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Math 313 Midterm II KEY 
Fall 2012 

sections 008 and 011 
Instructor: Scott Glasgow 

 
Write your name very clearly on this exam. In this booklet, write 
your mathematics clearly, legibly, in big fonts, and, most important, 
“have a point”, i.e. make your work logically and even pedagogically 
acceptable. (Other human beings not already understanding 313 
should be able to learn from your exam.) To avoid excessive erasing, 
first put your ideas together on scratch paper, then commit the 
logically acceptable fraction of your scratchings to this exam booklet. 
More is not necessarily better: say what you mean and mean what 
you say.  

 
Honor Code: After I have learned of the contents of this exam by any 
means, I will not disclose to anyone any of these contents by any 
means until after the exam has closed. My signature below indicates I 
accept this obligation. 

 
Signature: 
 

(Exams without this signature will not be graded.) 
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1) Let A be a square matrix, and consider the linear system 
 
 .A x b  (1) 
 

The usual theorem is that if A is invertible—which means ‘left and right 
invertible’—then (1) has exactly one solution, namely  

 
 1Ax b . (2) 
 

a) Imagine a universe in which A  has a left inverse B , but is not guaranteed to have 
a right one. So we have 
 

 BA I  (3) 
 

but we are not at all guaranteed that there is a matrix C (be it B or any other 
matrix) such that AC I . Now prove one of the following, whichever one is 
possible: (It is not possible to prove both with only (3).) 
 

i) Prove that (1) has at least one solution x , namely Bx b . 
ii) Prove that (1) has at most one solution x , namely Bx b . 

 
b) Imagine a universe in which A has a right inverse C , but is not guaranteed to 

have a left one. So we have 
 
 AC I  (4) 
 

but we are not at all guaranteed that there is a matrix B (be it C or any other 
matrix) such that BA I . Now prove one of the following, whichever one is 
possible: (It is not possible to prove both with only (4).) 
 

i) Prove that (1) has at least one solution x , namely Cx b . 
ii) Prove that (1) hat at most one solution x , namely .Cx b  

 
10 points 
 
Solution 
 

a) If the system has a solution x , then, for any such x ,we may write 
 
 A x b  (5) 
 
(without implicitly lying), and then, by left application of B to (5), as well as by the 
associative property of matrix multiplication, obtain that 
 
     ,B B A BA I   b x x x x  (6) 

i.e., (5)/(1) implies  
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 .Bx b  (7) 
 
In (6) we also used that B is a left inverse of A , i.e., we used (3), as well as the fact that 
the so-called identity matrix I is in fact a “multiplicative identity”. Here then we have 
just showed that if (5)/(1) has a solution, it’s got to be Bx b . Thus we have showed that 
(5)/(1) has at most one solution, namely Bx b . This is the second option ii) above. We 
have not at all proved that (7) actually solves (5). The latter is impossible to show without 
knowing B is a right inverse of A . 
 

b) With  right inverse C satisfying (4) we easily show that (5)/(1) has at least one 
solution, namely Cx b : we simply note that with Cx b we certainly get 
 

     .A A C AC I   x b b b b  (8) 

 
This is the first option i) above. This does not at all prove that there aren’t other solutions. 
The latter is impossible to show without knowing that C is a left inverse of A . 

 
 

2) Show that 
 

       : 1, 2,3 , 4,5,6 , 7,8,10S    (9) 

 
is a basis for 3 . Cite any labor-saving theorems used. Also, after sufficient 
explanation of any possible relevance, you may use either that the reduced row-
echelon form of  
 

 

1 4 7

: 2 5 8

3 6 10

A

 
   
  

 (10) 

 
is the identity  
 

 

1 0 0

0 1 0 ,

0 0 1

I

 
   
  

 (11) 

 
or that the reduced row-echelon form of 
 

 

1 2 3

: 4 5 6

7 8 10

B

 
   
  

 (12) 
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is the identity (as in (11)). Using the wrong one of either A or B will result in lost 
points—as will not explaining accurately why the reduced row-echelon form of 
whichever matrix ( A or B ) is even relevant in the first place, including not citing 
the relevant theorem accurately. 
 

 
10pts 
 
Solution 
 

3 is three dimensional: 
 
         1 2 3: 1,0,0 , 0,1,0 , 0,0,1 : , ,S   e e e  (13) 

 
is a basis. S  is a set of three vectors in this three dimensional space and, so, theorem, to 
show that S   is a basis for 3 it is enough to show that S  spans 3 , or show that S  is 
linearly independent. The latter is arguably easier:  
 
By definition, S  is linearly independent iff the only solution   3

1 2 3, ,k k k  of the 

equation 
 
        1 2 31, 2,3 4,5,6 7,8,10 0,0,0k k k    (14) 

 
is    1 2 3, , 0,0,0k k k  . Now 

 

 
           

 
1 2 3 1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3

1, 2,3 4,5,6 7,8,10 ,2 ,3 4 ,5 ,6 7 ,8 ,10

4 7 ,2 5 8 ,3 6 10

k k k k k k k k k k k k

k k k k k k k k k

    

      
(15) 

 
so (14) is equivalent to 
 
    1 2 3 1 2 3 1 2 34 7 , 2 5 8 ,3 6 10 0,0,0 ,k k k k k k k k k        (16) 

 
which is itself equivalent to the system of equations 
 

 
1 2 3

1 2 3

1 2 3

4 7 0,

2 5 8 0,

3 6 10 0,

k k k

k k k

k k k

  
  
  

 (17) 

 
which system can be rewritten as 
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1

2

3

1 4 7 0

: 2 5 8 0 .

