
Math 313 Final KEY 

Fall 2012 

sections 008 and 011 

Instructor: Scott Glasgow 

 

Serious Instructions: Write your name very clearly on this exam. In 
this booklet, write your mathematics clearly, legibly, in big fonts, and, 
most important, “have a point”, i.e. make your work logically and even 
pedagogically acceptable. (Other human beings not already 
understanding 313 should be able to learn from your exam.) To avoid 
excessive erasing, first put your ideas together on scratch paper, then 
commit the logically acceptable fraction of your scratchings to this 
exam booklet. More is not necessarily better: say what you mean and 
mean what you say.  

 
Instructions for those who want their psychology to be optimal for an 
assessment1:  a) you should communicate in complete sentences, 2) 
you should write on your own paper and d) you should be neat as 
possible.   
 
NOTE: Almost none of the problems below are worth 25 points. That’s 
funny. 

  

  

                                            
1 In case of an overview of this document by an administrator, my students have learned of research 
indicating that humorous instruction may increase capacity on exams. This claim is similar to the 
following: “Three grams of soluble fiber daily from whole grain oat foods, like Honey Nut Cheerios, in a 
diet low in saturated fat and cholesterol, may reduce the risk of heart disease.” So there.   



 

1. Put the following matrix in reduced row-echelon form via elementary row 
operations: 

 

1 1 1 1

2 0 2 0

6 2 3 4

 
 
 
  

 (1) 

20pts 

 

Solution  

 

The row reduction might proceed as follows: 

 

2 2 1 2/ 2 3/ 3

3 6 1 3 4 2

1 3 1 2

1 1 1 1 1 1 1 1 1 1 1 1

2 0 2 0 0 2 0 2 0 1 0 1

6 2 3 4 0 8 3 2 0 0 3 6

1 1 1 1 1 1 0 3 1 0 0 2

0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 2 0 0 1 2 0 0 1 2

R R R R

R R R R

R R R R

  
 

 

     
           
              

     
     
     
            

 

  

 (2) 

However the row reduction proceeds, the row echelon form is unique—the last matrix 
indicated in (2) is the answer.  

 

2. Give an expression for the general solution to the system of equations 

 

1 1 1 1 0

2 2 0

6 2 3 .

1

4 0

w x y z

w y

x

z

y z

x

w

   
 

   
   (3) 

For the final 10 points of this problem, insert your expression for the solution into 
(3) to make sure that it works. That is, check your answer by plugging it back into 
(3). 

 

 10+10pts 



 

Solution 

 

The augmented matrix, less the augmentation, is the matrix in (1). Thus, according to 
the last matrix in (2), (3) is equivalent to  

 

1 1 1

2 2

6 2 3

2 0

0

2 0,

x y

w y

w x

w z

x z

y z

 
 

 

 
 
 

 (4) 

whose general solution is clearly  

 0

2 2

1
: .

2 2

1

w t

x t
t t

y t

z t

      
             
     
     
     

x  (5) 

Since (3) is homogeneous, in order to check that (5) is an expression of at least some of 
its solutions, it is enough to there plug in 

 

0

0
0

0

0

2

1
: : .

2

1

w

x

y

z

   
      
  
  

   

x  (6) 

We find 



 

   
       

0

0
0

0

0

0 0 0 0

0 0

0 0 0 0

1 1 1 1 1 1 1 1

2 0 2 0 2 0 2 0

6 2 3 4 6 2 3 4

2 2

6 2 3 4

2 1 2 1

2 2 2 2

6 2 2 1 3 2 4 1

3 3 0 0

4 4 0

12 2 6 4 10 10

w

x

y

z

w x y z

w y

w x y z

 
     
          
         

 
   

   
    
    
    
      

    
          
           

x

0 .

0

 
 
 
  

 (7) 

It works. This does not of course check that there aren’t more solutions. 

 

3. Give an expression for the general solution to the system of equations 

 

1

2 2 0

6 2 3 4.

x y z

x z

x y z

  
 

  
 (8) 

For the final 10 points of this problem, insert your expression for the solution into 
(8) to make sure that it works. That is, check your answer by plugging it back 
into(8). 

