitary matrix is a square matrix A satisfying

〈ai,aj〉 =

{
1 if i = j

0 if i 6= j.

That is, a unitary matrix is a square matrix over C whose columns are an orthonor-
mal set in Cn. In the real case, an orthogonal matrix is a square matrix over R
whose columns form an orthonormal set in Rn.

Example 10.1.4 The matrix



1√
3

1√
6
− 1√

2

− 1√
3

2√
6

0
1√
3

1√
6

1√
2


 =

(
a1 a2 a3

)

is orthogonal. It is simply a matter of checking that the columns have unit length
and are orthogonal in pairs.

A linear mapping T : Rn → Rn is said to be orthogonal if the matrix of T is
orthogonal. A linear mapping T : Cn → Cn is unitary if the matrix of T is unitary.

Example 10.1.5 A rotation T : R2 → R2 is orthogonal.
For the matrix of T , (

cos θ − sin θ
sin θ cos θ

)

is easily seen to be orthogonal.

Example 10.1.6 A reflection T : R2 → R2 is a linear mapping of the form

T (x1w1 + x2w2) = x1w1 − x2w2.

Here w1,w2 is an orthonormal basis of R2.



10.1. UNITARY AND ORTHOGONAL MATRICES 249

The matrix of T in the basis w1,w2 is certainly orthogonal: it is
(

1 0
0 −1

)
.

This suggests that we should look at orthogonal (or unitary) mappings in a ‘coordinate-
free’ way.

Lemma 10.1.7 Let T : Cn → Cn be linear. The following statements are equiva-
lent.

(i) T is unitary.

(ii) 〈Tu, Tv〉 = 〈u,v〉 always holds.

(iii) There is an orthonormal basis v1, . . . ,vn of Cn such that Tv1, . . . , Tvn is an
orthonormal basis of Cn.

Proof. It suffices to prove that (i) ⇒ (ii) ⇒ (i) and (ii) ⇒ (iii) ⇒ (ii).
Suppose that (i) holds. Let A be the matrix of T . As we saw earlier, AtA = I.

Hence
〈Tu, Tv〉 = (Au)tAv = utAtAv̄ = utv̄ = 〈u,v〉.

Suppose that (ii) holds. In particular,

〈Tei, Tej〉 = 〈ei, ej〉.
So the columns of the matrix of T are an orthonormal set and (i) holds.

Suppose that (ii) holds. Pick any orthonormal basis v1, . . . ,vn of Cn. Then

〈Tvi, Tvj〉 = 〈vi,vj〉 =

{
1 if i = j

0 if i 6= j.

This proves (iii).
Suppose that (iii) holds. For any u = a1v1 + · · ·+ anvn,v = b1v1 + · · ·+ bnvn

in Cn,

〈Tu, Tv〉 =

〈
n∑

i=1

aiTvi,

n∑

j=1

bjTvj

〉

=
n∑

j=1

aj b̄j = 〈u,v〉,

which establishes (ii) 2

Lemma 10.1.7 remains true if we replace C by R and ‘unitary’ by ‘orthogonal’.
We can now say the reflection in Example 10.1.6 is orthogonal, because (iii) is
applicable: Tw1, Tw2 is the orthonormal set w1,−w2.

Example 10.1.8 Fix an orthonormal basis w1,w2,w3 for R3. A rotation of R3

about the axis w1 is a mapping T defined by

T (x1w1 + x2w2 + x3w3) = (x1 cos θ − x2 sin θ)w1 + (x1 sin θ + x2 cos θ)w2 + x3w3.
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(If, for example w1,w2,w3 point east, north and vertically, this is a rotation
through θ about the vertical axis, as one can easily see.) The rotation is an orthog-
onal mapping, again using (iii) of Lemma 10.1.7;

Tw1 = (cos θ)w1 + (sin θ)w2, Tw2 = (− sin θ)w1 + (cos θ)w2, Tw3 = w3.

Likewise a reflection in the plane of w1,w2, defined by

S(x1w1 + x2w2 + x3w3) = x1w1 + x2w2 − x3w3

is an orthogonal mapping.
Note that |Tu| = |u| for a unitary mapping T : Cn → Cn or an orthogonal

mapping T : Rn → Rn. This follows from (ii) of Lemma 10.1.7 with u = v.
Lemma 10.1.7 suggests how to define a unitary mapping in an infinite dimen-

sional inner product space; we can use (ii) for the definition. We will not pursue
this idea here.

10.2 QR factorization

The following factorization is useful in solving large scale systems of equations, in
particular in the method of least squares.

Lemma 10.2.1 Let A be a real m× n matrix of rank n. We can write A as

(10.2) A = QR,

where Q is an m×n matrix whose columns form an orthonormal basis for Col (A),
and R is an n× n upper triangular matrix with positive entries on the diagonal.

Proof. Let A =
(

a1 · · · an

)
. Apply the Gram-Schmidt process to a1, . . . ,an

to produce an orthonormal basis u1, . . . ,un of Col (A). We recall that

aj ∈ span{u1, . . . ,uj},
but aj 6∈ span{a1, . . . ,aj−1}. It follows that

aj = 〈aj ,u1〉u1 + · · ·+ 〈aj ,uj〉uj , 〈aj ,uj〉 6= 0.

We may assume that 〈aj ,uj〉 > 0 (if necessary, replace uj by −uj). Now 10.2 holds
with

Q =
(

u1 · · · un

)
,

R =




〈a1,u1〉 〈a2,u1〉 · · · 〈an,u1〉
〈a2,u2〉 〈an,u2〉

. . .
...

〈an,un〉




because column j of the product QR is

〈aj ,u1〉u1 + · · ·+ 〈aj ,uj〉uj = aj . 2

This is also called the thin QR factorization by Golub and Van Loan.
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Example 10.2.2 Find a QR factorization of

A =




2 0 0
2 1 0
2 1 3
2 1 3


 = (a1a2a3) .

We let, rescaling for convenience,

v1 = (1/2)a1 = (1, 1, 1, 1)t,

v′2 = a2 − 〈a2,v1〉
〈v1,v1〉v1 = (0, 1, 1, 1)t − 3/4(1, 1, 1, 1)t,

v2 = 4v′2 = (−3, 1, 1, 1)t,

v′3 = a3 − 〈a3,v1〉
〈v1,v1〉 v1 − 〈a3,v2〉

〈v2,v2〉 v2

= 3((0, 0, 1, 1)t − 2/4(1, 1, 1, 1)t − 2/12(−3, 1, 1, 1)t)

= 1/2((0, 0, 6, 6)t − (3, 3, 3, 3)t − (−3, 1, 1, 1)t)

= 1/2(0,−4, 2, 2)t

v3 = (0,−2, 1, 1)t.

Normalizing, we take

Q =




1/2 −3√
12

0

1/2 1√
12

−2√
6

1/2 1√
12

1√
6

1/2 1√
12

1√
6




.

Since QtQ is the 3× 3 identity I,QR = A implies

R = QtA

=




1/2 1/2 1/2 1/2
−3√
12

1√
12

1√
12

1√
12

0 −2√
6

1√
6

1√
6







2 0 0
2 1 0
2 1 3
2 1 3




=




4 3/2 3

0 3√
12

6√
12

0 0 6√
6


 .

Example 10.2.3 For larger examples, Maple produces the QR factorization under
‘Solvers and forms’. Note that this is a way of doing the Gram-Schmidt process via
Maple.
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Example 10.2.4 Use Maple to redo Example 6.3.3 of Chapter 6, i.e. find an
orthonormal basis of Col (A),

A =




−1 0 1
1 2 3
0 1 2
1 3 0


 .

Within ‘QR decomposition’, select ‘Unitary factor’. We obtain



(−1/3)
√

3 (5/51)
√

51 1
102

√
102

(1/3)
√

3 (1/51)
√

51 7
102

√
102

0 (1/17)
√

51 2
51

√
102

(1/3)
√

3 (4/51)
√

51 − 1
17

√
102




.

The columns of this matrix are the vectors u1,u2,u3 obtained previously (Chapter
6), but written a little differently.

Example 10.2.5 Use Maple to find an orthonormal basis of Col (A), where

A =




3 2 1
6 3 1
1 1 −1
5 −1 2
4 2 6




.

Solution: Write a = 75603, b = 17142763. The solution is u1,u2,u3 where

u1 =
√

87(1/29, 2/29, 1/87, 5/87, 4/87),

u2 =
√

a

(
30

25201
,

31
25201

,
59
a

,−227
a

,
62
a

)
,

u3 =

√
b

b
(−433,−1693,−1317,−250, 3506).

This is more horrible than might naively be expected.
The usefulness of the QR factorization (which is relatively cheap in computer

time) emerges when we want to solve a linear system

Ax = b,

where A is m× n of rank n. We write A = QR as above, and solve the equivalent
system

(10.3) Rx = Qtb.

From 10.3, given the triangular shape of R, we can easily read off xn, xn−1, . . . , x1

in succession. In particular, least squares computations which have the shape

AtAx̂ = Atb.
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are generally done in this way if the m× n matrix A has rank n.
It is standard practice to make an assumption that A has rank n but it is not

necessary in order to obtain a QR factorization. Nor is it necessary to assume A is a
real matrix, if you replace Q orthogonal with Q unitary. We illustrate the technique
for A a square, possibly complex, matrix. The generalization to rectangular matrices
is slightly different than the above. The idea here is to always have Q be a unitary
matrix and R an upper triangular matrix in the sense that rij = 0 whenever j < i.