3 6 10 0

k

A k

k

     
            
          

x 0  (18) 

 
Here we defined 
 

 
1

2

3

1 4 7

: 2 5 8 ,          :

3 6 10

k

A k

k

   
       
      

x  (19) 

 
in order to make a connection via familiar notation: From (18) we see that S  is linearly 
independent hence a basis iff this “ A x 0 ” system (linear, homogeneous system of as 
many equations as unknowns) has only the trivial solution 
 

 
1

2

3

0

: 0 .

0

k

k

k

   
       
      

x  (20) 

 
And by equivalent statements the latter holds iff the reduced-row echelon form of A is 
 

 

1 0 0

0 1 0 ,

0 0 1

I

 
   
  

 (21) 

which it is by (10)/(11) (not (12)/(11)).  
 

 
3) Suppose that       : 1,1,1,1 , 1,1,1, 1 , 1,1, 1, 1S     is a basis for a subspace W of 

4. Show that  
 
       : 6,6,0, 4 , 15,15, 25, 25,5, 113, 7 , )S      (22) 

  
is also a basis for W . You may use that 

 

 

1 4 7

2

1 1 1 6 15 25

1
5 8 ,

5
3 6 1

1 1 6 15 25

1 1 1 0 3

1 1 1 4 7 1
0

1

   
    
        
     

    


   

 (23) 

 
i.e., you may use that 
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1 1 1 6 1 1 1 15 1 1
1 4 7

2 , 5 , 8

1 24

1 1 1 6 1 1 1 15 1 1 1 24

1 1 1 0 1 1 1 3 1 1 1 6

1 1 1 4 1

.

3
1 1 7 1 1

6 0
1

1
10

           
                
                                  
                     

  

  
              

 (24) 

 
 You may also use either that the reduced row echelon form of  
 

 

6 15 25

6 15 25

0 3

4 7 11

5

 
 
 
 
 
   

 (25) 

is 
 

 

1 0 0

0 1 0

0 0 1

0 0 0

 
 
 
 
 
 

 (26) 

or that the reduced row echelon form of  
 

 

6 6 0 4

15 15 3 7

25 25 5 11

 







 
  

 (27) 

is 
 

 

1 1 0 0

0 0 1 0 .

0 0 0 1

 
 
 
  

 (28) 

 
As in problem 1), one of these facts ((25)/(26) or (27)/(28)) is relevant, the other 
irrelevant.  
 
10pts 
 
Solution 
 
W is 3 dimensional and S  is a set of three vectors, so provided S W  , S  is a basis for 
W if it is linearly independent or spans W , the former easier to prove. Now (24) shows 
that each of the vectors in S  is the indicated linear combination of vectors in S , hence 
gives S W  .  Following parts of problem 1) we find S  is linearly independent iff the 
system 
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1

2

3

6 15 24

6 15 24

0 3 6

4 7 10

0

0
:

0

0

k

A k

k

   
    
       

  

 
     

   

x  (29) 

 
has only the trivial solution 
 

 
1

2

3

0

0 .

0

k

k

k

   
      
      

 (30) 

Here we defined 
 

 
1

2

3

6 15 24

6 15 24

0 3 6

4 7 10

: ,              : .

k

A k

k

 
  
      
    

  

x  (31) 

 
(29) has only the trivial solution (30) iff there are no free variables, i.e., iff every column 
of the reduced row echelon form of A has a leading one. From (25)/(26)—NOT (27)/(28)
) —we see that that is the case. 
 
 

4) Suppose  1 2 3: , ,S  v v v  is a basis for a vector space V . Show that  

 

    1 2 3 1 2 3 1 2 3 1 2 3: , , : 2 3 ,4 5 6 ,7 8 10S           v v v v v v v v v v v v  (32) 

 
is also a basis for V .  
 

10pts 
 
Solution 
 
V is 3 dimensional and S   is a set of three vectors in V (using  1 2 3: , ,S  v v v spans V ), 

so  S  is a basis provided it is linearly independent or spans V , the former easier to 
prove: Consider whether the equation 
 

 1 1 2 2 3 3k k k          v v v z  (33) 
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has only the trivial solution    1 2 3, , 0,0,0k k k    (which solution it certainly has). From 

(32) we see (33) is equivalent to both 
 

      1 1 2 3 2 1 2 3 3 1 2 32 3 4 5 6 7 8 10 ,k k k             v v v v v v v v v z  (34) 

 
and then, via vector space algebra, 
 

      1 2 3 1 1 2 3 2 1 2 3 34 7 2 5 8 3 6 10 ,k k k k k k k k k                   v v v z  (35) 

 
which is 
 
 1 1 2 2 3 3k k k     v v v z  (36) 

 
where 
 

 1 1 2 3 2 1 2 3 3 1 2 3: 4 7 ,            : 2 5 8 ,             : 3 6 10 .k k k k k k k k k k k k                  (37) 

 
But since  1 2 3: , ,S  v v v is a basis, (36) implies (and is in fact equivalent to) 

   1 2 3, , 0,0,0k k k  , which, with (37) is the system of equations 

 

 

1 2 3

1 2 3

1 2 3

4 7 0,

2 5 8 0,

3 6 10 0,

k k k

k k k

k k k

    

    

    

 (38) 

 
which can be rewritten as in (18) (with primes on the k ’s), and which, by (10)/(11), does 
indeed have exactly the trivial solution.   
 