 

10+10pts 

 

Solution 

 

The augmented matrix for (8) is the matrix in (1), hence by the last matrix in (2) the 
unique solution of (8) is 



 

2

1 .

2

x

y

z

   
       
      

x  (9) 

We check that 

 

 
   
     

2 1 2 3 2 1

2 2 2 2 2 2 4 4 0

6 2 3 6 2 2 1 3 2 12 2 6 10 6 4.

x y z

x z

x y z

        

      

           

 (10) 

It works. 

 

4. Let A be a square matrix, and consider the linear system 
 .A x b  (11) 

The usual theorem is that if A is invertible—which means ‘left and right 
invertible’—then (11) has exactly one solution, namely  

 1Ax b . (12) 

a) Imagine a universe in which A  has a left inverse B , but is not guaranteed to have 
a right one. So we have 

 BA I  (13) 

but we are not at all guaranteed that there is a matrix C (be it B or any other 
matrix) such that AC I . Now prove one of the following, whichever one is 
possible: (It is not possible to prove both with only (13).) 

i) Prove that (11) has at least one solution x , namely Bx b . 
ii) Prove that (11) has at most one solution x , namely Bx b . 

 
b) Imagine a universe in which A has a right inverse C , but is not guaranteed to 

have a left one. So we have 
 AC I  (14) 

but we are not at all guaranteed that there is a matrix B (be it C or any other 
matrix) such that BA I . Now prove one of the following, whichever one is 
possible: (It is not possible to prove both with only (14).) 

i) Prove that (11) has at least one solution x , namely Cx b . 
ii) Prove that (11) hat at most one solution x , namely .Cx b  

 



20 points 

 

Solution 

a) If the system has a solution x , then, for any such x ,we may write 
 A x b  (15) 

(without implicitly lying), and then, by left application of B to (15), as well as by the 
associative property of matrix multiplication, obtain that 

     ,B B A BA I   b x x x x  (16) 

i.e., (15) and (11) imply  

 .Bx b  (17) 

(In (16) we also used that B is a left inverse of A , i.e., we used (13), as well as the fact 
that the so-called identity matrix I is in fact a “multiplicative identity”.) Here then we 
have just showed that if (15)/(11) has a solution, it’s got to be Bx b . Thus we have 
showed that (15)/(11) has at most one solution, namely Bx b . This is the second 
option ii) above. We have not at all proved that (17) actually solves (15). The latter is 
impossible to show without knowing B is a right inverse of A . 

 

b) With  right inverse C satisfying (14) we easily show that (15)/(11) has at least one 
solution, namely Cx b : we simply note that with Cx b we certainly get 

     .A A C AC I   x b b b b  (18) 

This is the first option i) above. This does not at all prove that there aren’t other 
solutions. The latter is impossible to show without knowing that C is a left inverse of A . 

 

5. Suppose  1 2 3: , ,S  v v v  is a basis for a vector space V . Show that  

    1 2 3 1 2 3 1 2 3 1 2 3: , , : 2 3 , 4 5 6 ,7 8 10S           v v v v v v v v v v v v  (19) 

is also a basis for V . Tools: After sufficient explanation of any possible relevance, 
you may use either that the reduced row-echelon form of  

 



 

1 4 7

: 2 5 8

3 6 10

A

 
   
  

 (20) 

is the identity  

 

1 0 0

0 1 0 ,

0 0 1

I

 
   
  

 (21) 

or that the reduced row-echelon form of 

 

1 2 3

: 4 5 6

7 8 10

B

 
   
  

 (22) 

is the identity (as in (21)). One of these facts is directly relevant, the other 
irrelevant (or only relevant very indirectly).  You will lose points for citing the not-
directly-relevant fact.  