Proposition 10.2.6 Let A be any n × n complex matrix. Then there exists a
unitary matrix Q, and an upper triangular matrix R which has all non-negative
entries on the main diagonal.

Proof. Letting A =
(

a1 · · · an

)
be the matrix with the aj the columns,

each a vector in Cn, let Q1 be a unitary matrix which maps a1 to |a1| e1 in the case
that a1 6= 0. If a1 = 0, let Q1 = I. Why does such a unitary matrix exist? From
the Gram-Schmidt process, let

{a1/ |a1| ,u2, · · · ,un}

be an orthonormal basis, and let Q1

(
a1
|a1|

)
= e1, Q1 (u2) = e2 etc. Extend Q1

linearly. Then Q1 preserves lengths because it maps an orthonormal basis to an
orthonormal basis and is therefore unitary by Lemma 10.1.7. Then

Q1A =
(

Q1a1 Q1a2 · · · Q1an

)

=
( |a1| e1 Q1a2 · · · Q1an

)
,

which is a matrix of the form ( |a1| b
0 A1

)
.

Now do the same thing for A1 obtaining an n− 1×n− 1 unitary matrix Q′2 which,
when multiplied on the left of A1, yields something of the form

(
a b1

0 A2

)
.

Then multiplying A on the left by the product
(

1 0
0 Q′2

)
Q1 ≡ Q2Q1,

yields a matrix which is upper triangular with respect to the first two columns.
Continuing this way,

QnQn−1 · · ·Q1A = R,

where R is upper triangular having all positive entries on the main diagonal. Then
the desired unitary matrix is

Q = (QnQn−1 · · ·Q1)
∗
.2

In the following exercises, you might want to save time by using Maple or some
other computer algebra system. To use maple, you first open maple, then click on



254 UNITARY, ORTHOGONAL, HERMITIAN. . .

the matrix tab on the left of the screen. Then select the size of the matrix in the
two lines below this tab. Next click on insert matrix. This produces a template for
a matrix. Fill in the symbols with the desired numbers. Then right click on the
matrix you just entered, select solvers and forms, and finally click on QR. Maple
will do all the tedious computations for you.

10.3 Exercises

1. If Q is an orthogonal matrix, show that the only possible values of det (Q) are
±1. When this value is 1, the orthogonal matrix is called proper. Show that
rotations in R2 are proper and that reflections about an axis are not proper.

2. ↑If Q is a proper 3×3 orthogonal matrix, show that Q must have an eigenvalue
equal to 1. Hint: Show that the absolute value of all eigenvalues must equal
1. Then explain why the determinant of a complex matrix equals the product
of the eigenvalues.

3. Using the proof of Proposition 10.2.6 generalize the result to obtain one which
is valid for A an m× n matrix, which may have m 6= n, and in which there is
no assumption made about rank.

4. If Q is an orthogonal matrix, show that the columns are an orthonormal set.
That is, show that for

Q =
(

q1 · · · qn

)
,

it follows that qi · qj = δij . Also show that any orthonormal set of vectors is
linearly independent.

5. For real matrices, a QR factorization is often accomplished through the use
of Householder reflections. Using Problem 32 and the problem right after this
one on Page 117, describe how to use Householder reflections to obtain a QR
factorization for an arbitrary m×n real matrix. Hint: Follow the procedure of
the proof of Proposition 10.2.6, except obtain Q1 as the Householder reflection
which maps a1 to |a1| e1.

6. Find a QR factorization for the matrix



1 2 1
3 −2 1
1 0 2


 .

7. Find a QR factorization for the matrix



1 2 1 0
3 0 1 1
1 0 2 1


 .

8. If you had a QR factorization, A = QR, for Q a unitary matrix, describe
how you could use it to solve the equation Ax = b for A an arbitrary m× n
matrix.
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9. Show that you can’t expect uniqueness for QR factorizations in the case where
A is not invertible. Consider




0 0 0
0 0 1
0 0 1




and verify this equals



0 1 0
1
2

√
2 0 1

2

√
2

1
2

√
2 0 − 1

2

√
2







0 0
√

2
0 0 0
0 0 0




and also 


1 0 0
0 1 0
0 0 1







0 0 0
0 0 1
0 0 1


 .

Show that if A is an invertible real or complex n×n matrix, then there is only
one QR factorization of A. Hint: Show that if Q is unitary and R is upper
triangular having all positive entries on the main diagonal and if Q = R, then
both matrices equal I. Show that you can reduce to this case.

10. ∗Suppose that the entries of QnRn converge to the corresponding entries of
an orthogonal matrix Q where Qn is orthogonal and Rn is upper triangular
having all positive entries on the main diagonal. Show that then the entries of
Qn converge to the corresponding entries of Q and the entries of Rn converge
to the corresponding entries of the identity. Hint: Letting an

ij denote the
ijth entry of An, show first that rk

11q
k
1 → q1 where the ith column of Qk is

qk
i and the ith column of Q is qi. Then argue that this implies rk

11 → 1 and
consequently, that qk

1 → q1. Next consider the second column of the product
QkRk. Explain why

rk
12q

k
1 + rk

22q
k
2 → q2

and take the inner product of both sides with qk
1 to conclude rk

12 → 0 and
that rk

22 → 1.

11. Let A be an n×n complex matrix. Let A0 = A. Suppose that Ak−1 has been
found. To find Ak let

Ak−1 = QkRk, Ak = RkQk,

where QkRk is a QR factorization of Ak−1. Show that every pair of matrices
in this sequence are similar. Thus they all have the same eigenvalues. This
is the QR algorithm for finding the eigenvalues of a matrix. Although the
sequence {Ak} may fail to converge, it is nevertheless often the case that for
large k, Ak is of the form




Bk ∗
. . .

e Br



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where the Bi are blocks which run down the diagonal of the matrix, and all of
the entries below this block diagonal are very small. Then letting TB denote
the matrix obtained by setting all of these sub-diagonal entries equal to zero,
one can argue, using methods of complex analysis, that the eigenvalues of Ak

are close to the eigenvalues of TB and that each of these eigenvalues is an
eigenvalue of a block Bi. To see more on this algorithm, consult Golub and
Van Loan [3]. For an explanation of why the algorithm works see Wilkinson
[16].

12. ↑Show that the two matrices A =
(

0 −1
4 0

)
and B =

(
0 −2
2 0

)
are similar;

that is, there exists a matrix S such that A = S−1BS. Now show that there is
no orthogonal matrix Q such that QT BQ = A. Show that the QR algorithm
does converge for the matrix B although it fails to do so for A. Hint: You
should use maple or some other computer algebra system to find the sequence
of matrices in the QR algorithm. The claim will be obvious as soon as you do
this. To verify that there can be no orthogonal matrix such that QT BQ = A,
you might use the fact that orthogonal matrices preserve distances.

10.4 Schur’s theorem

Letting A be a complex n×n matrix, it was shown in Section 8.3 that there exists an
invertible matrix P such that P−1AP = J where J is an upper triangular matrix
which has a very special structure. Schur’s theorem is similar, but instead of a
general invertible matrix P one can use a unitary matrix U .

Theorem 10.4.1 Let A be a complex n × n matrix. Then there exists a unitary
matrix U such that

(10.4) U∗AU = T,

where T is an upper triangular matrix having the eigenvalues of A on the main
diagonal, listed with multiplicity1.

Proof. The theorem is clearly true if A is a 1 × 1 matrix. Just let U = 1, the
1 × 1 matrix which has entry 1. Suppose it is true for (n− 1) × (n− 1) matrices
and let A be an n× n matrix. Then let v1 be a unit eigenvector for A. Then there
exists λ1 such that

Av1 = λ1v1, |v1| = 1.

Extend {v1} to a basis and then use the Gram - Schmidt process Lemma 6.3.2
to obtain {v1, · · · ,vn}, an orthonormal basis of Cn. Let U0 be a matrix whose ith

column is vi. Then from the definition of a unitary matrix Definition 10.1, it follows

1‘Listed with multiplicity’ means that the diagonal entries are repeated according to their
multiplicity as roots of the characteristic equation.
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that U0 is unitary. Then U∗
0 AU0 is of the form




λ1 ∗ · · · ∗
0
... A1

0




where A1 is an n− 1× n− 1 matrix. Now by induction, there exists an (n− 1)×
(n− 1) unitary matrix Ũ1 such that

Ũ∗
1 A1Ũ1 = Tn−1,

an upper trianguar matrix. Consider

U1 ≡
(

1 0
0 Ũ1

)
.

An application of block multiplication shows that U1 is a unitary matrix and also
that

U∗
1 U∗

0 AU0U1 =
(

1 0
0 Ũ∗

1

)(
λ1 ∗
0 A1

) (
1 0
0 Ũ1

)

=
(

λ1 ∗
0 Tn−1

)
≡ T

where T is upper triangular. Then let U = U0U1. Since (U0U1)
∗ = U∗

1 U∗
0 , it follows

that A is similar to T and that U0U1 is unitary. Hence A and T have the same
characteristic polynomials, and since the eigenvalues of T are the diagonal entries
listed with multiplicity, this proves the theorem.2

The same argument yields the following corollary in the case where A has real
entries. The only difference is the use of the real inner product instead of the
complex inner product.

Corollary 10.4.2 Let A be a real n × n matrix which has only real eigenvalues.
Then there exists a real orthogonal matrix Q such that

QT AQ = T

where T is an upper triangular matrix having the eigenvalues of A on the main
diagonal, listed with multiplicity.