 

5) Let 
 

 

6 6 0 4

15 15 3 7

25 25 5 11

.A

 
   
  





 (39) 

 
Find a basis for the row space of A among the rows of A . (You will docked 
points if you find a different type of basis.) Now find a basis for the column space 
of A among the columns of A . (You will docked points if you find a different 
type of basis.) Finally find a basis for the nullspace of A .    
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10 points 
 
Solution 
 
By (27)/(28), the matrix A above is row equivalent to  
 

 

1 1 0 0

0 0 1 0

0 0 0 1

R

 
   
  

 (40) 

 
and, so, theorem, the row space of A is that of R , a basis for the latter (clearly) being all 
R ’s rows since none is zero: The theorem is that nonzero rows—the rows with leading 
ones—of a reduced row echelon matrix form a basis for its row space. (The theorem also 
states that the columns of reduced row echelon matrix with leading ones form a basis for 
its column space. The proof of either part of this theorem is a trivial analysis involving 
only a discussion of the location of 1’s and 0’s.) So 
 
       : 1,1,0,0 , 0,0,1,0 , 0,0,0,1rS   (41) 

 
is such a basis. Of course, if any of the rows of A were dependent, the dimension of the 
row space couldn’t be 3—by the plus minus theorem we could remove the ‘dependent’ 
row and get the same span. So it must be all A ’s rows are independent too and we have 
that A ’s ‘original’ rows also form a basis. Thus this gives the answer to the first 
question: 
 
       ( ) 6,6,0, 4 , 15,15,3, 7 , 25, 25,5, 11 :  ,row A Span Span S      (42) 

 
where S is a basis (consisting of all the rows of A ).  But this answer was obtained in a 
roundabout way. A more direct way would be to note that 
 

 

6 15 25 1 0 0

6 15 25 0 1 0
: ,

0 3 0 0 1

4 7 11 0 0 0

5
T

TA R

 
 
 

 
 
  
 



 

 
    

  (43) 

 
where means “row equivalent to”.  According to the theorem mentioned (in 
parentheses) below (40), we see that TR ’s ‘first three’ columns—all of its columns—

form a basis for the column space of TR . This is actually obvious without a theorem. 

Less obvious is that, theorem, the ‘first three’ columns of the row-equivalent matrix TA —
all of TA ’s columns—must therefore form a basis for the column space of TA . Of course 
these are just the ‘first three’ rows of A —i.e.,  all of A ’s rows—and we get (42) 
‘directly’.  
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To answer the second question in the way demanded—and rather directly this time—we 
note that a basis for the column space of R in (40) is it’s first, third and fourth columns—
either by the ‘theorem in parentheses’ again, or by the fact that that’s just obvious. 
Therefore, theorem, the first, third and fourth columns of A form a basis for the column 
space of A : 
 

  
0 4

, 3 ,

6

15

25

,

5

7 :  

11

col A Span Span S

       
               
            

 (44) 

 
where S  is a basis (consisting of columns of A ). [Of course we could have taken the 
second, third and fourth columns just as well. ;-) ] 
 
Let’s look at the third question now. By theorem, the null space of A is that of R ’s, and, 
so we get 
 

 

 

1 1
1 2 1 2

2 2
3 2 3 2

3 3
4 4

4 4

2

2
2 2 2

0

0 ,   0 ,   

0 0

1

1
:

0 0

0 0

x x
x x x x

x x
nul A x x x x

x x
x x

x x

x

x
x x x Span

      
         

                                 
        
      
                               

 

 

1 1

1 1
.

0 0

0 0

Span

      
                                 

 (45) 

 
In (45) we clearly have a basis—a single vector forms a linearly independent set unless 
it’s the zero vector. This is easy to see in the concrete setting of n (in this case 4 ), but 
also follows from the general theorem that, in a vector space, 
 
 ,               0,k k    u z u z  (46) 
 
where z is the additive identity in the space. (Of course we effectively have a theorem 
that, in any event, this procedure is going to produce a linearly independent spanning 
set—a basis.) 
 
 

6) Consider the following set S of vectors in 4 . Explain why S is linearly 
dependent without doing any calculations. Next, give a basis for the subspace 

Span W S and use this basis for W to express one of the vectors in S as a linear 
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combination of others in S . (No fair saying a vector is 1 times itself.) Finally, 
what is the dimension of Span W S ? 