 

20pts 

 

Solution 

Since S is a basis for V , and since  1 2 3: , , 3S  v v v 2, V is 3 dimensional. S   is a set 

of three vectors in V (using  1 2 3: , ,S  v v v spans V ), so  S  is a basis provided it is 

linearly independent or spans V , the former easier to prove: Consider whether the 
equation 

 1 1 2 2 3 3k k k          v v v z  (23) 

has only the trivial solution    1 2 3, , 0,0,0k k k    (which solution it certainly has). From 

(19) we see (23) is equivalent to both 

      1 1 2 3 2 1 2 3 3 1 2 32 3 4 5 6 7 8 10 ,k k k             v v v v v v v v v z  (24) 

                                            
2 Since the v ’s are independent, there are no copies in the set, and the cardinality is actually 3, not less. 



 

and then, via vector space algebra (made possible by the vector space axioms), 

      1 2 3 1 1 2 3 2 1 2 3 34 7 2 5 8 3 6 10 ,k k k k k k k k k                   v v v z  (25) 

which is 

 1 1 2 2 3 3k k k     v v v z  (26) 

where 

 1 1 2 3 2 1 2 3 3 1 2 3: 4 7 ,            : 2 5 8 ,             : 3 6 10 .k k k k k k k k k k k k                  (27) 

But since  1 2 3: , ,S  v v v is a basis, (26) implies (and is in fact equivalent to) 

   1 2 3, , 0,0,0k k k  , which, with (27) is the system of equations 

 

1 2 3

1 2 3

1 2 3

1

2

3

4 7 0,

2 5 8 0,

3 6 10 0

1 4 7 0

2 5 8 0

3 6 10 0

k k k

k k k

k k k

k

k

k

    

    

    



 
    
         
       

 

 (28) 

which, by(20)/(21)—NOT (22)/(21)—does indeed have exactly the trivial solution.   

 

6. Let  1, ,W rS  w w and  1, ,r nW
S   w w be bases for nonzero subspace W

and nonzero orthogonal compliment subspace W  of finite dimensional 
(dimension n ) inner product space V . So what we’ve effectively said is that 

 
   
   

1

1

, , ,

, , ,

W r

r nW

W span S span V

W span S span V




  

  

w w

w w




 (29) 

and that  



 1 1 1

1 1 1

, , 0,

, , 0,
r r r

r r n n r n

k k k k

k k k k  

    
    

w w z

w w z

 
 

 (30) 

and finally that 

    , 0,      1, , , 1, , .j k j r k r n   w w    (31) 

((29) is the “spanning part” of basis, (30) is the “independence part” of basis, and 

(31) is the “orthogonal compliment” relationship between W and W  .)  

a) Prove first that 

  .W W
S S    (32) 

(  denotes the empty set. So (32) just says these two sets have nothing in 

common.) Hint: Do a proof by contradiction. Suppose they did have even just 
one object w in common. Use (31), and a relevant property of the innerproduct, 

to deduce that w would be a vector that neither BASIS WS nor BASIS 
W

S  could 

possibly possess!! 

 

b) Use (32) to prove second that 

  1 1, , , , , .W r r nW
S S n  w w w w    (33) 

Recall that S denotes the cardinality of set S , i.e., the number of distinct 

objects in the set. 

(Why is (32) important for (33)? Because, letting , , ,a b b c denote distinct objects, 

we always have 

 

          , , , , , , , 3 4 , , , .a b b c a b b c a b c a b b c      (34) 

) 

c) Use (33) to prove that IF W W
S S  is linearly independent, then it’s a basis for 

V . (Nothing much to do here but state the theorem.) 
 
 



d) Prove that W W
S S  IS linearly independent (hence a basis for V ). Hint:  You 

may use the fact that  W W   z  (which, FYI —but otherwise not really 

important now—follows from (31) rather directly, just like as (32) does). If you 

use the hint that  W W   z , you should also consider rewriting the linear-

independence-checking equation 

 1 1 1 1r r r r n nk k k k      w w w w z   (35) 

as  

    1 1 1 1 .r r r r n nk k k k       w w w w   (36) 

      Ultimately then you’ll also want to use both parts of (30).  

