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Write your name very clearly on this exam booklet. In this booklet, 
write your mathematics clearly, legibly, in big fonts, and, most 
important, “have a point”, i.e., make your work logically and even 
pedagogically acceptable. (Other human beings not already 
understanding 313 should be able to learn from your exam.) To 
avoid excessive erasing, first put your ideas together on scratch 
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this exam to anyone else in any fashion, not even whether it was 
difficult or not. My signature below indicates I accept this obligation. 
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1. Put the following matrix in reduced row-echelon form via elementary row 
operations: 

 

 

1 1 1 1

2 0 2 0

6 2 3 4

 
 
 
  

 (1) 

 
10pts 
 
Solution  
 
The row reduction might proceed as follows: 
  

 

2 2 1 2/ 2 3/ 3

3 6 1 3 4 2

1 3 1 2

1 1 1 1 1 1 1 1 1 1 1 1

2 0 2 0 0 2 0 2 0 1 0 1

6 2 3 4 0 8 3 2 0 0 3 6

1 1 1 1 1 1 0 3 1 0 0 2

0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 2 0 0 1 2 0 0 1 2

R R R R

R R R R

R R R R

  
 

 

     
           
              

     
     
     
            

 

  

 (2) 

 
However the row reduction proceeds, the row echelon form is unique—the last matrix 
indicated in (2) is the answer.  
 

2. Give an expression for the general solution to the system of equations 
 

 

1 1 1 1 0

2 2 0

6 2 3 .

1

4 0

w x y z

w y

x

z

y z

x

w

   
 

   
   (3) 

 
For the final 5 points of this problem, insert your expression for the solution into 
(3) to make sure that it works. That is, check your answer by plugging it back into 
(3). 

 
 5+5pts 
 
Solution 
 
The augmented matrix, less the augmentation, is the matrix in (1). Thus, according to the 
last matrix in (2), (3) is equivalent to  
 



 

1 1 1

2 2

6 2 3

2 0

0

2 0,

x y

w y

w x

w z

x z

y z

 
 

 

 
 
 

 (4) 

whose general solution is clearly  
 

 0

2 2

1
: .

2 2

1

w t

x t
t t

y t

z t

      
             
     
     
     

x  (5) 

 
Since (3) is homogeneous, in order to check that (5) is an expression of at least some of 
its solutions, it is enough to there plug in 
 

 

0

0
0

0

0

2

1
: : .

2

1

w

x

y

z

   
      
  
  

   

x  (6) 

We find 

 

   
       

0

0
0

0

0

0 0 0 0

0 0

0 0 0 0

1 1 1 1 1 1 1 1

2 0 2 0 2 0 2 0

6 2 3 4 6 2 3 4

2 2

6 2 3 4

2 1 2 1

2 2 2 2

6 2 2 1 3 2 4 1

3 3 0 0

4 4 0

12 2 6 4 10 10

w

x

y

z

w x y z

w y

w x y z

 
     
          
         

 
   

   
    
    
    
      

    
          
           

x

0 .

0

 
 
 
  

 (7) 

 
It works. This does not of course check that there aren’t more solutions. 
 

3. Give an expression for the general solution to the system of equations 
 



 

1

2 2 0

6 2 3 4.

x y z

x z

x y z

  
 

  
 (8) 

 
For the final 5 points of this problem, insert your expression for the solution into 
(8) to make sure that it works. That is, check your answer by plugging it back 
into(8). 
 

5+5pts 
 
Solution 
 
The augmented matrix for (8) is the matrix in (1), hence by the last matrix in (2) the 
unique solution of (8) is 

 

 

2

1 .

2

x

y

z

   
       
      

x  (9) 

We check that 

 

 
   
     

2 1 2 3 2 1

2 2 2 2 2 2 4 4 0

6 2 3 6 2 2 1 3 2 12 2 6 10 6 4.

x y z

x z

x y z

        

      

           

 (10) 

 
It works. 
 

4. Suppose column vectors 1x and 2x solve the linear system 

 
 .A x b  (11) 

 
That is, suppose both that 

 
 1A x b  (12) 

 
             and that 

 
 2 .A x b  (13) 

 
Now define a new column vector 3x  from the equation 

 
  3 2 1 1 2 1: 1 ( ).t t t     x x x x x x  (14) 

 



Here t is any real number. Show that  ‘interpolation’ 3x  also solves (11). (By 

doing so, you will have shown that when a linear system has two distinct 
solutions, it actually has infinitely many, namely all interpolations between the 
two original solutions.) 
 