 

 

1 1 2 1 1

1 0 3 3 1
, , , ,

2 2 4 2 2

0 1 1 2 1

S

          
          
                                           

 (47) 

 
You may use the fact that 
 

 

1 1 2 1 1

1 0 3 3 1
: :

2 2 4 2 2

1 0 3 3 0

0 1 1 2 0

0 0 0 0

0 1 1 2 1

1

0 0 0 0 0

A B

   
   
    
   
       

 
 , (48) 

 
where the tilde ( ) indicates “row equivalent to”. 

 
10pts 
 
Solution 
 
S is 5 vectors from 4 , so since 45 4 dim   , theorem, S is dependent. Next, 
since B is in reduced row echelon form, its pivot columns (clearly) define a basis for its 
column space, all other columns linear combinations then of these special columns. These 
pivot columns are its first, second and fifth. And since, theorem, row reduction does not 
alter the linear relationships among columns of a matrix, the associated columns of A are 
a basis for the column space of A : the first, second and fifth columns of A give a basis 
for the column space of A .  So since these columns are the first, second and fifth 
elements of S , it must be that the first, second and fifth elements of S are a basis for 

Span W S : a basis for Span W S is the set 
 

 

1 1 1

1 0 1
, , .

2 2 2

0 1 1

S

      
      
                           

 (49) 

 
Here we see then that dim dimSpan dimSpan 3W S S S     , which answers the 

last question.  
 
With the theory just presented, we have that since 
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  1 2 3 4 5

1 0 3 3 0

0 1 1 2 0

0 0 0 0 1

0 0

:

0 0 0

 
 
 
 










b b b b b  (50) 

gives 
 
        3 1 2 1 2 4 1 2 1 23 3 ,   1 3 2 ,23        b b b b b b b b b b  (51) 

 
it must be that 
 

 

2 1 1 1 1 1

3 1 0 3 1 0
3 ,   3 2 ,

4 2 2 2 2 2

1 0 1 2 0 1

           
           
              
           
                       

 (52) 

 
either one of which two statements answering then the second question. 
 

7) For the given set V of objects, together with the indicated notions of addition and 
scalar multiplication, determine whether each of the ten vector space axioms 
holds: V is real pairs  ,x y , where 

 

 
( , ) ( , ) : ( , ),

( , ) : (2 2 , ),

x y x y x x y y

k x y kx ky kx ky

      
   

 (53) 

10pts 
 
Solution 
 
Axioms 1) through 5) should hold since they reference only vector addition and since 

2V   with only scalar multiplication altered.  
 
6)  2( , )k x y V    when 2( , )x y V   and k since both 2 2kx ky and kx ky are 
clearly real numbers then. 
 
7) First of all note that  
 
    ( , ) : (2 , )k x y k x y k x y     (54) 

 
and that we then have 
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 
     

       
       

( , ) ( , ) : ( , )

: (2 , )

(2 2 , )

: (2 , ) (2 , )

: ( , ) ( , ).

k x y x y k x x y y

k x x y y k x x y y

k x y k x y k x y k x y

k x y k x y k x y k x y

k x y k x y

        

         

         

        

    

 (55) 

So this axiom holds. 
 
For axiom 8) we have 
 

 

       
     

       
       

( , ) : (2 , )

( 2 2 , )

(2 2 , )

: (2 , ) (2 , )

: ( , ) ( , ).

k m x y k m x y k m x y

k m x y k m x y

k x y m x y k x y m x y

k x y k x y m x y m x y

k x y m x y

      

    

      

     

   

 (56) 

So this axiom holds too.  
 
For axiom 9) we have 
 

 

     
         

     
   

       

( , ) : (2 , )

: (2 2 , 2 )

(2 2 , 2 )

(2 , )

(2 , ) : ( , ).

k m x y k m x y m x y

k m x y m x y k m x y m x y

k m m x y k m m x y

km x y km x y

km x y km x y km x y

     

      

    

  

    

 (57) 

So this axiom holds also. 
 
Finally then note that with regard to axiom 10) we have 
 

      1 ( , ) : (2 ,1 ) (2 , )x y x y x y x y x y        ( , ).x y  (58) 

 
In particular note that 
 
  1 (1,1) (2 1 1 ,1 1) (0,0) (1,1).       (59) 

 
Thus all axioms hold except the last.  
 

8) Show that if  1 2,S  v v be a basis for a vector space V . Show that 

 1 2 3, ,W  w w w , which is a set of three vectors in V , is linearly dependent. 
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10pts 
 
Solution 
 
We consider whether 
 
 1 1 2 2 3 3 1 2 3 0.c c c c c c         w w w z  (60) 

 
Apparently we will find (60) doesn’t hold, i.e., we will find there exists 

   1 2 3, , 0,0,0c c c   such that the left hand side of (60) holds. Here’s how we can do that.  