Proof. This follows by observing that if all eigenvalues are real, then corre-
sponding to each real eigenvalue, there exists a real eigenvector. Thus the argument
of the above theorem applies with the real inner product.2

10.5 Hermitian and symmetric matrices

A complex n × n matrix A with A∗ = A is said to be Hermitian. A real n × n
matrix A with At = A is said to be symmetric. In either case, note that

〈Au,v〉 = (Au)tv̄ = utAtv̄ = utAv̄ = 〈u, Av〉.
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Thus, as a numerical example, the matrix
(

1 1− i
1 + i 2

)

is Hermitian, while 


1 −1 −2
−1 2 4
−2 4 3




is symmetric. Hermitian matrices are named in honor of the French mathematician
Charles Hermite (1822–1901).

With Schur’s theorem, the theorem on diagonalization of a Hermitian matrix
follows.

Theorem 10.5.1 Let A be Hermitian. Then the eigenvalues of A are all real, and
there exists a unitary matrix U such that

U∗AU = D,

a diagonal matrix whose diagonal entries are the eigenvalues of A listed with mul-
tiplicity. In case A is symmetric, U may be taken to be an orthogonal matrix. The
columns of U form an orthonormal basis of eigenvectors of A.

Proof. By Schur’s theorem and the assumption that A is Hermitian, there
exists a triangular matrix T, whose diagonal entries are the eigenvalues of A listed
with multiplicity, and a unitary matrix U such that

T = U∗AU = U∗A∗U = (U∗AU)∗ = T ∗.

It follows from this that T is a diagonal matrix and has all real entries down the
main diagonal. Hence the eigenvalues of A are real. If A is symmetric (real and
Hermitian) it follows from Corollary 10.4.2 that U may be taken to be orthogonal.

That the columns of U form an orthonormal basis of eigenvectors of A, follows
right away from the definition of matrix multiplication which implies that if ui is a
column of U, then Aui = column i of (UD) = λiui. 2

Example 10.5.2 The eigenvectors for the Hermitian matrix
(

1 2i
−2i 1

)

are
(

i
1

)
corresponding to the eigenvalue 3 and

( −i
1

)
corresponding to the

eigenvalue −1. Thus

A = P

(
3 0
0 −1

)
P ∗

where the columns of the unitary matrix

P =

(
i√
2

−i√
2

i√
2

i√
2

)

are obtained from these eigenvectors by normalizing.



10.5. HERMITIAN AND SYMMETRIC MATRICES 259

Example 10.5.3 Let

A =




3 2 2
2 3 2
2 2 3


 .

Find an orthonormal basis of R3 consisting of eigenvectors of A. Write A in the
form

A = PDP t,

where P is an orthogonal matrix and D is a diagonal matrix.
One can use Maple to find the eigenvalues, but in fact the factorization of PA(λ)

is fairly obvious:

det(λI −A) = det




λ− 3 −2 −2
−2 λ− 3 −2
−2 −2 λ− 3




= det




λ− 1 1− λ 0
−2 λ− 3 −2
0 λ− 1 λ− 1




(by subtracting row 2 from each of the other rows). Taking out the factor λ − 1
twice,

det(λI −A) = (λ− 1)2 det




1 −1 0
−2 λ− 3 −2
0 −1 1




= (λ− 1)2(λ− 7)

(expanding by row 1).

The eigenspace for λ = 1 is

ker



−2 −2 −2
−2 −2 −2
−2 −2 −2


 = ker




1 1 1
0 0 0
0 0 0




The corresponding system of equations is x1 + x2 + x3 = 0, with general solution


−x2 − x3

x2

x3


 = x2



−1
1
0


 + x3



−1
0
1


 .

A basis of the eigenspace is w1 = (−1, 1, 0),w2(−1, 0, 1). Since we want an or-
thonormal basis, we use the Gram-Schmidt process: v1 = w1,

v2 = w2 − 〈w2,v1〉
〈w1,v1〉v1 = (−1, 0, 1)− 1/2(−1, 1, 0)

= (−1/2,−1/2, 1).

This is quickly converted into an orthonormal basis

u1 =
(
− 1√

2
,

1√
2
, 0

)
,u2 =

(
− 1√

6
,
−1√

6
,

2√
6

)
.
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The eigenspace for λ = 7 is obtained from doing row operations and equals

ker




4 −2 −2
−2 4 −2
−2 −2 4


 = ker




1 1 −2
0 6 −6
0 −6 6


 = ker




1 0 −1
0 −1 1
0 0 0


 .

The corresponding system of equations reads x1 = x3, x2 = x3. A basis of the
eigenspace is y3 =

(
1√
3
, 1√

3
, 1√

3

)
. It follows that A = PDP t with

P =




− 1√
2
− 1√

6
1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3


 orthogonal, D =




1
1

7


 .

10.6 Real quadratic forms

A real quadratic form is a function Q : Rn → R of the form

Q(x1, . . . , xn) = Q(x) =
n∑

i=1

n∑

j=1

aijxixj (aij = aji ∈ R).

The matrix of Q is the symmetric matrix

A = (aij) .

For example, Q(x) = x2
1 + 3x1x2 + 2x2

2 has a11 = 1, a22 = 2, a12 = a21 = 3/2. The
matrix of Q is (

1 3/2
3/2 2

)
.

Quadratic forms occur in a variety of problems. For instance, let f(x1, . . . , xn)
be a smooth real function on Rn with a stationary point at c, that is,

∂f

∂xj
= 0 at x = c (j = 1, . . . , n).

A satisfactory approximation to f(c + y) for small y is

f(c) + Q(y),

where Q is the quadratic form with matrix

aij = 1/2
∂2f

∂xi∂xj
at x = c.

Thus we can predict whether c is a local maximum, a local minimum or a saddle
point (i.e. neither a local maximum nor a local minimum) by studying the quadratic
form Q. See Edwards (1994) for further discussion.

As another instance, we mention that a good model for a planetary surface
centered at 0 is an ellipsoid, which with a correctly chosen set of axes has equation

x2
1

a2
+

x2
2

b2
+

x2
3

c2
= 1.
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If the axes are chosen differently the equation would be

Q(y) = 1

where Q is a positive definite quadratic form Q = Q(y1, y2, y3).

Definition 10.6.1 Let Q(x1, . . . , xn) be a real quadratic form. We say that Q is
positive definite if Q(x) > 0 whenever x 6= 0; Q is negative definite if Q(x) < 0
whenever x 6= 0. If Q is neither positive definite nor negative definite, then Q is
indefinite.

A simple example of an indefinite quadratic form is Q(x) = (ax1+bx2)(cx1+dx2)
where (a, b) 6= (0, 0) and (c, d) 6∈ span{(a, b)}. You should be able to visualize the
regions where Q > 0 and Q < 0.

For one class of quadratic forms, the diagonal forms, it is easy to decide between
positive definiteness, negative definiteness and indefiniteness. A diagonal form has
the shape

Q(x) = b1x
2
1 + · · ·+ bnx2

n.

The matrix of Q is of course diagonal. Clearly Q is positive definite if b1 >
0, . . . , bn > 0, negative definite if b1 < 0, . . . , bn < 0, and indefinite in all remaining
cases.

Conveniently, a change of basis can be used to bring any Q into diagonal form.
In fact, we can find an orthonormal basis β of Rn, depending on Q, such that

Q(Px) =
n∑

i=1

bix
2
i ,

where the columns of P are the vectors of β.

Lemma 10.6.2 Let v1, . . . ,vn be a basis of Rn, and let

y = Px

give the relation between coordinates in the bases β : e1, . . . , en([v]β = y) and
δ : v1, . . . ,vn([v]δ = x).

The quadratic form Q(y) = ytAy with matrix A can be written as

Q(Px) = xt(P tAP )x.

That is, Q has the matrix P tAP in the coordinates x1, . . . , xn.

Proof. This is almost trivial. We first note that

ytAy =
n∑

j=1

yj

n∑

k=1

ajkyk = Q(y)

(again interpreting a 1× 1 matrix as a real number). Hence

Q(Px) = (Px)tA(Px) = xt(P tAP )x. 2
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Corollary 10.6.3 Let Q(y) be a quadratic form in (y1, . . . , yn) with matrix A.
There is an orthonormal basis v1, . . . ,vn of Rn such that

Q(Px) =
n∑

i=1

λix
2
i , P =

(
v1 · · · vn

)
.

The λi are the eigenvalues of A, and Avi = λivi.

Proof. From Theorem 10.5.1,

A = PDP t

where D is diagonal,

D =




λ1

. . .
λn


 ,

P =
(

v1 · · · vn

)
is orthogonal, and Avi = λivi. Since

Q(Px) = xtP tAPx = xtDx =
n∑

i=1

λix
2
i ,

this gives the desired result. 2

Example 10.6.4 Obtain the representation

Q(Px) = λ1x
2
1 + λ2x

2
2

of the Corollary when
Q(y) = −5y2

1 + 4y1y2 − 2y2
2 .

The matrix of Q,

A =
( −5 2

2 −2

)
,

has characteristic polynomial (λ + 5)(λ + 2)− 4 = (λ + 1)(λ + 6).
The eigenspace for λ = −1 is

ker
(

4 −2
−2 1

)
= ker

(
1 −1/2
0 0

)
.

The corresponding system of equations is x1− 1
2x2 = 0 and a basis of the eigenspace

is
(

1√
5
, 2√

5

)
. Now the eigenspace for λ = −6 must have basis

(
2√
5,

, −1√
5

)
;

A = PDP t, or D = P tAP,

with

P =
1√
5

(
1 2
2 −1

)
, D =

( −1 0
0 −6

)
,

and
Q(Px) = −x2

1 − 6x2
2.
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10.7 Exercises

1. Here is a quadratic form.
x2

1 + 4x1x2 + x2
2

Find new variables (y1, y2) and an orthogonal matrix P such that x = Py
and the expression in terms of y is a diagonal quadratic form.