30pts 

 

Solution 

For a) we just note that if they had even just one vector w in common, then from (31) 
we’d get 

 , 0  w w w z  (37) 

and we’d have bases containing the additive identity, which is impossible since any set 
containing the additive identity is linearly dependent, hence, by definition, not a basis! 

For b) , we note that since they’ve nothing in common the union doesn’t “collapse” at all 
(such as it did on the left side of (34)), hence the cardinality is just the total number of 
distinctly-labeled objects; i.e., it’s n .  

For c), we just state the theorem that since we’ve got a set of n (distinct) vectors in an n
-dimensional space V , it’s a basis provided it’s linearly independent. 

For d) we could do as directed by the hint, get (36), then use that  W W   z implies 

that both (hence either) side of (36) is the additive identity z : by closure under linear 

combination of both  WW S  and  W
W S 

  , we get both sides of (36) are in both W

and W  , hence by  W W   z , both sides are z .But then we get both equations and 

implications in (30), giving all the k ’s in (35) needed to be 0 . By definition then, that 



means that the set  1 1, , , , ,r r nw w w w  is linearly independent (hence, with the other 

facts, a basis for V ).  

 

7. Let  1: , ,W mS  w w be a basis for a (obviously nonzero) subspace W of finite-

dimensional innerproduct space V . (Hence  1: , ,W mS  w w is linearly 

independent, and spans W .) Further, assume W V , even while we certainly 
have W V . That is, assume that there’s at least one element Vv yet Wv . 

By theorem, since Wv we have then that  1: , , ,W mS   w w v  is linearly 

independent hence a basis for its span 

  1
space

: ( )

: , , , .
W

m

W span S

span V

 

 w w v  (38) 

Now we can always choose this v  (that’s in V but not in W ) orthogonal to every 

element in  1: , ,W mS  w w , this even if  1: , ,W mS  w w is not itself an 

orthogonal set. Let’s prove this together. (For your confidence, this is a much-
simplified version of  problem 7 from midterm III. And the reason this theorem is 
important is to show that the beginning assumption in the previous problem is a 

good one, namely that we always have dim dim dimW W V  .) 

Well, if v  (which is not in W ) is not “already” orthogonal to every element in 

 1: , ,W mS  w w , then attempt to make it so without making it in W  by 

subtracting from it an appropriate linear combination of the elements of the basis 

 1: , ,W mS  w w for W : replace v in  1: , , ,W mS   w w v by 

  1 1: ,m mc c    v v w w  (39) 

where (it’s not too hard to show) demanding the c ’s satisfy 

 1 1, , , ,     1, ,i i m m ic c i m   w w w w w v   (40) 

will make v orthogonal to every element of  1: , ,W mS  w w as required. And 

note from (39) that any m -tuple  1, , m
mc c   satisfying (40) will not make 

W v simply because  1, , mW span v w w . Finally note also then from (39) 

that we certainly get 



    1 1, , , , , , .m mspan span w w v w w v   (41) 

So all we need to show is that (40) has a solution  1, , m
mc c   . In the process 

we’ll also show that it has only one solution. To that end note that (40) is just a 
linear system of equations  

 A x b  (42) 

 with initially unknown column vector x given by 

 
1

m

c

c

 
   
  

x   (43) 

and known right-hand side 

 
1,

,m

 
   
  

w v

b

w v

  (44) 

and square matrix 

 
1 1 1

1

, ,

.

, ,

m

m m m

A

 
   
  

w w w w

w w w w





 (45) 

So (40) will certainly have one (and only one) solution if A in (45) is invertible. 
Well, from equivalent statements (which, unfortunately, depend on row reduction, 
which dependence I don’t like—for reasons you should know by now), we have 
A is invertible if the homogeneous equation 

 A x 0  (46) 

has only the trivial solution. Translating back to the original notation we find that 

(40) will have one (and only one) solution  1, , m
mc c   provided 

 1 1, , 0,     1, ,i i m mc c i m   w w w w   (47) 

has only the trivial solution 

    1, , 0, ,0 .mc c    (48) 



Ok, well, let’s think about whether (47)has only a trivial solution. To that end 
rewrite (47) as 