 
Well, since  1 2,S  v v is a basis for V , it spans V , which means there are scalars 

11 21 12 22 13 23, ; , ; ,k k k k k k such that 

 
 1 11 1 21 2 2 12 1 22 2 3 13 1 23 2,      ,      ,k k k k k k           w v v w v v w v v  (61) 

 
and the left-hand-side of (60) is equivalent to 
 

      
   

1 1 2 2 3 3

1 11 1 21 2 2 12 1 22 2 3 13 1 23 2

11 1 12 2 13 3 1 21 1 22 2 23 3 2 ,

c c c

c k k c k k c k k

k c k c k c k c k c k c

     

              

     

z w w w

v v v v v v

v v

 (62) 

 
i.e., it’s equivalent to  
 
    11 1 12 2 13 3 1 21 1 22 2 23 3 2 .k c k c k c k c k c k c     v v z  (63) 

 
Now, by theorem, this equation—which is equivalent to the left-hand-side of (60)—
certainly holds if 
 

 11 1 12 2 13 3

21 1 22 2 23 3

0,

0.

k c k c k c

k c k c k c

  
  

 (64) 

 
With the k ’s given and the c ’s being sought, (64) is a system of two linear homogeneous 
equations in 3 unknowns, hence has a solution    1 2 3, , 0,0,0c c c  , (60) doesn’t hold, 

and  1 2 3, ,W  w w w is linearly dependent as advertized.  
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9) Let W be the set of all simultaneous solutions nx  of two linear, homogeneous 
systems of equations: 

 

    and   .n m l
m lW A B     x x 0 x 0    (65) 

 
(Evidently A is an m n matrix, and B is a l n  matrix.) It turns out that W is a 
subspace of n . Prove this. Use any relevant theorems learned in this class, 
except the one you developed in a HW problem regarding intersections of vector 
spaces. (Don’t just say, “We proved that the intersection of two subspaces of a 
vector space is a subspace.”) In avoiding use of that HW problem result, you will 
effectively prove the very general thing anew, but think your’re just doing 
something specific, which will make the problem seem easier. 
 

10pts 
 
Solution 
 
Since nW   , by theorem it will be a subspace provided it’s not empty, and provided it 
is closed under linear combos. Well, W is nonempty because n

n x 0  solves both 
m

mA  x 0  and l
lB  x 0  .  Now let’s see if W is closed under linear combination: 

Let , Wx y and let ,    all be arbitrary. W will be a subspace if W  x y . 
Well, since , Wx y , all of the following equations hold true: 
 

 
  ,         ,

  ,         .
m l

m l

A B

A B

 
 

x 0 x 0

y 0 y 0
 (66) 

 
So then 
 

 
 
 

,

,

m m m

l l l

A A A

B B B

     

     

     

     

x y x y 0 0 0

x y x y 0 0 0
 (67) 

 
and, so, by definition,  W  x y and we do indeed get W is a subspace of n . (In 
(67) we first used matrix algebra, then that any linear combo of the same type of zero 
vector is that type of zero vector.)  
 

10) Let A be an m n matrix. Write it as 
 

 
1
T

T
m

A

 
   
  

r

r

  (68) 
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where 1 , ,T T
mr r are m row vectors of “width” n , i.e.,  1 , ,T T

mr r is a set of m row  

vectors, each in n . It will also be useful to realize then that  1 , , mr r is a set of 

m column vectors, each one in n . Recall that 
 

    1 1 1 1( ) : , , : , , .T T T T
m m m mrow A Span c c c c    r r r r     (69) 

 
Of course we can ignore the distinction between row and column vectors and just 
write 
 

    1 1 1 1( ) : , , : , , .m m m mrow A Span c c c c    r r r r     (70) 

  
Also recall that 
 

  ( ) : .n m
mnul A A   x x 0   (71) 

  
But now note that we can write 

  

 
1 1 10

,

0

T T

m
T T
m m m

A

      
                 
              

r r x r x

0 x x

r r x r x

     (72) 

 
whence  
 

 1( ) 0,mnul A      x r x r x  (73) 

 
(provided nx   so the dot product makes sense). Of course we can write all this 
as 

 

  1( ) : 0n
mnul A       x r x r x   (74) 

 
 where A is given by (68).  
   

(73) says “ x  is in the nullspace of A iff x is orthogonal to each of A ’s rows”. 

Now the “orthogonal complement” of ( )row A , denoted  ( )row A


,  is “the set of 

all vectors in n orthogonal to each and every vector in ( )row A ” : in set notation 
this is 
 

    ( ) : 0 for every ( ) .nrow A row A
     x r x r  (75) 
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So with (73) and (69) is not hard to show that  ( ) ( )row A nul A
  : Since by (69) 

 

    1 1 1 1( ) : , , : , , ,m m m mrow A Span c c c c     r r r r r     (76) 

 
we can rewrite (75) as 
 

 
    

 
1 1 1

1 1 1

( ) : 0 for all , ,

0 for all , , .

n
m m m

n
m m m

row A c c c c

c c c c

       

       

x r r x

x r x r x

   

   
 (77) 

Thus 
 

   1 1 1( ) 0 for all , , ,m m mrow A c c c c
       x r x r x    (78) 

 
(provided nx  so that the dot product makes sense). But now we see that the 
right hand sides of (73) and (78) are equivalent, hence the left hand sides are (and, 

so,  ( ) ( )nul A row A
  , as advertized): we have 

 
 1 1 1 10 0 0 0m m m mc c c c             r x r x r x r x    (79) 

 
for any and all 1, , mc c   , and conversely if 

 
 1 1 10 for all , ,m m mc c c c     r x r x    (80) 

 
then 1 0m    r x r x —choose all 'c s to be zero except the first, then all to be 

zero except the second, etc., etc. 
 