10 pts 
 
Solution 
 
By matrix algebra and then using (12) and (13) we readily find that 
 

 
      

  
3 2 1 2 11 1 1

1 1 .

A A t t tA t A t t

t t

        

    

x x x x x b b

b b b
 (15) 

 
 

5. Assuming A and B are invertible matrices of the same size, prove that  
 

   1 1 1.AB B A
    (16) 

 
10 points 
 
Solution 
 

1 1B A   is the inverse of AB if and only if  
 

        1 1 1 1 ,AB B A B A AB I      (17) 

 
to whit we first note that, by the associative property of matrix multiplication,  
 

 

     

     

1 1 1 1

1 1 1 1

and

.

AB B A A BB A

B A AB B A A B

   

   





 (18) 

 
Then, by the definition of the inverses, in particular that an inverse is both a right and a 
left inverse, we have, respectively, that  
 

 

       

       

1 1 1 1 1

1 1 1 1 1

and

.

AB B A A BB A A IA

B A AB B A A B B IB

    

    

 

 

 (19) 

 



Using now the fact that the identity matrix is in fact the “multiplicative identity” we get   
 

 

     

     

1 1 1 1

1 1 1 1

and

.

AB B A A IA AA

B A AB B IB B B

   

   

 

 

 (20) 

 
Finally we use again the definition of the inverses. In particular, using that an inverse is 
both a right and a left inverse, we have, respectively, that    
 

 

   

   

1 1 1

1 1 1

and

,

AB B A AA I

B A AB B B I

  

  

 

 

 (21) 

 
which is the required (17). 
 

6. Use Gaussian elimination, noting along the way the various relevant row 
operations and their relationship to the (evolving calculation of) the determinant, 
to compute 

 

 

9 2 4

9 2 5

det 11 3 6

15 4 8 2

8 2 4

h p a y P

h p a y P

h p a y P

h p a y P

h p a y P

 
 
 
 
 
 
  

 (22) 

 
by reducing it to an upper triangular matrix (the determinant of which being the 
product of its diagonal entries). 

 
Be sure to note along the way the various relevant row operations to your 
Gaussian elimination and their accurate relationship to the (evolving calculation 
of) the determinant. (Note also a lower case p and an upper case P , whose values 
are potentially distinct. That is, these are independent variables.) 

 
10 points 
 
Solution 
 
We indicate the various Gaussian elimination row operations in the upper right-hand 
corner of the matrix (whose determinant is being calculated), making sure to use the 
correct relationship of such to the evolving determinant calculation: 
 



 

1 5 2 1

2 5 3 3 1

3 5 4 1

4 2 5 5 8 1
9 2 4 0 0 0 0

9 2 5 0 0 0

det det11 3 6 3 2 0 0

15 4 8 2 0 0 0

8 2 4 8 2 4

0 0 0 0

0 0 0 0

det 0 2 0 0

0 0 0 0

0 2 4

R R R R

R R R R

R R R R

R R R R
h p a y P h

h p a y P h a

h p a y P h p a

h p a y P h y

h p a y P h p a y P

h

a

p a

y

p a y P

 
 
 
 

   
   
   
   
       
      

 



 
 

5 2 3 5 4

2 3

0 0 0 0

0 0 0 0

det 0 2 0 0

0 0 0 0

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0

det det0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

( ) .

R R R R

R R

h

a

p a

y

y P

h h

a p a

p a a

y y

P P

hpa y P hapPy

 



 
  
  
  
    
   

   
   
   
     
       
      

   

 (23) 

  
7. Recall the (permutation) definition of a determinant of a (square) matrix can be 

equally unambiguously communicated as a ‘wedge product’ of the rows of the 
matrix, and that such makes proving a determinant’s properties under row 
operations easier (than doing so by permutations). For example, using that this 
product is associative and linear, we can easily prove that if B is the same as 
square matrix A , except that one of B ’s rows is a scalar multiple k of the 
corresponding row of A , then  
 

 det det .B k A  (24) 
 

Here’ how we easily prove this using wedge products: Write 
 

 
 

 
1 1

1

det :

: det .