 1 1, 0,     1, ,i m mc c i m   w w w   (49) 

which is possible by linearity of the inner product. Now note that (49) implies that 

 

1 1 1 1 1 1
1

1 1
1

1 1

, ,

,

0 0 0,

m

m m m m i i m m
i

m

i i m m
i

m m

i
i i

c c c c c c c

c c c

c





 

      

  

  





 

w w w w w w w

w w w

  

  (50) 

i.e., (49) (hence (47)) implies that 

 1 1 1 1, 0.m m m mc c c c    w w w w   (51) 

Well, I’m thinking you can take it from here: use the given assumptions to prove 
that (51) implies that 1 0mc c   . 

20pts 

 

Solution 

By nondegeneracy of the innerproduct, (51) implies that 

 1 1 ,m mc c  w w z  (52) 

and by linear independence of  1: , ,W mS  w w  we get (52) implies 1 0.mc c    

 

8. In this problem, assume b a .  

Find the characteristic polynomial ( )AP  of  

 
1

.
0

a
A

b

 
  
 

 (53) 



Now find the eigenvalues  of A . Then find the eiqenspaces of A . (“Finding” a 
vector space ALWAYS means writing it as the span of a basis.) Now write 

 1A P P   (54) 

for some diagonal matrix  and some invertible matrix P . Now find a formula for 
all four entries of ( )f A , where f is (the appropriate extension of) any sufficiently 

well-behaved function of a real variable.  

Partial hint: your answer for ( )f A should imply that for every positive integer n , 

 .

0

n n
n

n

n

b a
a

A b a
b

 
   
  

 (55) 
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Solution 

By definition 

 

 

  

1 0 1
( ) : det det

0 1 0

1
det .

0

A

a
P I A

b

a
a b

b

  


 



    
       

    
  

     

 (56) 

By theorem  is an eigenvalue of A iff ( ) 0AP   , so from (56) the eigenvalues of A are 

1 a  and 2 b  .  

By theorem we have 



 

 

 

1 0 1
( )

0 1 0

1 0 1

0 0

0 1 0 1 1
,

0 1 0 0 0

1 0 1
( )

0 1 0

1

0

A

A

a
E a Nul aI A Nul a

b

a a
Nul Nul

a b a b

Nul Nul span

a
E b Nul bI A Nul b

b

b a b a
Nul Nul

b b

    
       

    
     

        
      

        
      

    
       

    
   

   

1

0 0

1
.span

b a

 
 
 

  
     

 (57) 

Since the eigenvalues are distinct, by theorem we can take 

 
0 1 1 1 1

, ,
0 0 0

a
P

b b a b a

    
            

 (58) 

and find then that 

 1 1 11 1
.

0 1 0 1det

b a b a
P

P b a
       
       

 (59) 

So we have 

 11 1 1 0 11
.

0 0 0 0 1

a a b a
A P P

b b a b b a
         

                  
 (60) 

(And we can check that 

 

 
 

 

1 1 0 1 11 1
00 0 0 1 0 1

1
0

1
.

0

a ba b a b a

b b ab a b b a b a

a b a a b

b b ab a

a
A

b

           
                   

   
    
 

  
 

 (61)) 

By theorem we have 



 1 1( ) ( ) ,A P P f A Pf P       (62) 

and moreover ( )f  is just the diagonal matrix arising from f applied to the diagonal 

entries of when   is diagonal. So in the present case we get 

  
 

 

11
( ) ( ) ( )

0

1 1 ( ) 0 11

0 0 ( ) 0 1

( ) ( ) 11
0 ( ) 0 1

( ) ( ) ( )1
0 ( )

( ) ( )
( )

.
0 ( )

a
f f A Pf P

b

f a b a

b a f b b a

f a f b b a

f b b a b a

f a b a f b f a

f b b ab a

f b f a
f a

b a
f b

 
   

 
      

            
    

        
  

    
 

   
 

 (63) 

 