Whew! We just proved  
 

    ( )row A nul A
   (81) 

 
for any matrix A . Note with A being m n , each side of (81) is a subspace of 

n . 
 
Recently we proved “the dimension theorem”, which, with  A being m n as 
above, says that 
 

 dim ( ) dim ( ) #  of columns of dim .ncol A nul A n A      (82) 
   

The proof of this was basically the following: the theorem is obviously true if A is 
already in reduced row echelon form R —basically just that pivot columns plus 
nonpivot columns= total number of columns—and that even when 
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( ) :A rref A R  , we nevertheless get ( ) ( )nul A nul R (whence 
dim ( ) dim ( )nul A nul R ), and also manage to get dim ( ) dim ( )col A col R (even 
though it may be that ( ) ( )col A col R , which is usually the case). Unfortunately 
(82) does not imply anything like 
 

 ( ) ( ) ,n
mxn mxncol A nul A    (83) 

 
and this simply because 

space
( ) m n

mxncol A    . On the other hand, we know by 

theorem that dim ( ) dim ( )col A row A , so that (82) could have been written as 
 

 dim ( ) dim ( ) dim ,nrow A nul A    (84) 
 

or, with our new result (81), this could have been written as 
 

  dim ( ) dim ( ) dim .nrow A row A
    (85) 

 
Now each of the vector spaces indicated in (85) is a subspace of n (for 

mxnA A ), and indeed it’s not too hard to prove then (using (85)) that a) 

 

  ( ) ( ) nrow A row A
    (86) 

 
and b)  
 

    ( ) ( ) .n
nrow A row A

  0   (87) 

  
In (86) the sum symbol  , which “adds” the sets, means that we form a new set 
that arises from taking every vector in ( )row A and vector adding it to every vector 

in  ( )row A


 . So this includes the union  ( ) ( )row A row A
 of the two sets, but 

can be a lot bigger. 
 

And then , what’s even cooler, because of (86) and (87) we rather immediately 
get that, given any m n matrix A , n is “uniquely decomposed” into A ’s row 
space and its orthogonal complement—which means that, for any nv  , there’s 

a unique ( )row Ar and a unique  ( ) ( )row A nul A
  r such that 

 
 . v r r  (88) 
 

Ultimately, this decomposition theorem is central to lots of other ideas in linear 
algebra, including the theory behind “regression”, “least squares”, etc. (the latter 
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coming explicitly later in the course). Finally, because of (88), it’s not too hard to 
show that 
 

   ( ) ( )row A row A
  . (89) 

(89) says “The orthogonal complement of the orthogonal complement of the row 
space of a matrix is the (original) row space of that matrix.” This theorem seems 
rather obvious, and indeed its super easy to show that  
 

   ( ) ( )row A row A
   (90) 

 
(which says that ever vector r in ( )row A is orthogonal to every vector r that’s 
orthogonal to every vector r in ( )row A ), but much harder to show that 
 

   ( ) ( )row A row A
   (91) 

 
(which says that every vector r  that’s orthogonal to every vector r that’s  
orthogonal to every vector r in ( )row A is in ( )row A ). Indeed showing the unique 
decomposition (88) is central to getting this tough last part. I’ll even show you 

below that this last part—the inclusion   ( ) ( )row A row A
  — is not true with 

a “slight” tweak to the problem (which shows that there’s something highly 
nontrivial about getting the latter when we manage to get it). 
 
Even cooler than any of the above is the following: who says you need to be 
thinking about matrices? After all, the row space of “the matrix” was just all 
linear combinations of a set of however many vectors (“ m ”of them) from n —

who says we need to “stick them in a matrix”—and then  ( )row A


is just the 

orthogonal complement of that subspace. So ultimately we have the following 
“matrix-free” theorem (proved ultimately by thinking about matrices as above): 
 
THEOREM SUPER: Let W be a subspace of n , and let W  be W ’s orthogonal 
complement subspace (in n ). Then 
 
a) dim dim dim nW W n   , 
b) nW W     

c)   n
nW W   0   

d) For every nv  there is a unique Ww and a unique W w such that 
 v w w . 

e)   .W W
   
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We can get even cooler/more general still: by introducing coordinate vectors, one 
can imagine that the concrete vector spaces in the above theorem are simply spans 
of coordinate vectors associated with a basis—a basis for an abstract vector 
space. Of course we can’t just have a vector space, but rather we need an inner 
product space (so that there’s a notion of innerproduct hence orthogonality). Thus 
the coolest theorem so far that follows rather immediately from “dull” theorem 
(85)/(86)/(87)/(88) is the following:  
 
THEOREM SUPER DUPER: Let W be a subspace of finite-dimensional 
innerproduct space V , and let W  be W ’s orthogonal complement subspace 
(with respect to V ). Then 
 
a) dim dim dimW W V   
b) W W V   

c)  W W V  z  

d) For every Vv  there is a unique Ww and a unique W w such that 
 v w w . 

e)  W W
  . 