2. Here is a quadratic form.

4x2
1 + 2x1x2 + 4x2

2

Find new variables (y1, y2) and an orthogonal matrix P such that x = Py
and the expression in terms of y is a diagonal quadratic form.

3. Here is a quadratic form.

−3x2
1 + 2x1x2 − 3x2

2

Find new variables (y1, y2) and an orthogonal matrix P such that x = Py
and the expression in terms of y is a diagonal quadratic form.

4. Here is a quadratic form.

3x2
1 − 2x1x2 + 3x2

2 − x2
3

Find new variables (y1, y2, y3) and an orthogonal matrix P such that x = Py,
and the expression in terms of y is a diagonal quadratic form.

5. Here is a quadratic form.

3x2
1 − 2x1x2 + 3x2

2 + 2x2
3

Find new variables (y1, y2, y3) and an orthogonal matrix P such that x = Py,
and the expression in terms of y is a diagonal quadratic form.

6. Here is a quadratic form.

3x2
1 + 2x1x3 + 2x2

2 + 3x2
3

Find new variables (y1, y2, y3) and an orthogonal matrix P such that x = Py,
and the expression in terms of y is a diagonal quadratic form.

7. Show that if A is an Hermitian invertible matrix, then the quadratic form
x → 〈

A2x,x
〉

is positive definite.

8. If A is an arbitrary matrix, does it follow that x → 〈
A2x,x

〉
is positive defi-

nite? Hint: You might consider
(

2 −2
0 2

)
.

9. An n×n matrix A is called normal if AA∗ = A∗A. Show that every Hermitian
matrix is normal. Show that

(
1 + i 1− i
1− i 1 + i

)

is not Hermitian but is normal.
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10. Show that if U is a unitary matrix and A is a normal matrix, then U∗AU is
also a normal matrix.

11. Show that every upper triangular normal matrix must be a diagonal matrix.
Explain how this shows with Theorem 10.4.1 that an n× n matrix is normal
if and only if there exists U unitary such that

U∗AU = D

where D is a diagonal matrix.

12. Let A be an n × n complex matrix. Show that A is Hermitian if and only if
for some U unitary,

U∗AU = D

where D is a diagonal matrix having all real entries.

13. Let F be an n × n complex matrix. Show F ∗F is Hermitian and has all
nonnegative eigenvalues.

14. Suppose A is an n×n Hermitian matrix which has all nonnegative eigenvalues.
Show that there exists an n × n Hermitian matrix B such that B2 = A, all
eigenvalues of B are nonnegative, and B commutes with every matrix which
commutes with A. Hint: You know that there exist a unitary matrix U
such that U∗AU = D where D is a diagonal matrix having all nonnegative
entries down the main diagonal. Now consider the problem of taking the
square root of D. As to the part about commuting, suppose CA = AC. Then
A = UDU∗ but also, for any C, C = UCUU∗ for a unique CU . Then show
CA = AC if and only if DCU = CUD. Then show this is the same as having
D1/2CU = CUD1/2.

15. ↑The above problem deals with the square root of a Hermitian matrix which
has nonnegative eigenvalues. Show that there is at most one such Hermitian
square root having nonnegative eigenvalues which has the property that it
commutes with all matrices which commute with A. Hint: Suppose that
B, B1 both satisfy these conditions, explain why for C = B,B1,

〈Cx,x〉 ≥ 0.

Next use this to verify that for any x,

(10.5) 〈B (B −B1)x, (B −B1)x〉 ≥ 0, 〈B1 (B −B1)x, (B −B1)x〉 ≥ 0.

Adding these inequalities and using the assumption about commuting, explain
why 〈(

B2 −B2
1

)
x, (B −B1)x

〉
= 0

and why each inequality in 10.5 is actually an equality. Let
√

B,
√

B1 denote
the square root of B,B1 whose existence is guaranteed by the above problem.
Explain why √

B (B −B1)x = 0 =
√

B1 (B −B1)x.

Then conclude that B (B −B1)x = 0 =B1 (B −B1)x. Finally,

0 = 〈B (B −B1)x−B1 (B −B1)x,x〉 = |(B −B1)x|2 .
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16. ↑Let F be an n× n matrix. Explain why there exists a unique square root U
for F ∗F . Next let {Ux1, · · · , Uxr} be an orthonormal basis for U (Cn) and
let {Ux1, · · · , Uxr,yr+1, · · · ,yn} be an orthonormal basis for Cn. Verify that
{Fx1, · · · , Fxr} is also an orthnormal basis. Let {Fx1, · · · , Fxr, zr+1, · · · , zn}
be an orthonormal basis for Cn. Now for x arbitrary, there exist unique scalars
ci, di such that

x =
r∑

i=1

ciUxi +
n∑

i=r+1

diyi.

Then define Rx by

Rx =
r∑

i=1

ciFxi +
n∑

i=r+1

dizi.

Verify that R preserves distances, and is therefore unitary. Letting x be
arbitrary, it follows that there exist unique bi such that

Ux =
r∑

i=1

biUxi.

Verify that RUx =
∑r

i=1 biFxi = F (
∑r

i=1 bixi) . Finally verify that

F

(
r∑

i=1

bixi

)
= Fx.

Thus F = RU where R is unitary and U is Hermitian having nonnegative
eigenvalues, and commuting with every matrix which commutes with F ∗F .
This is called the right polar decomposition. In mechanics, when F is a
3×3 real matrix, the matrix U is called the right Cauchy Green strain tensor.
It measures the way a three dimensional set is stretched while the R merely
preserves distance. Can you extend the result of this theorem to the case
where F is an m× n matrix with m ≥ n? The answer is yes, and the proof is
just like what is given above.

17. If A is a general n×n matrix having possibly repeated eigenvalues, show there
is a sequence {Ak} of n × n matrices having distinct eigenvalues which has
the property that the ijth entry of Ak converges to the ijth entry of A for all
ij. Hint: Use Schur’s theorem.

18. Prove the Cayley-Hamilton theorem as follows. First suppose A has a basis of
eigenvectors {vk}n

k=1 , Avk = λkvk. Let p (λ) be the characteristic polynomial.
Show p (A)vk = p (λk)vk = 0. Then since {vk} is a basis, it follows that
p (A)x = 0 for all x, and so p (A) = 0. Next, in the general case, use Problem
17 to obtain a sequence {Ak} of matrices whose entries converge to the entries
of A such that Ak has n distinct eigenvalues, and therefore Ak has a basis of
eigenvectors. Therefore, from the first part and for pk (λ) the characteristic
polynomial for Ak, it follows pk (Ak) = 0. Now explain why and the sense in
which

lim
k→∞

pk (Ak) = p (A) .
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19. The principal submatrices of an n × n matrix A are Ak where Ak consists
those entries which are in the first k rows and first k columns of A. Suppose
A is a real symmetric matrix and that x →〈Ax,x〉 is positive definite. Show
that each of the principal submatrices are positive definite. Hint: Consider
(

x 0
)
A

(
x
0

)
where x consists of k entries.

20. ↑Show that if A is a symmetric n × n real matrix, then A has an LU fac-
torization with the property that each entry on the main diagonal in U is
positive.

21. ↑Let A be a real symmetric n × n matrix and A = LU where L has all ones
down the diagonal and U has all positive entries down the main diagonal.
Show that A = LDH where L is lower triangular and H is upper triangular,
each having all ones down the diagonal and D a diagonal matrix having all
positive entries down the main diagonal. In fact, these are the diagonal entries
of U .

22. ↑Show that if L,L1 are lower triangular with ones down the main diagonal
and H, H1 are upper triangular with all ones down the main diagonal and D,
D1 are diagonal matrices having all positive diagonal entries, and if LDH =
L1D1H1, then L = L1,H = H1, D = D1. Hint: Explain why D−1

1 L−1
1 LD =

H1H
−1. Then explain why the right side is upper triangular and the left side is

lower triangular. Conclude these are both diagonal matrices. However, there
are all ones down the diagonal in the expression on the right. Hence H = H1.
Do something similar to conclude that L = L1 and then that D = D1.

23. ↑Show that if A is a symmetric real matrix such that x →〈Ax,x〉 is positive
definite, then there exists a lower triangular matrix L having all positive
entries down the diagonal such that A = LLT . Hint: From the above, A =
LDH where L, H are respectively lower and upper triangular having all ones
down the diagonal and D is a diagonal matrix having all positive entries. Then
argue from the above problem and symmetry of A that H = LT . Now modify
L by making it equal to LD1/2. This is called the Cholesky factorization.

24. ↑Here is a positive definite symmetric matrix



5 1 2
1 4 1
2 1 4




Find its Cholesky factorization.

25. ↑Show that if A is a real symmetric matrix and x →〈Ax,x〉 is positive definite,
then there exists an upper triangular matrix U , having all positive diagonal
entries such that 〈Ax,x〉 = |Ux|2.

26. Letting A be a real m × n matrix, m ≥ n having rank n, consider least
squares solutions to Ax = b. Recall this required finding the solutions to
AT Ax =AT b. How could the Cholesky decomposition be useful in doing this
problem?



The singular value
decomposition

11.1 Properties of the singular value decomposi-
tion

The singular value decomposition of an m × n complex matrix is a useful tool in
data compression. In this application, the idea is to approximate a given (very
large) matrix by a matrix of small rank. It also has important applications to the
problem of least squares and the Moore Penrose inverse.