j n j n

j n

B k

k k A

         

     

b b b a a a

a a a

   

 
 (25) 

 
It’s as simple as that! This used the associativity property in the sense that it was 
not important in (25) to use parentheses to indicate which adjacent wedge product 
was to be done first, then second, etc. It also used linearity ‘weakly’, the 
full/strong version of which being that, by definition of a wedge product, 



 
    .c k c k     a b c a c b c  (26) 

 
To prove that swapping any two rows gives the opposite sign in a determinant is a 
little trickier in general, but depends rather directly/simply on the only 
‘groovy’/unique property of a wedge product, namely that swapping arguments 
gives the opposite sign: by definition of wedge product we have 
 

 .   β α α β  (27) 
  

Note an immediate fact arising from (27) is that 
 

 0. α α  (28) 
 
Why? Because from replacing β  in (27) with αwe immediately have 
 

    α α α α  (29) 
 
and then by adding α α  to both sides of  (29) we get 
 

 2 0 α α  (30) 
 
and then (28) follows after division of both sides of (30) by two. The reason we 
care about property (28) of a wedge product is that, when using the wedge 
product definition of determinant, it is what dictates that when two rows of a 
determinant are the same, the determinant is zero: skipping the proof steps, the 
final result is that  
 

 

1

1det : 0.n

n

 
 
 
 
          
 
 
 
  

r

α

r α α r

α

r



   



 (31) 

Your mission, should you choose to accept it, is to use (31) and linearity (26) to (easily!) 
prove that when you add a multiple  of one row to another row of a (square) matrix you 
do absolutely nothing to the determinant of that matrix. Mark, get set, go! 

  
5 points 
 
Solution 
 



Here we imagine a multiple of an ‘earlier’ row added to a ‘later’ row, but the proof the 
other way round is identical: 
 

 

 
 

1 1

1 1

1

1

det :

0

: det .

j k n j k j n

j k n j j n

j k n

j k n

B

A







              

             

        

       

b b b b a a a a a

a a a a a a a a

a a a a

a a a a

     

     

  
  

 (32) 

 
8. Let A be a square matrix, and consider the linear system 

 
 .A x b  (33) 
 

The usual theorem is that if A is invertible—which means ‘left and right 
invertible’—then (33) has exactly one solution, namely  

 
 1Ax b . (34) 
 

a) Imagine a universe in which A  has a left inverse B , but is not guaranteed to have 
a right one. So we have 
 

 BA I  (35) 
 

but we are not at all guaranteed that there is a matrix C (be it B or any other 
matrix) such that AC I . Now prove one of the following, whichever one is 
possible (it is not possible to prove both with only (35)): 
 

i) Prove that (33) has at least one solution x , namely Bx b . 
ii) Prove that (33) has at most one solution x , namely Bx b . 

 
b) Imagine a universe in which A has a right inverse C , but is not guaranteed to 

have a left one. So we have 
 
 AC I  (36) 
 

but we are not at all guaranteed that there is a matrix B (be it C or any other 
matrix) such that BA I . Now prove one of the following, whichever one is 
possible (it is not possible to prove both with only (36)): 
 

i) Prove that (33) has at least one solution x , namely Cx b . 
ii) Prove that (33) hat at most one solution x , namely .Cx b  

 
10 points 
 
Solution 



 
a) If the system has a solution x , then, for any such x ,we may write 

 
 A x b  (37) 
 
(without implicitly lying), and then, by left application of B to (37), as well as by the 
associative property of matrix multiplication, obtain that 
 
     ,B B A BA I   b x x x x  (38) 

i.e., (37)/(33) implies  
 
 .Bx b  (39) 
 
In (38) we also used that B is a left inverse of A , i.e., we used (35), as well as the fact 
that the so-called identity matrix I is in fact a “multiplicative identity”. Here then we 
have just showed that if (37)/(33) has a solution, it’s got to be Bx b . Thus we have 
showed that (37)/(33) has at most one solution, namely Bx b . This is the second option 
ii) above. We have not at all proved that (39) actually solves (37). The latter is impossible 
to show without knowing B is a right inverse of A . 
 

b) With  right inverse C satisfying (36) we easily show that (37)/(33) has at least one 
solution, namely Cx b : we simply note that with Cx b we certainly get 
 

     .A A C AC I   x b b b b  (40) 

 
This is the first option i) above. This does not at all prove that there aren’t other solutions. 
The latter is impossible to show without knowing that C is a left inverse of A . 
 