 

As in (90), for e) above it’s easy to show that  W W
  , rather hard to show 

 W W
  . Indeed, as suggested above, it’s easy to change the hypothesis of 

THEOREM SUPER DUPER and make it so that  W
 W . How? Just let V be 

infinite dimensional. Is this a ‘tweak’? You decide. Anyways, who cares? Well, 
lot’s of practitioners care, namely all thoughtful engineers/physicists: the vector 
spaces of the sciences are almost always infinite dimensional. :/ 
 
Anyways,…. 
You’re task, should you choose to accept it, is to prove that, given a) (and c) of 
THEOREM SUPER (not THEOREM SUPER DUPER), you get b) and d). (Note 
that e) follows rather immediately from d), but we’ll hold off on that for now—let 
you do it for extra credit say.) I’ll get you started on proving b) and d) given a) 
and c). 
 
Well, let’s first get c) easily: first, we certainly have 
 

   and W W W W    v v v  (92) 
 
 where 
 

  : 0  for every .nW W      w w v v  (93) 

  



21 
 

So since (92) says W W v  is in both sets we get 
 

 
2

0 n
nW W        v v v v v 0   (94) 

 
and we’re done. (In (94) we used that the Euclidean innerproduct—the “dot 
product” –is “nondegenerate”, i.e., the only vector of length zero is the zero 
vector.  
 
To prove b) then d) do the following: First, if  nW  0 then by (93) one easily 

gets nW    and, so, gets   n n
nW W   0   , which is b) , and easily 

gets  nW w 0 and nW  w  adding up to any nv  are unique (which 

is d)) since then n
      v w w 0 w w . Likewise if  nW   , then from (93)

one easily gets   nW   0 (as in (94)) and, so, b) and d) follow again (in almost 

exactly the same way).  So now that we’ve got the two trivial cases out of the 
way, let’s do “everything in between”: 
 
Since W and W  are (finite dimensional) vector spaces, and since we now 
preclude either one of them from being only the zero vector space (we handled 
those two cases above), they each have a basis: let  

 
  1, ,W lS  w w  (95) 

and 
 

  1, , kW
S   u u  (96) 

 
be bases for W and W  , respectively. But from a) we have 
 

 dim dim dim .nn W W l k      (97) 
 

Of course l k is the cardinality of the union of the two sets: there’s l elements in 

WS , k of them in 
W

S  , and by c) the only thing they could have in common is the 

zero vector, which they can’t have in common since otherwise they’d both be 
linearly dependent.  So 
 

  1 1: , , , , , ,n
W l kW

S S S   w w u u     (98) 

 
and 
 

 dim .nS l k n      (99) 
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So here’s a set of n vectors in n , which then, theorem, will be a basis for 
n provided, say, the set is linearly independent. This will end up being the 

case—i.e., S will end up being a basis for n , and, so, b) will follow since S will 
span n , and d) will follow since the overall coordinate vector ( )Sv of any 

nv   with respect to basis S will be unique. (Recall the uniqueness of 
coordinate vectors with respect to a basis follows from the independence of a 
basis.) So the only thing I’m asking you to do is to prove that S  defined by (98) is 
linearly independent. Oh, ok, I’ll get you started on that too:  by definition, S of 
(98) is linearly independent iff 
 

 1 1 1 1 1 1 0.l l k k n l k                   w w u u 0     (100) 

 
 Well, consider the first equation in (100) and rewrite it as 
 
    1 1 1 1 .l l k k         w w u u   (101) 

 
Hmm…. On the left of (101) we have a linear combination of vectors in W —
whence, by closure under linear combos, the left hand side of (101) is a vector in 
W ,  and on the right of (101) we have a linear combination of vectors in W  —
whence, by closure under linear combos, the right hand side of (101)  is a vector 
in W  . See where this is going? I hope so—I’ve taken you to the 99meter line in 
the 100meter sprint. Well, I’ve taken you at least that far if I now remind you that 
since  1, ,W lS  w w is linearly independent and since  1, , kW

S   u u is 

linearly independent then we have both 
 

 1 1 1 0,l l n l         w w 0   (102) 

 
and 
 

    1 1 1 0.k k n k             u u 0   (103) 

 
10pts 
 
Solution 
 
Since each side of (101) is in both W and W  , then each side is in  nW W   0 (recall 

(94)) , i.e., each side is n0 and we immediately get the left hand sides of both (102) and 

(103), whence both the right hand sides of (102) and (103), which gives the right hand 
side of (100) and we’re done.  
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11) Find the standard matrix for the following linear operator on 3 : A rotation of 
180 counter clockwise about the z axis, followed by a rotation of 90 counter 
clockwise about the y axis, followed by a rotation of 270 counter clockwise 
about the x axis.  