Before giving the decomposition, we prove a simple lemma.

Lemma 11.1.1 Let A be an m× n real matrix. Then

R(A∗A) = R(A).

Also ker (A∗A) = ker (A).

Proof. If Ax = 0, then evidently A∗Ax = 0. On the other hand, if A∗Ax = 0,
then

0 = x∗A∗Ax = 〈Ax, Ax〉,
so that Ax = 0. Thus A and A∗A have the same kernel, say V . Since A∗A is n×n,

R(A∗A) = n− dim V = R(A).2

Lemma 11.1.2 Let A be a complex m×n matrix. Then A∗A is Hermitian, all its
eigenvalues are nonnegative, and if A 6= 0, there is at least one nonzero eigenvalue.

Proof: It is obvious that A∗A is Hermitian because

(A∗A)∗ = A∗ (A∗)∗ = A∗A.

Suppose A∗Ax = λx where x 6= 0. Then

λ |x|2 = 〈λx,x〉 = 〈A∗Ax,x〉 = 〈Ax,Ax〉 ≥ 0.

267
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Hence λ ≥ 0. By Theorem 10.5.1,

A∗A = U∗DU

where the entries of the diagonal matrix D are the eigenvalues of A∗A. If all eigen-
values are 0, then A∗A = 0 and Lemma 11.1.1 gives the absurd conclusion that
A = 0. 2

Definition 11.1.3 Let A be an m × n complex matrix. The singular values of A
are the positive square roots of the positive eigenvalues of A∗A.

The following theorem gives the existence of a singular value decomposition of
A.

Theorem 11.1.4 Let A be an m × n complex matrix of rank r. We can write A
in the form

(11.1) A = UΣV ∗

where
(i) U is a unitary m×m matrix

(ii) V is a unitary n× n matrix

(iii) Σ = (σij) is m× n, and is quasi-diagonal in the sense that σij = 0 for i 6= j.

(iv) Writing σi instead of σii, we have

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, σi = 0 for i > r.

In case A is a real matrix, U, V can be orthogonal matrices.

These are the principal features of the decomposition 11.1, which is called a
singular value decomposition (SVD) of A. The positive numbers σ1, . . . , σr

(where r ≤ min(m,n)) are called the singular values of A. We will see below that
this agrees with Definition 11.1.3. We will note other features later. If m = 4, n = 3,
then

Σ =




σ1 0 0
0 σ2 0
0 0 σ3

0 0 0


 ,

while if m = 2, n = 3, then

Σ =
(

σ1 0 0
0 σ2 0

)
.

Note that once we have an SVD of A, we immediately obtain an SVD of A∗.
For 11.1 gives the expression

A∗ = V ΣtU∗,

which has all the desired properties with V, Σt, U in place of U,Σ, V . For this reason
we may assume that m ≥ n in proving Theorem 11.1.4.
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Proof of Theorem 11.1.4 By Lemma 11.1.2 and Theorem 10.5.1, there exists
an orthonormal basis {vi}n

i=1 such that A∗Avi = σ2
i vi where σ2

i > 0 for i = 1, · · · , k
where k ≥ 1 and σi = 0 for i > k. Thus for i > k, A∗Avi = 0 and so, by Lemma
11.1.1, Avi = 0.

For i = 1, · · · , k, define ui ∈ Fm by

ui ≡ σ−1
i Avi.

Thus Avi = σiui. Now

〈ui,uj〉 =
〈
σ−1

i Avi, σ
−1
j Avj

〉
=

〈
σ−1

i vi, σ
−1
j A∗Avj

〉

=
〈
σ−1

i vi, σ
−1
j σ2

jvj

〉
=

σj

σi
〈vi,vj〉 = δij .

Thus {ui}k
i=1 is an orthonormal set of vectors in Cm. Also,

AA∗ui = AA∗σ−1
i Avi = σ−1

i AA∗Avi = σ−1
i Aσ2

i vi = σ2
i ui.

Now using the Gram Schmidt process, extend {ui}k
i=1 to an orthonormal basis for

all of Cm, {ui}m
i=1 and let the unitary matrices U and V be defined by

U =
(

u1 · · · um

)
, V =

(
v1 · · · vn

)
.

Thus U is the matrix which has the ui as columns and V is defined as the matrix
which has the vi as columns. In case A is a real matrix, we may take vi,uj to be
real and have U and V be orthogonal matrices. Then

U∗AV =




u∗1
...

u∗k
...

u∗m




A
(

v1 · · · vn

)

=




u∗1
...

u∗k
...

u∗m




(
σ1u1 · · · σkuk 0 · · · 0

)

=
(

σ 0
0 0

)
= Σ

where σ is the k × k diagonal matrix of the form



σ1

. . .
σk


 .

In the above, the zero blocks are the sizes needed in order to make the matrix Σ an
m× n matrix. This proves the theorem.2
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As mentioned above, for A an m× n matrix, we write

Σ =
(

σ 0
0 0

)

where the zero blocks are the size needed to make the resulting matrix m × n.
The matrix σ is uniquely determined as the diagonal matrix which has the singular
values of A in descending magnitude from the top left toward the lower right.

Notice that the matrix Σ is uniquely determined by 11.1 and the properties (iii)
and (iv). For 11.1 yields

A∗A = V ΣtU∗UΣV ∗ = V ΣtΣV ∗(11.2)

= V




σ2
1

. . .
σ2

n


V ∗,

so that σ2
1, . . . , σ

2
n are the eigenvalues of A∗A in non-increasing order, counted with

muliplicity. However, if r < m, the SVD is not unique; there are many possibilities
for ur+1, . . . ,um.

Example 11.1.5 In 11.1, suppose that m = n, A is a real matrix, and that σ1 >
· · · > σn > 0. Show that the SVD is unique apart from the signs of the vectors in
V and U .

From 11.2, which in turn follows from 11.1, the columns vi of V are eigen-
vectors of A∗A in order corresponding to the distinct numbers σ2

1, . . . , σ
2
n. As the

eigenspaces are one-dimensional, the vi are unique apart from sign. Moreover,

U = A(V ∗)−1Σ−1 = AV




σ−1
1

. . .
σ−1

n




=
(

Av1
σ1

· · · Avn

σn

)
,

which is the prescription for U used in the proof of Theorem 11.1.4.

Example 11.1.6 Find an SVD of

A =
(

2 −1
2 1

)
.

First of all,

A∗A =
(

8 0
0 2

)
.

An orthonormal set of eigenvectors of A∗A is v1 = e1,v2 = e2, so that V = I.
Moreover, σ2

1 = 8, σ2
2 = 2; so

Σ =
(

2
√

2 √
2

)
.
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Now, as prescribed above,

u1 =
1
σ1

Av1 =
1

2
√

2

(
2 −1
2 1

)(
1
0

)
=

(
1√
2

1√
2

)
,

u2 =
1
σ2

Av2 =
1√
2

(
2 −1
2 1

)(
0
1

)
=

(
− 1√

2
1√
2

)
.

Example 11.1.7 Find an SVD of

A =



−1/2 3/2 0
−3/2 1/2 0

0 0 3


 .

First of all,

A∗A =




5/2 −3/2 0
−3/2 5/2 0

0 0 9




has characteristic polynomial
(
(λ− 5/2)2 − 9/4

)
(λ− 9) = (λ− 9)(λ− 4)(λ− 1),

so that σ1 = 3, σ2 = 2, σ3 = 1. An easy computation gives an orthonormal basis
v1,v2,v3 of eigenvectors of A∗A,

A∗Avj = σ2
jvj ,

namely

v1 =




0
0
1


 ,v2 =




1√
2

− 1√
2

0


 ,v3 =




1√
2

1√
2

0


 .

We now take

u1 =
Av1

3
=




0
0
1


 ,

u2 =
Av2

2
=



− 1√

2

− 1√
2

0


 ,

u3 = Av3 =




1√
2

− 1√
2

0


 .

So Σ =




3
2

1


 , V =




0 1√
2

1√
2

0 − 1√
2

1√
2

1 0 0


 , U =




0 − 1√
2

1√
2

0 − 1√
2
− 1√

2

1 0 0


 .

Example 11.1.8 Use www.bluebit.gr/matrix-calculator/ to solve Example 11.1.7.
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If we follow the simple procedure at this site and select 9 decimal digits, we get
Σ as above.

U =




0 −a −a
0 −a a
1 0 0


 , V =




0 a −a
0 −a −a
1 0 0




with a = 0.707106781. We ‘correct’ this to a = 1√
2

by using |(−a,−a, 0)| = 1. Note
the differences in sign in U, V from the solution that we found above.

The singular value decomposition has as an immediate corollary the following
interesting result.

Corollary 11.1.9 Let A be an m× n matrix. Then the rank of A equals the rank
of A∗and both equal the number of singular values.

Proof. Since V and U are unitary, they are each one to one and onto, and so it
follows that

rank (A) = rank (U∗AV )
= rank (Σ)
= number of singular values.

Also since U, V are unitary,

rank (A∗) = rank (V ∗A∗U)
= rank

(
(U∗AV )∗

)

= rank (Σ∗)
= number of singular values.

This proves the corollary. ¤
A lot of information about subspaces associated with A is ‘embedded’ in the

SVD. This takes its most attractive form in the case where the matrices are all real.