 

9. Prove that the product AB of two square matrices (of the same size) cannot be 
invertible if B is not invertible. That is, prove that   

 
  is not invertible  is not invertible.B AB  (41) 
 

Hint: Consider the relationship between solutions x of the equation B x 0 and 
solutions x of the equation  AB x 0 , and use equivalent statements. 

 
10 points 
 
Solution 
 
By equivalent statements and associativity of matrix multiplication we have 
 



      

eq. stat.s

assoc.

eq. stat.s

 is not invertible   s.t. 

  s.t

 is not invertible.

B B

AB A B A

AB

   

     



x 0 x 0

x 0 x x 0 0  (42) 

 
 

10. Assume that both the matrix B and the matrix C are inverses of the matrix A . 
Show that B and C are just two aliases for the same matrix, i.e. show that in fact  
B C . 

  
10 points 
 
 
Solution 
 
The descriptions of B and C demand that 
 
 .AB BA I AC CA     (43) 
 
Using the associative property of matrix multiplication in two different ways on the 
product BAC we get   
 

 

 

 
and

,

BAC B AC BI B

BAC BA C IC C

  

  

 (44) 

 
so that indeed  

 

B BAC C

B C

 



 (45) 

 
as claimed. Note that in (44) we also used that a) C is a right inverse of A , b) B is a left 
inverse of A , and that c) the identity matrix acts as both a right and left multiplicative 
identity. If we wanted to use that C is a left inverse of A and that B is a right inverse in 
our proof, we could have done the following similar (but still different) computations: 
 

 

 

 
and

.

CAB CA B IB B

CAB C AB CI C

  

  

 (46) 

 



11. Prove that  T T TAB B A  for any two (not necessarily square) matrices A and 

B (for which the product AB makes sense). 
 
 
10pts 
 
Solution  
  
By definition of matrix product and transpose we have both 
 

 

    

     

: : ,

and

: : ,

T

jk kijiij k

T T T T
ki jk jk kiij ik kj

k k k

AB AB A B

B A B A B A A B

 

  



  
 (47) 

 
which gives   
 

     T T T

ijij
AB B A  (48) 

 

for any and all i and j , and which then gives  T T TAB B A by definition of matrix 

equality. 
 
 
12. Find the inverse of the matrix  

 

 
a b

A
c d

 
  
 

 (49) 

 

by row reducing A I    to 1I A   . Assume the parameters , , ,  and a b c d do not take on 

any special values, nor have a special relationship among them—that is row reduce 
naively, without worrying about any divisions by hidden zeros. Simplify your answer 
completely. (Related: 1kA should be exceptionally simple if scalar k is chosen to be 
ad bc .) 
 
 
10 points 
 
Solution 
 
The naïve row reduction mentioned might proceed as follows: 
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     
         

           



 



(50) 

 
In any case, the generally applicable expression 
 

 1 1 0 1

0 1

d b
A I I A

c aad bc
                

  (51) 

is in fact unique. 
  
 

13. Suppose the system of equations 
 
  
 A x b  (52) 
 
has one and only one solution nx  for each and every nb  . (Evidently A is an 
n n matrix.) So, tell me whether the following statement is true or is false: “It is possible 
that the matrix A allows there to be x 0 such that A x 0 ”, i.e. “It is possible that the 
homogeneous version of equation (52) has a nontrivial solution”. Prove your assertion. 
 
5 points 
 
Solution 
 
Without recourse to any “fancy theorems”, we have the following: A x 0 for 
x 0 certainly, and the hypotheses say that this is the only one. So the statement is false.   

 
14. Suppose the system of equations  

 
 A x b  (53) 
 
has a solution nx  for each and every nb  . (Evidently A is an n n matrix.) So, tell 
me whether the following statement is true or is false: “It is possible that the matrix 
A allows there to be x 0 such that A x 0 ”, i.e. “It is possible that the homogeneous 
version of equation (53) has a nontrivial solution”. Prove your assertion. 
 
10 points 
 



Solution 
 
With recourse to our “Equivalent Statements”, we have that A x 0 has only the trivial 
solution x 0 if and only if (53) has a solution nx  for every nb  . So the statement 
is false.  
 