9. The Singular Value Decomposition theorem says we can write every matrix 
mxnA as 

 1 1 1
T T

k k kA    u v u v  (64) 

where ( )k rank A ( ,m n ), 1, , 0k   ,  ( ) 1: , , m
Col A kS  u u  is an 

orthonormal basis (of column vectors) for the column space of A , and 

 ( ) 1: , , n
Row A kS  v v  is an orthonormal basis (of column vectors) for the row 

space of A —giving  1 , ,T T n
k v v  is an orthonormal basis of row vectors for 

the row space of A . (If (64) holds with 1, , 0k   , and  1, , n
k v v 

orthonormal then 



 

 
  
 

    
 

 

1 1 1

1 1 1

1 1 1

1 1 1

1 ( )

( )

, ,

: , , :  .

n

T T n
k k k

T T n
k k k

n
k k k

k k k

k Col A

Col A A

c c c c

span span S

 

 

 

 

   

   

     

   

 

x x

u v u v x x

u v x u v x x

v x u v x u x

u u

u u



 

 

 

  



 (65) 

And with  1, , m
k u u  orthonormal then  1, , ku u is linearly independent and, 

so, a basis for the column space of A . In (65) we used that choosing 

1 1 1/ / n
k k kc c    x v v   gives 

 / ,     1, ,j j jc j k  v x   (66) 

and then 

 
   1 1 1 1 1 1 1

1 1

/ /

.
k k k k k k k

k k

c c

c c

           

  

v x u v x u u u

u u

 


 (67) 

A similar argument holds to show that orthonormal set  1, , n
k v v   will be a 

basis for the row space of A  given (64), etc.) 

Note that (64) immediately implies that 

 1 1 1 ,T T T
k k kA    v u v u  (68) 

 whence with  1, , ku u orthonormal we get 

  



 

  
   

 
 

    

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1

2
1 1 1 1 1 1 1 1

1

T T T T T
k k k k k k

T T T T T T
k k k k k k k k k

T T T T
k k k

T T T T
k k k k k k k k k

T T T T
k k k

T
k k k

A A    

     

   

   

  

 

    

      

   

  

    

v u v u u v u v

v u u v u v v u u v u v

v u u v v u u v

v u u v v u u v

v u u v v u u v

v u u

 

  

 



 

    
    
    
    
    

2
1 1

2
1 1 1 1 1 1 1 1

2
1 1 1

2
1 1 1 1 1

2
1 1

2 2
1 1 1

1 0

0 1

,

T T T
k k k k k

T T
k k k

T T
k k k k k k k k

T T
k k

T T
k k k k k

T T
k k k



  

  

  

  

 

 

      

   

    

 

  

v v u u v

v u u v v u u v

v u u v v u u v

v v v v

v v v v

v v v v



 



 





 (69) 

i.e., we get 

 2 2
1 1 1

T T T
k k kA A    v v v v  (70) 

(from which it’s not too hard to show that  1, , n
k v v  is just normalized 

eigenvectors of TA Acorresponding to positive eigenvalues 2 2
1 , , k  of TA A .) So 

then the (always solvable) normal equation 

 T TA A Ax b  (71) 

is 

    2 2
1 1 1 1 1 1 .T T T T

k k k k k k       v v v v x v u v u b   (72) 

Show that 

 11 1

1

:
TT

k k
MP

k

A
 

 
    
 

v uv u
x b b  (73) 

solves the normal equation (72). (Here, FYI, 1
MPA is called the “Moore-Penrose 

pseudo inverse” of m nA  .) (Remember NOT to do the high school thing of 
immediately manipulating both sides of (72) given (73) until you get “truth”, which 
doesn’t prove anything, but rather manipulate one side or the other of (72) using 
(73) until you get the un-manipulated side, which DOES prove the assertion.) 