Lemma 11.1.10 Let A = UΣV t be an SVD of an m× n matrix of rank r. Then

(i) the first r columns of V are an orthonormal basis for the row space of A,

(ii) the last n− r columns of V are an orthonormal basis for ker(A),

(iii) the first r columns of U are an orthonormal basis of Col (A),

(iv) the last m− r columns of U are an orthonormal basis of ker(At).

Proof. From A = UΣV t, it follows that

U tA = ΣV t,

and so the row space of A equals the row space of U tA which equals the row space
of ΣV t which equals the column space of the first r columns of V . This proves (i).
(Recall that multiplication on the left by an invertible matrix is the same as doing
a sequence of row operations which preserves the row space.)
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We noted above that

(11.3) Avr+1 = · · · = Avk = 0.

Therefore, the space kerA, of dimension n − r, contains the orthonormal set
vr+1, . . . ,vn. Since the rank of A equals r, this implies that {vr+1, . . . ,vk} is a
basis for ker (A). This proves (ii).

In At = V ΣtU t, the roles of U and V are interchanged. Thus (iii) is a conse-
quence of (i) with At, U in place of A, V and similarly (iv) follows from (ii) with
At, U in place of A, V . 2

11.2 Approximation by a matrix of low rank

We now return to the topic raised at the beginning of the chapter. If A is a complex
m × n matrix with rank r, what is the closest matrix to A that has rank l (where
1 ≤ l < r)? To measure distance between matrices, we regard the vector space of
m× n complex matrices under addition as coinciding with Cmn. Thus

(
a11 a12 a13

a21 a22 a23

)

is identified with
(a11, a12, a13, a21, a22, a23),

for example. Now the inner product of two m×n complex matrices A = (aij) , B =
(bij) is

〈A,B〉 =
n∑

i=1

n∑

j=1

aijbij ,

the length or Frobenius norm of A is

‖A‖ =




m∑

i=1

n∑

j=1

|aij |2



1/2

and the distance from A to B is ‖A − B‖. (Other ‘distance measures’ are also
important, see Horn and Johnson (1990). In fact, we used another one in the
discussion of first order systems of differential equations.)

We can express 〈A,B〉 in terms of trace. The trace of an n×n matrix A = (aij)
is

tr A =
n∑

i=1

aii.

Lemma 11.2.1 (i) Let A be m× n and C be n×m. Then tr(AC) = tr(CA).
(ii) Let A and B be m× n. Then

〈A,B〉 = tr(AB∗) = tr(BA∗) = 〈B, A〉.
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Proof. (i) The ijth entry of AC is

n∑

k=1

aikckj .

Hence

tr(AC) =
m∑

i=1

n∑

k=1

aikcki =
n∑

k=1

m∑

i=1

ckiaik

= tr(CA).

(ii) tr(AB∗) =
m∑

i=1

n∑
k=1

aikbik = 〈A, B〉.

Interchanging A and B gives

〈A,B〉 = tr(AB∗) =
m∑

i=1

n∑

k=1

aikbik =
m∑

i=1

n∑

k=1

aikbik = 〈B, A〉

We are not using (i)! 2

It turns out that the solution to our problem of minimizing ‖A − B‖ (with A
given and B of rank ≤ h) is the following. Let

A = UΣV ∗, Σ =
(

σ 0
0 0

)

where

σ =




σ1

. . .
σr




is an SVD of A. Then we take

(11.4) A′ = U

(
σ′ 0
0 0

)
V ∗.

where

σ′ =




σ1

. . .
σh


 .

In other words, we modify Σ by replacing σh+1, . . . , σr by 0.
To prove this, we need the following simple lemma about the Frobenius norm,

denoted by || ||F .

Lemma 11.2.2 Let A be an m× n complex matrix with singular matrix

Σ =
(

σ 0
0 0

)
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with σ the diagonal matrix of singular values decreasing from upper left to lower
right. Then

(11.5) ||Σ||2F = ||A||2F .

Moreover, the following holds for the Frobenius norm. If U, V are unitary and of
the right size,

(11.6) ||UAV ||F = ||A||F .

Proof: From the definition, and letting U, V be unitary and of the right size,

||UAV ||2F ≡ tr (UAV V ∗A∗U∗) = tr (UAA∗U∗) = tr (AA∗U∗U) = tr (AA∗) = ||A||2F
Now consider 11.5. From what was just shown,

||A||2F = ||UΣV ∗||2F = ||Σ||2F .

This proves the lemma.2

Theorem 11.2.3 Let A be a complex m× n matrix of rank r. Then the matrix of
rank h or less which best approximates A in the Frobenius norm is the matrix

A′ = U

(
σ′ 0
0 0

)
V ∗

where σ′ is obtained by replacing σi with 0 for all i ≥ h + 1.

Proof. Let B be a matrix which has rank h or less. Then from Lemma 11.2.2

||A−B||2F = ||U∗ (A−B)V ||2F = ||U∗AV − U∗BV ||2F
=

∣∣∣∣
∣∣∣∣
(

σ 0
0 0

)
− U∗BV

∣∣∣∣
∣∣∣∣
2

F

where σ is the diagonal matrix described earlier consisting of the singular values of
A arranged in decreasing order from the upper left to lower right. Now U∗BV has
rank ≤ h. Since the singular values of A decrease from the upper left to the lower
right, it follows that for B to be as close as possible to A in the Frobenius norm,

U∗BV =
(

σ′ 0
0 0

)
,

where σ′ is obtained from σ by replacing σi with 0 for every i > h. (Recall that
the Frobenius norm involves taking the square root of the sum of the squares of the
absolute values of the entries of the matrix.) This implies B = A′ above. 2

The last part of the above argument is obvious if you look at a simple example.
Say

(
σ 0
0 0

)
=




3 0 0 0
0 2 0 0
0 0 0 0


 .

for example. Then what rank 1 matrix would be closest to this one in the Frobenius
norm? Obviously 


3 0 0 0
0 0 0 0
0 0 0 0


 .
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Example 11.2.4 Find to two decimal places the closest matrix B of rank 2 to

A =




4 6 1 4
2 1 2 3
3 1 2 2
1 4 0 2


 .

From bluebit we obtain the SVD

A = UΣV t,

where

U =




−.780 .255 −.298 −.488
−.345 −.560 .730 −.186
−.341 −.603 −.490 .529
−.396 .507 .373 .669


 ,

Σ =




10.578
3.567

1.143
0.255




=




σ1

σ2

σ3

σ4


 ,

V t =




−.494 −.657 −.203 −.532
−.394 .671 −.581 −.240
−.724 −.047 .160 .670
−.277 .342 .772 .459


 .

Thus

B = U




σ1

σ2

0
0


V t

=
(

10.578a1 3.567a2 0 0
)
V t

=




3.72 6.03 1.15 4.17
2.64 1.13 1.92 2.48
2.63 0.93 1.98 2.44
1.36 3.97 −0.20 1.80


 to two decimal places.

You can also use maple to find a singular value decomposition of an m × n
matrix. Say you want to find a singular value decomposition for the matrix

A =
(

1 2 3
4 5 6

)
.
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First open maple. Then select file followed by new followed by worksheet mode. If
you want to see things in the usual math notation, be sure you have selected math
on the top left corner of the worksheet. It doesn’t really matter but it will look
different if you don’t do this. On later versions of maple, this is the default anyway,
so you don’t have to do anything. Now you will have something which looks like >.

You type the following next to it: with(LinearAlgebra); A:=Matrix(
[

1 2 3
4 5 6

]
)

To get the matrix between those parentheses, just place the cursor there and click
on “Insert Matrix” on the left side of the screen. This will give a template and
you replace the symbols with numbers. Press return. This will place a blue copy
of the matrix in the middle of the screen. You have just defined the matrix A. On
the following line, after >, you type SingularValues(A,output=[′U ′,′ S′,′ V t′]) and
then press enter. It will give you the left unitary matrix followed by a list of the
singular values followed by the right unitary matrix such that A = UΣV where

Σ is the matrix
(

σ 0
0 0

)
for σ the diagonal matrix which consists of the singular

values listed in the middle of the above output. The little primes in the output
are obtained from pressing the key which has quotes on the top and a single small
vertical mark on the bottom.

If you just want the singular values, enter the matrix in the usual way. Then
right click on the matrix and select “eigenvalues, etc.” then select singular values.
If you want these to be in terms of decimals instead of complicated radicals, make
sure at least one entry in the matrix has a decimal point. For example, type 5.0
rather than 5.

11.3 The Moore Penrose Inverse

Consider the least squares problem

A∗Ax = A∗y.

Recall that A = UΣV ∗, and so A∗ = V ΣtU∗. Therefore, x is a least squares
solution if and only if

V ΣtU∗UΣV ∗x = V ΣtU∗y

Thus

V

(
σ2 0
0 0

)
V ∗x = V

(
σ 0
0 0

)
U∗y

which is the same as

(11.7)
(

σ2 0
0 0

)
V ∗x =

(
σ 0
0 0

)
U∗y.

It is very easy to spot one solution to the least squares solution,

x = V

(
σ−1 0
0 0

)
U∗y.

It turns out that this particular solution to the least squares problem has some very
nice properties and is so important that it is given a name A+y.
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Definition 11.3.1 Let A be an m × n matrix and let
(

σ 0
0 0

)
be the associated

singular matrix. Then the Moore Penrose inverse of A, denoted by A+ is defined
as

A+ ≡ V

(
σ−1 0
0 0

)
U∗.

Here

U∗AV =
(

σ 0
0 0

)

as above.

Thus A+y is a solution to the least squares problem to find x which minimizes
|Ax− y| . In fact, one can say more about this. In the following picture My denotes
the set of least squares solutions x such that A∗Ax = A∗y.