 
10pts 
 
Solution 
 
By theorem we have that for linear operator 3 3:T    
 

        
1 0 0

ˆ ˆ ˆ 0 1 0

0 0 1

T T x T y T z T T T

      
                 

            

 (104) 

Now  ˆ 1,0,0
T

x  is sent to  ˆ 1,0,0
T

x   by the 180 counter clockwise rotation about 

the z axis, and the rotation of 90 counter clockwise about the y axis sends it 

to  ˆ 0,0,1
T

z  , and then the rotation of 270 counter clockwise about the x axis sends this 

to  ˆ 0,1,0
T

y  . Similarly,  ˆ 0,1,0
T

y  is changed to  ˆ 0, 1,0
T

y   by the 180 counter 

clockwise rotation about the z axis, and the latter is unchanged by a rotation about the 

y axis, which then goes to  ˆ 0,0,1
T

z  via a rotation of 270 counter clockwise about the 

x axis. Finally  ˆ 0,0,1
T

z  is unchanged by a rotation about its axis, which then is 

changed to  ˆ 1,0,0
T

x  by a rotation of 90 counter clockwise about the y axis, which 

then is fixed by any rotation by that axis. Thus, 

        
0 0 1

ˆ ˆ ˆ ˆˆ ˆ 1 0 0 .

0 1 0

T T x T y T z y z x

 
          
  

 (105) 

If these operations are composed in the opposite order, one would get the matrix 
 

 

0 1 0

0 0 1 ,

1 0 0

 
  
  

 

 
which is incorrect. 
 

12) Let 3 2:T   be linear. Show that T is not one-to-one. (Hint: Cook this down 
to a homogeneous linear system with more unknowns than equations.) 

 
10pts 
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Solution 
 
Be definition, T is one-to-one iff 
 
 ( ) ( )T T  x y x y  (106) 
 
and, easy theorem, when T is linear (106) is equivalent to  
 
 2 3

2 3( ) .T     x 0 x 0   (107) 

 
But since 
 
 3

1 2 3 1 1 2 2 3 3, ,   such that ,x x x x x x      x x e e e   (108) 

 
where  1 2 3: , ,S  e e e is the standard basis for 3 , then, with linearity again, which 

dictates that  
 

 

     

1

1 1 2 2 3 3 1 1 2 2 3 3 1 2 3 2

3

1

2 2 3

3

( ) ( ) ( ) ( ) ( ) ( ) ( )

: : ,

x

T x x x x T x T x T T T T x

x

x

T x T T

x


 
           
  

 
    
  

e e e e e e e e e

x x

(109) 

 
we get (107) is 
 
   2 3

2 32 3
,T


    x 0 x 0   (110) 

 
where, by (109) (and 3 2:T    ) , and as indicated, we see that  2 3

T


is a 2 3 matrix. 

So the equation   22 3
T


x 0 is a linear homogeneous system of 2 equations with 

3 unknowns and, so, has more than just the trivial solution. Thus (110) does not hold, 
equivalently (107) does not hold, and T is not one-to-one, as advertized.  
 
 

13) Let 2 3:T   be linear. Show that T is not onto. (Hint: Cook this down to 
using that a set of fewer than n vectors cannot span an n dimensional vector 
space.) 

 
10pts 
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Solution 
 

2 3:T   is onto ( 3 ) iff for every 3b  there is an 2x  such that 
 
 ( ) .T x b  (111) 
 
Picking as above the standard basis, but this time for 2 , (111) is equivalent to 
 
  3 2

T


x b  (112) 

 
since T is linear.  So our linear 2 3:T   is onto iff (112) has a solution 2x  for 
every 3b  . But since 
 

    1
1 2 1 1 2 2 1 23 2 3 2

2

( ) ( ) ( ) ( ) ( ), ( ) ,
x

T T T x T x T span T T
x 

 
       

 
x e e e e e e  (113) 

 
that would say that every 3b  is a linear combination in the set  1 2( ), ( )T Te e , i.e., it 

would say that  1 2( ), ( )T Te e spans a three dimensional space. This contradicts the 

theorem that a set of fewer than n vectors cannot span an n dimensional vector space. 
Thus (112) can’t have a solution x for every b , likewise for (111), and T is not onto, as 
advertized.   
  

 
14) Let 2 2:T   be linear, and let T be onto. Show that T is one-to-one. (Hint: 

Cook this down to the fact that a set of n vectors in an n dimensional vector space 
is a basis if it spans the space.) 

 
10pts 
 
Solution 
 
As in (107) we’ll get that the map is one-to-one iff the only pre-image of 2

2 0  is 
2

2 .0   But by definition of linear independence, and by the way matrix multiplication 

works (as in (109) or (113)) that will hold iff the columns of  2 2
T


are linearly 

independent. But those columns are a set of 2 vectors in 2 dimensional vector space 2 , 
and, so, will form a basis iff they span the space. Well, they do span the space: the range 
of  2 2

T


is it’s columns space, and we’ve said T is onto,  i.e., we’ve said  2 2
T


’s column 

space is all of 2 . Thus those column vectors are a basis and, in particular, are linearly 
independent.  
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15) Let 2 2:T   be linear, and let T be one-to-one. Show that T is onto.  (Hint: 
Cook this down to the fact that a set of n vectors in an n dimensional vector space 
is a basis if it’s linearly independent. ) 

 
10pts 
 
Solution 
 
As above, by definition of onto, we’ll conclude  T is onto if  2 2

T


’s columns span 2 , 

which will occur if they’re independent (by the “right number of vectors in the right-sized 
space” theorem), which happens here since T is one-to-one.  
 
 
 
 
  

 