. 
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Solution 

With (73) and the orthonormality of  1, , kv v we get

 

   

 

 

   

 

2 2 2 2 1 1
1 1 1 1 1 1

1

2 2 1 1
1 1 1

1

2 2
1 1 1

2 21 1
1 1 1

1

1 1 1 1 1

TT
T T T T k k

k k k k k k
k

T
T T

k k k

T
T T k k

k k k
k

TT
T T k k

k k k
k

T T T
k k k

   
 

 


 


 
 

 

 
       

 
 

   
   
    
 
 

   
 

  

v uv u
v v v v x v v v v b

v u
v v v v

b
v u

v v v v

v uv u
v v v v b

v v v u v v v

  

 





   
    

 
1 1 1

1 1 1

1 1

T
k k

T T
k k k

T T
k k k

 

 

  

  

u b

v u v u b

v u v u b





 (74) 

whence (72) holds.  

 

10. In this problem, assume b a . 

Let 1 1:T P P be defined by 

      1

0
( ) : 3 1 (2 1) 2 1 ( ) .T f x a b x y f y dy      (75) 

Note that T is linear, and note that defining 0 ( ) : 1f x  , 1( ) : 2 1f x x  renders 

 0 1: ,S f f a basis for 1P , and gives  



 

     
   

  
  

1

0 00

1

0

1
2

0

2
0

( ) : 3 1 (2 1) 2 1 ( )

3 1 (2 1) 2 1

3 1 (2 1)

3 1 (2 1) 1 1 1 ( ),

y

y

T f x a b x y f y dy

a b x y dy

ay b x y y

a b x a a af x





    

    

      

        




 (76) 

and 

 

     
    

     

     

     

 

1

1 10

1

0

1 2

0

13

2

0

3 3

( ) : 3 1 (2 1) 2 1 ( )

3 1 (2 1) 2 1 2 1

2 1 3 1 (2 1) 2 1

2 1
3 1 (2 1)

6

2 1 1 2 0 1
0 1 (2 1)

2 2

1 1
1 (2 1) 1 (2 1) 1 1 (

2 2

y

y

T f x a b x y f y dy

a b x y y dy

a y b x y dy

y
a y y b x

a b x

b x b x b





    

     

     

 
     
  

    
      

 
 
           

 





0 1

2 1)

1 ( ) ( ),

x

f x bf x



 

 (77) 

i.e., we get 

    0 0 0 1 1 0 10 ,       1 .T f af af f T f f bf      (78) 

What is the matrix  SS
T for T relative to basis  0 1: ,S f f ? What are the eigenvalues of 

 SS
T ? What are the eigenvalues of T ? What are   SS

T ’s eigenspaces?  What are T ’s 

eigenspaces? Given that n  is a positive integer , and using the theorem that 

   ,
nn

SSSS
T T     (79) 

argue that  

  0 1 0 1.
n n

n n nb a
T f f a f b f

b a
    

 
     

 (80) 

Hint: See problem 8. Also, if it’s easier, instead of arguing (80), just argue that 



  0 0 0 10 ,n n nT f a f a f f    (81) 

and that 

  1 0 1.
n n

n nb a
T f f b f

b a

 
   

 (82) 
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Solution 

By easy theorem we have 

 

       
   

     0 1 0 1

0 1

0 0 1

0 1 0 1, ,

1

0 1

1 1
,

0 0

SS S S

S S

f f f f

T T f T f

af f bf

af f f bf

a a
A

b b

   
   
     
   

     
  

 (83) 

where A is the matrix of problem 8. Hence we have from just below (56) that the 
eigenvalues are 1 a  and 2 b  . By theorem we have that the eigenvalues of T are 

the same. By (57) we have that  

 
 

 

1
( ) ( ) ,

0

1
( ) ( ) ,

SS

SS

AT

AT

E a E a span

E b E b span
b a

  
    

  
  

      

 (84) 

and then by theorem we have that 

 
   

     
0 1 0

0 1 0 1

( ) 1 0 ,

( ) 1 .

T

T

E a span f f span f

E b span f b a f span f b a f

  

     
 (85) 

So now since from(79), (55) and (83) we have  



   ,

0

n n
n

nn n

SSSS
n
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and since 

      0 1 0 1
n n nT f f T f T f       (87) 

then 
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e e  (88) 

and finally then, by definition of coordinate vector with respect to basis  0 1: ,S f f , we 

must have 

  0 1 0 1

n n
n n nb a

T f f a f b f
b a

    
 

     
 (89) 

which is (80). 