My

±I

x

A+(y)

ª

ker(A∗A)¾

Then A+ (y) is as given in the picture.

Proposition 11.3.2 A+y is the solution to the problem of minimizing |Ax− y|
for all x, which has smallest norm. Thus

∣∣AA+y − y
∣∣ ≤ |Ax− y| for all x

and if x1 satisfies |Ax1 − y| ≤ |Ax− y| for all x, then |A+y| ≤ |x1| .
Proof: Consider x satisfying A∗Ax =A∗y. Then as pointed out above,

(
σ2 0
0 0

)
V ∗x =

(
σ 0
0 0

)
U∗y

and it is desired to find the x satisfying this equation which has smallest norm.
This is equivalent to making |V ∗x| as small as possible because V ∗ is unitary and
thus preserves norms.

For z a vector, denote by (z)r the vector in Cn which consists of the first r
entries of z. Here σ is r × r. Then if x is a solution to 11.7,

(
σ2 (V ∗x)r

0

)
=

(
σ (U∗y)r

0

)
,
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and so (V ∗x)r = σ−1 (U∗y)r . Thus the first r entries of V ∗x are determined. In
order to make |V ∗x| as small as possible, the remaining n− r entries should equal
zero. Therefore,

V ∗x =
(

(V ∗x)r

0

)
=

(
σ−1 (U∗y)r

0

)

=
(

σ−1 0
0 0

)
U∗y,

and so

x = V

(
σ−1 0
0 0

)
U∗y ≡ A+y.

This proves the proposition.2
The four conditions of the following lemma are called the Penrose conditions.

Lemma 11.3.3 The matrix A+ satisfies the following conditions.

(11.8) AA+A = A, A+AA+ = A+, A+A and AA+ are Hermitian.

Proof: This is routine. Recall that

A = U

(
σ 0
0 0

)
V ∗

and

A+ = V

(
σ−1 0
0 0

)
U∗

so you just plug in and verify that it works.2
A much more interesting observation is that A+ is characterized as being the

unique matrix which satisfies 11.8, the Penrose conditions. This is the content of
the following Theorem.

Theorem 11.3.4 Let A be an m × n matrix. Then a matrix A0, is the Moore
Penrose inverse of A if and only if A0 satisfies

(11.9) AA0A = A, A0AA0 = A0, A0A and AA0 are Hermitian.

Proof: From the above lemma, the Moore Penrose inverse satisfies 11.9. Sup-
pose then that A0 satisfies 11.9. It is necessary to verify that A0 = A+. Recall that
from the singular value decomposition, there exist unitary matrices U and V such
that

U∗AV = Σ ≡
(

σ 0
0 0

)
, A = UΣV ∗.

Let

(11.10) V ∗A0U =
(

P Q
R S

)

where P is k × k, the same size as the diagonal matrix σ.
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Next use the first equation of 11.9 to write

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗ =

A︷ ︸︸ ︷
UΣV ∗.

Then multiplying both sides on the left by U∗ and on the right by V,

(
σ 0
0 0

)(
P Q
R S

)(
σ 0
0 0

)
=

(
σ 0
0 0

)
.

Now this requires

(11.11)
(

σPσ 0
0 0

)
=

(
σ 0
0 0

)
.

Therefore, P = σ−1. From the requirement that AA0 is Hermitian,

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗ = U

(
σ 0
0 0

)(
P Q
R S

)
U∗

must be Hermitian. Therefore, it is necessary that
(

σ 0
0 0

) (
P Q
R S

)
=

(
σP σQ
0 0

)

=
(

I σQ
0 0

)

is Hermitian. Then (
I σQ
0 0

)
=

(
I 0

Q∗σ 0

)
.

Thus Q∗σ = 0, and so, multiplying both sides on the right by σ−1, it follows that
Q∗ = 0 which implies Q = 0.

From the requirement that A0A is Hermitian, it is necessary that

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗ = V

(
Pσ 0
Rσ 0

)
V ∗

= V

(
I 0

Rσ 0

)
V ∗

is Hermitian. Therefore, also (
I 0

Rσ 0

)

is Hermitian. Thus R = 0 because this equals
(

I 0
Rσ 0

)∗
=

(
I σ∗R∗

0 0

)
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which requires Rσ = 0. Now multiply on the right by σ−1 to find that R = 0.
Use 11.10 and the second equation of 11.9 to write

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗ =

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗.

which implies (
P Q
R S

)(
σ 0
0 0

) (
P Q
R S

)
=

(
P Q
R S

)
.

This yields from the above in which it was shown that R, Q are both 0,
(

σ−1 0
0 S

)(
σ 0
0 0

)(
σ−1 0
0 S

)
=

(
σ−1 0
0 0

)

=
(

σ−1 0
0 S

)
.

Therefore, S = 0 also, and so

V ∗A0U ≡
(

P Q
R S

)
=

(
σ−1 0
0 0

)

which says

A0 = V

(
σ−1 0
0 0

)
U∗ ≡ A+.

This proves the theorem.
The theorem is significant because there is no mention of eigenvalues or eigen-

vectors in the characterization of the Moore Penrose inverse given in 11.9. It also
shows immediately that the Moore Penrose inverse is a generalization of the usual
inverse.

In the following exercises, you might want to use some computer algebra system
to save yourself trouble.

11.4 Exercises

1. Find a singular value decomposition for the matrix



1 2 3
0 −3 2
1 2 5


 .

2. Find the rank 2 matrix which is closest to


1 2 3
4 −3 2
1 6 7


 .

in the Frobenius norm. You should get something like



. 955 078 958 1. 964 583 04 3. 037 036 98
4. 006 197 17 −2. 995 113 98 1. 994 890 49
1. 017 760 61 6. 014 002 94 6. 985 356 54


 .
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3. Show that if A is an n× n matrix which has an inverse then A+ = A−1.

4. Using the singular value decomposition, show that, for any square matrix A,
it follows that A∗A is unitarily similar to AA∗.

5. Let A be an m× n matrix. Show

||A||2F ≡ (A,A)F =
∑

j

σ2
j

where the σj are the singular values of A.

6. Suppose {v1, · · · ,vn} and {w1, · · · ,wn} are two orthonormal bases for Fn

and suppose Q is an n × n matrix satisfying Qvi = wi. Then show Q is
unitary. If |v| = 1, show that there is a unitary transformation which maps
v to e1.

7. Let A be a Hermitian matrix, so A = A∗ and suppose that all eigenvalues of
A are larger than δ2. Show that

〈Av,v〉 ≥ δ2 |v|2

where here, the inner product is

〈v,u〉 ≡
n∑

j=1

vjuj .

8. The discrete Fourier transform maps Cn → Cn as follows.

F (x) = z where zk =
1√
n

n−1∑

j=0

e−i 2π
n jkxj .

Show that F−1 exists and is given by the formula

F−1 (z) = x where xj =
1√
n

n−1∑

j=0

ei 2π
n jkzk

Here is one way to approach this problem. Note z = Ux where

U =
1√
n




e−i 2π
n 0·0 e−i 2π

n 1·0 e−i 2π
n 2·0 · · · e−i 2π

n (n−1)·0

e−i 2π
n 0·1 e−i 2π

n 1·1 e−i 2π
n 2·1 · · · e−i 2π

n (n−1)·1

e−i 2π
n 0·2 e−i 2π

n 1·2 e−i 2π
n 2·2 · · · e−i 2π

n (n−1)·2
...

...
...

...
e−i 2π

n 0·(n−1) e−i 2π
n 1·(n−1) e−i 2π

n 2·(n−1) · · · e−i 2π
n (n−1)·(n−1)




Now argue that U is unitary and use this to establish the result. To show this
verify each row has length 1 and the dot product of two different rows gives
0. Now Ukj = e−i 2π

n jk, and so (U∗)kj = ei 2π
n jk.
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9. Let A be a complex m×n matrix. Using the description of the Moore Penrose
inverse in terms of the singular value decomposition, show that

lim
δ→0+

(A∗A + δI)−1
A∗ = A+

where the convergence happens in the Frobenius norm. Also verify, using the
singular value decomposition, that the inverse exists in the above formula.
Give an estimate in terms of δ and the singular values of A which will describe
how close the approximation on the left is to A+.

10. Here is a matrix: 


1 2 3
4 0 6
7 8 9


 .

This matrix is invertible, and its inverse is


− 4

5
1
10

1
5

1
10 − 1

5
1
10

8
15

1
10 − 2

15


 .

Thus from Problem 3 above, the Moore Penrose inverse is just the ordinary
inverse. Use the formula of Problem 9 to obtain an approximation to the
Moore Penrose inverse, hence the usual inverse, by assigning δ = .001.

11. Find an approximation to the Moore Penrose inverse for the matrix



1 2 3 2
1 0 3 2
3 2 1 −4




by using δ equal to various small numbers in Problem 9.

12. Find an approximation to the Moore Penrose inverse for the matrix



1 1 3
2 0 2
1 1 3
2 2 −4




by using δ equal to various small numbers in Problem 9. Use to obtain an
approximation to the best least squares solution to the system




1 1 3
2 0 2
1 1 3
2 0 2







x
y
z


 =




1
2
3
4




Then find all least squares solutions and obtain the one with smallest norm.
Compare with what you obtained using the approximate Moore Penrose in-
verse.
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Appendix

A.1 Using Maple

In this Appendix we provide simple instructions in using Maple for the calculations
in this book.

Open Maple. From the menu on the left-hand side, select the right-pointing
arrow next to ‘matrix’. It then points vertically down, and you can choose ‘number
of rows and columns’. Let us choose 3× 3.