Extra Pedagogy: Recall that the proof of this equivalence goes something like this: If 
(53) is consistent for every choice of nb  , then we can solve 
systems i iA x b , 1, ,i n  , with the ib ’s being the relevant columns of the identity 

matrix I . Then the matrix 1 i nC    x x x  certainly turns out to be a “right inverse” 

of A , which, by theorem 1.6.3, will also be “the inverse” of A , so that A x 0  has only 

the solution    1 1 1I A A A A A      x x x x 0 0 . [Note that theorem 1.6.3 could itself 

be proved there by showing that this right inverse is itself invertible—consider the 
systemC x 0 , which then has only the solution    I AC A C A    x x x x 0 0 , 

which, according to equivalent statements, gives C invertible—and then using that, under 
this circumstance, 1 1AC I A C CA CC I       , which says (among other things) 
that C is also A ’s inverse.] This is enough of the equivalence to deduce that the 
statement is false.  
 
To get the other part of this equivalence, and to illuminate how some of the other 
equivalent statements just used are indeed equivalent, recall the following: if A x 0 has 

only the trivial solution x 0 , then row reduction of A  0 must give I  0 (which 

presumes that row reduction does not change the solution space, which we have never 
really proved but seems clear) , i.e. row reduction of A must give I (ignoring the last 
columns in the above augmented matrices), which shows (with theorem 1.5.1) that  the 
product of A with a finite number of elementary matrices is I , which then shows that  
A can be expressed as a product of (the inverses of the) elementary matrices, and, so, is 

itself invertible, giving (finally!) that    1 1A A AA I   b b b b for every nb  , so 

that (53) has at least the solution 1Ax b for every b . Aside from row reduction 
preserving the solution space of a system of equations, the other “big idea” that may be 
buried in here is that fact that elementary matrices, or, more to the point, elementary row 
operations, are “truly” invertible, i.e. that the left or right inverses of such are in fact also 
right and left inverses. This last statement formed in terms of elementary row operations 
is the following: not only is it the case that for every elementary row operation there is 
another one that will “undo” it “afterwards”, but that same “afterwards inverse” done 
“before” the given elementary row operation will itself be undone by the given 
elementary row operation. Of course this distinction of “before” and “after” is at the heart 
of what we mean by “right” and “left” inverses. Whew!   
 
Note that at one very basic level, the truth of all of our equivalent statements comes down 
to row operations, specifically that they don’t alter the solution space of a system of 
equations, and (very much related) that they are “before/after”= “left\right” invertible. 



Perhaps these last two (but certainly related) claims should be thoroughly investigated by 
the serious student. 
 

15. Suppose the system of equations  
 
 A x b  (54) 
 
has at most 1 solution nx  for each and every nb  . (Evidently A is an n n matrix.) 
So, tell me whether the following statement is true or is false: “It is possible that the 
matrix A allows there to be a nb  such that (54) is inconsistent.” Said differently, this 
statement is “It is possible that the matrix A is so special that there is a nb  for which 
(54) has 0 solutions.” Note that “having 0 solutions” does not disagree with the statement 
that (54) “has at most 1 solution”.  Prove your assertion.  
 
10 points 
 
Solution 
 
If (54) has at most one solution for each nb  , then, choosing n b 0  , we see that 
the system A x 0  has only the solution x 0 : x 0 certainly solves the equation 
( A 0 0 ) and we’ve just said that there can’t be any other solutions. But, by equivalent 
statements again, (55) is consistent for every nb  . Thus the statement is false again! 
 
 

16. Suppose the system of equations 
 
 A x b  (55) 
 
has no solution nx  for some particular nb  . (Here A is an n n matrix.) Tell me 
whether the following statement is true or is false: “There is another right-hand-side 

nb  such that (55) has infinitely many solutions.” Prove your assertion.    
 
10 points 
 
Solution 
 
By (the contrapositive/negation of our stated) equivalent statements the supposition gives 
us that, for example, A x 0 has more than just one solution. (Here we have chosen the 
“otherb ” to be 0 . Mind you 0  really is another b since for b 0 (55) actually has a 
solution, namely x 0 , contrary to the supposition.)   But since the possibilities for the 
number of solutions of linear systems are only 0 , 1, or  , there must be an infinite 
number of solutions for b 0 , so that the statement is true. 