 

11. Consider the following, which is one of the most important theorems in linear 
algebra: 

Theorem 1 (Decomposition) 

Let W denote a subspace of finite-dimensional innerproduct space V , and let W 

denote the orthogonal complement of W with respect to V . Then, for every Vv there 

is exactly one pair  , W W  w w  such that 

 . v w w  (90) 



Use this theorem to prove that w in (90) is the closest vector in W to v . That is, 

prove that for every other Ww , (“other “means W w w ), we have 

 ( , ) ( , ).d dw v w v  (91) 

 Actually, it’s enough (and easier) to prove that  

    22
( , ) ( , ) ,d dw v w v  (92) 

which is what then you should try to prove. Related to the idea that (92) is the 
basic/fundamental thing to prove (from which (91) will follow) is the fact that (92) 
will be quite impossible to prove if you don’t know that in an innerproduct space 
the notion of distance is as follows: 

   22
( , ) : : , .d     w v w v w v w v  (93) 

Also it will be quite impossible to prove (92) if you don’t know what orthogonal 
complement means. We have this definition: 

  : , 0 for every .W V W     w w w w  (94) 

(Recall that by symmetry of the innerproduct, in (94) we could have just as well 

written ,w w as , w w .) Thus, for (very relevant) example (but not so relevant 

as to give you the answer immediately), we have that decomposition (90) and 

definition (94) (together with Ww ) give the following “Pythagorean theorem”: 
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 (95) 

 i.e.,  , W W  w w implies that 

 
2 2 2

.   w w w w   (96) 



Well, you should have enough tools now to show that the left side of (92) is 

indeed strictly greater than the right side of (92) when , Ww w yet w w . To 

get strictly greater as in (92), instead of just getting “greater than or equal to” ( ), 
it will be important to know that 

  , : 0,d    w w w w w w    (97) 

 which is itself another hint on how to get started in (92). 
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Solution 

There are slicker ways to prove this, but how about the following “can’t help but get the 
right answer” method: On the one hand we have 
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 (98) 

where we used a version of Pythagorean theorem (96) (made possibly by , Ww w

implies W w w , etc.) and that 0 w w as in (97). On the other hand we have  

 
    22 2

2 2

( , ) :

,

d 

 

    

  

w v w v w w w

w w

   

 (99) 

and between (98) and (99) we get  

    222
( , ) ( , ) ,d d w v w w v  (100) 

i.e., 



    22
( , ) ( , ) .d dw v w v  (101) 

 

12.  Another one of the “big ones” from Linear algebra: 

Theorem 2  

The equation 

 A x b  (102) 

has a solution x iff b is orthogonal to every vector ( )TNul Ay . 

For the normal equation 

 T TA A Ax b  (103) 

this theorem becomes as follows: (103) has a solution x iff TA b is orthogonal to 

every vector    ( )
TT TNul A A Nul A A y . So consider that 

  , ,
TT T T TA A A A A A      y b y b y b y b y b y b  (104) 

and that 
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 (105) 

the latter meaning that , 0TA A w y holds for every w . (

0 ,T TA A A A  y 0 w y easily, and then 0 , TA A w y    0 ,T TA A A A y y  

2TA A y  TA A y 0 .) Thus 
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 (106) 

So in summary we have that a) for any ( )TNul A Ay , 

 , ,TA Ay b y b  (107) 

and b)  

 ( ) ( ) .T TA A Nul A A Nul A A      y 0 y y y 0  (108) 

(In (108) we included that easily TA A A  y 0 y 0 .) So given Theorem 2, prove 

that the normal equation (103) is consistent for every b . 
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Solution 

By the new version of the theorem and (107) and (108) we find that (103) is consistent 
iff 

 0 ,A y b  (109) 

for every y such that A y 0 , i.e., is consistent iff 



 0 , , 0 b  (110) 

which holds whatever b is.  