Put the cursor on the screen; you can now ‘Insert Matrix’ there. It appears as




m1,1 mi,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3


 .

To insert the top left entry 2, put the cursor there and type ‘2’. For remaining
entries, type ‘tab’ between each one. (Erasing entries and deleting larger areas is
similar to word processing.)

To multiply a matrix A by another matrix B, place B immediately to the right
of A, put the cursor to the right of B, and type ‘enter’. Forming A + B is similar,
with a + sign between A and B. To multiply A by 15, place ‘∗15’ to the right of A.

Let us say

A =




2 0 0
3 4 0
3 6 9


 .

Right click on A and choose ‘eigenvalues etc.’ Among the choices is ‘eigenvalues’,
displayed as 


2
4
9


 .

Selecting ‘eigenvalues’ gives a matrix with these eigenvectors as columns in corre-
sponding order, 


7/6 0 0
−7/4 0 −5/6

1 1 1


 .
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Note that working like this with



2.7 0 0
3 4 0
3 6 9




produces slightly incorrect eigenvalues such as 8.99 . . .. To get an exact answer, use
27/10 instead of 2.7.

Right click on A; select ‘Standard operations’, with the useful options ‘determi-
nant’ ‘inverse’ and ‘transpose’. Select instead ‘Solvers and forms’. ‘Jordan form’ is
one option, so that if

A = PEP−1

with E the Jordan form, E is displayed as ‘Jordan form’ and P as ‘transformation
matrix’. If E is diagonal, then we have the diagonalization of A; if not, A is
not diagonalizable. ‘Solvers and forms’ also offers ‘LU decomposition’ leading in
particular to ‘RREF ’ (row reduced echelon form).

Choose ‘RREF ’ for

C =




1 2 3
1 2 3
2 3 4


 .

Four matrices are displayed, the last being



1 0 −1
0 1 2
0 0 0


 ,

the row reduced form of C.
Another option under ‘Solvers and forms’ is ‘QR factorization’. The use of this

to perform the Gram-Schmidt process (as well as factoring A as QR) is described
in Chapter 6.

For singular value decomposition, we use the ‘bluebit’ matrix calculator; see
Chapter 11 for details.

Another topic touched on in the book is factorizing a polynomial, say x3 − 1
Enter

solve (x∧3− 1 = 0, x)

and type ‘Enter’. We obtain

1,−1/2 + 1/2I
√

3,−1/2− I
√

3.

(Zeros are displayed with multiplicity, by the way.) Here I is the Maple version of
i.

To plot a function, for example

f(x) = x− sinx on [−2, 7],

the command is
plot (x− sin(x), x = −2 . . . 7).

Maple is much more powerful than this sketch reveals; see e.g. the book of Heck
(2003).
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A.2 Further Reading

To carry your knowledge of linear algebra further, a good starting point is Horn
and Johnson (1990). If you intend to carry out genuine large scale applications, you
should have Golub and Van Loan (1983) to hand.

To appreciate the vast scope of applications of linear algebra, and for detailed
references to results across a broad spectrum, you should consult the multi-author
‘Handbook of Linear Algebra’, edited by Leslie Hogben.

You will find references to areas that go well beyond linear algebra, but are nat-
urally suggested by studying it, scattered through this book. Details are collected
below under ‘References’.

If you would like to trace the historical development of linear algebra, visit the
superb MacTutor website:

www-groups.dcs.st-and.ac.uk/ history/

Do not be convinced by this book that matrices in applications are small (m×n
with m, n at most 6). As an antidote, read about the application of linear algebra
to Google in K. Bryan and T. Leise, SIAM review vol. 48, pp. 569-581, entitled
‘The $25,000,000,000 eigenvalue problem: the linear algebra behind Google’. The
relevant n × n matrix had n about 8 × 109 at the time the article was written in
2005 (it appeared in 2006).
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Abel’s formula, 185
adjoint, 147
adjugate, 176
Archimedian, 21
augmented matrix, 24

basis, 94
bijective, 2
block matrix, 179
block multiplication, 178
bluebit, 271

Cauchy-Schwarz inequality, 136
Cayley-Hamilton theorem, 188, 210,

213, 227, 265
change of basis, 161
characteristic polynomial, 187, 189
Cholesky factorization, 266
codomain, 79
cofactor, 175
Col A, 118
companion matrix, 204
complex conjugate, 12
complex inner product space, 135
complex numbers, 11
components of a matrix, 28
conformable, 31
congruence classes, 14
coordinate vector, 98
Cramer’s rule, 177
cross product, 3

defective
matrix, 196

degree, 11, 145, 174
derivative, 184
diagonal, 261
diagonal matrix, 167
diagonalizable, 167
diagonalized, 192

diagonally dominant, 202
diagonally dominat, 202
differentiable, 184
differential mapping, 110
direct sum, 130
discard process, 94
discreet dynamical system, 197
discrete Fourier transform, 282
distance, 4, 136, 273
Dolittle’s method, 67
domain, 79
dot product, 7, 14
dyadics, 199
dynamical system, 197

eigenspace, 191
eigenvalue, 132, 190
eigenvector, 132, 190
elementary matrices, 43
ellipsoid, 260
entries of a matrix, 28
equivalence relation, 71, 133
Euclidean algorithm, 17
even permutation, 168
expansion by column, 175
expansion by row, 175
exponential growth, 238

Fermat’s little theorem, 22
Fibonacci sequence, 99
field

extension, 106
fields, 13
finite-dimensional, 93
first order systems

existence and uniqueness, 203
Fourier series, 145
Fredholm alternative, 160
free variable, 26
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Gauss Jordan method for inverses, 59
generalized eigenspace, 132
Gerschgorin’s theorem, 202
Gramian matrix, 159
greatest common divisor, 21

polynomials, 22, 106
Gronwall’s inequality, 234

Hermitian, 158
Hermitian matrix, 257
homogeneous coordinates, 117
Householder reflection, 117

identity matrix, 35
image, 79
image of a linear transformation, 83
inconsistent, 26
indefinite, 261
injective, 2
inner product, 135
inner product space, 135
inverse, 48
invertible, 48

Jordan block, 205
Jordan form, 286

kernel, 120
linear transformation, 83

leading entry, 52
least squares, 149
least-square solution, 147
least-squares line, 150
left inverse, 62
length, 3
linear combination, 49
linear mapping, 83, 109
linear transformation, 83
linearity, 109
linearly dependent, 86
linearly independent, 86
LU decomposition, 286

MacTutor, 287
Markov chains, 215
Markov matrix, 197, 215

steady state, 215
matrix, 27

defective, 245
orthogonal, 116

matrix for a given basis, 163
matrix norm

Frobenius, 273
matrix of a linear mapping, 110
matrix of a quadratic form, 260
mean square distance, 136
metric tensor, 159
minimal polynomial, 131, 187
minor, 175
monomial, 174
Moore Penrose inverse, 151, 157, 278
multiplicity, 124
multipliers, 66

negative definite, 261
nilpotent, 205
norm

Frobenius, 273
normal, 6, 263
normalizing, 141
null space, 120
nullity, 64

odd permutation, 168
one to one, 2
onto, 2
orthogonal, 137
orthogonal basis, 138
orthogonal mapping, 248
orthogonal matrix, 116, 247

proper, 254
orthogonal set, 137
orthogonal vectors, 137
orthonormal, 137
orthonormal basis, 138, 141
orthonormal polynomials, 154
orthonormal set, 137

parity, 168
partial sum, 145
PDEs, iii
Penrose conditions, 279
permutation, 167
permutation matrices, 43
pivot column, 52, 54
plane, 6
plot x− sin(x), x = −2 . . . 7), 286
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polynomial, 174
positive definite, 261
probability vector, 220
projection, 110
projection map

subspace, 155
projection mapping, 142

QR algorithm, 255
QR factorization, 152

thin, 201, 250
quadratic form, 260

rank
matrix, 64

rank of a matrix, 118
rank of linear mapping, 118
real inner product space, 135
reflection, 248, 250
regular

Markov, 215
regular Sturm Liouville problem, 154
residue classes, 14
restriction, 123
Riesz representation theorem, 160
right inverse, 59, 62
right polar decomposition, 265
rotation, 109, 249

about a given unit vector, 117
about a vector, 166

row equivalent, 54
row operations, 25, 43
row reduced echelon form, 51, 52
row reduction, 87
row space, 119
RREF, 286

saddle point, 260
scalar, 2
scalars, 27, 77
Schur’s theorem, 203
sets, 1
similar matrices, 167
singular value decomposition, 268
singular values, 268
skew symmetric, 37, 40
solve (x∧3− 1 = 0, x), 286
solvers and forms, 286
span, 82

spanning set, 85
splits, 204
square root of a matrix, 264

uniqueness, 264
standard basis, 94
stationary point, 260
steady state, 215
steady state vector, 221
stochastic

matrix, 215
subspace, 79
surjective, 2
SVD, 268
symmetric, 37, 40
symmetric matrix, 257

tensor product, 182
thin QR factorization, 201
trace, 184, 273

sum of eigenvalues, 203
transformation matrix, 286
transition matrix

steady state, 215
transposition, 168
triangle inequality, 136
trivial solution, 86

unitary linear mapping, 248
unitary matrix, 247
upper triangular matrix, 171

Vandermonde determinant, 174, 186
variation of constants formula, 237
vector space, 77
vectors, 2, 77

weight function, 136
Wilson’s theorem, 22
Wronskian, 185, 202
Wronskian determinant, 177


